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Computational contact homogenization approach is applied to study friction anisotropy resulting from
asperity interaction in elastic contacts. Contact of rough surfaces with anisotropic roughness is consid-
ered with asperity contact at the micro scale being governed by the isotropic Coulomb friction model.
Application of a micro-to-macro scale transition scheme yields a macroscopic friction model with orien-
tation- and pressure-dependent macroscopic friction coefficient. The macroscopic slip rule is found to
exhibit a weak non-associativity in the tangential plane, although the slip rule at the microscale is asso-
ciated in the tangential plane. Counterintuitive effects are observed for compressible materials, in partic-
ular, for auxetic materials.
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1. Introduction

Frictional response of a contact pair is called anisotropic when
the friction coefficient, or more generally friction force or traction,
depends on the direction of sliding. Anisotropic effects in friction
are usually attributed to two sources: anisotropy of surface rough-
ness or material anisotropy in a surface layer. This work is devoted
to the micromechanical analysis of the former effect in elastic
contacts.

Experimental evidence of friction anisotropy is very broad,
some representative examples are mentioned below. Friction
anisotropy has been observed in anisotropic materials such as crys-
tals (Casey and Wilks, 1973; Hirano and Shinjo, 1993) and fiber-
reinforced composite materials (Sung and Suh, 1979). Anisotropic
roughness effects have been observed for textured surfaces
(Zhang and Komvopoulos, 2009; Zhang et al., 2012), including con-
tact of rubber-like materials (Konyukhov et al., 2008; Carbone
et al., 2009; Ozaki et al., 2012) and biological contacts (Hazel
et al., 1999; Murphy et al., 2007).

Macroscopic constitutive models of anisotropic friction are usu-
ally developed within the framework of plasticity theory
(Michałowski and Mróz, 1978; Curnier, 1984; Mróz and
Stupkiewicz, 1994; Konyukhov and Schweizerhof, 2006; Ozaki
et al., 2012). Alternative approaches include the bi-potential
method (Hjiaj et al., 2004) and friction-tensor description
(Zmitrowicz, 1989). He and Curnier (1993) have introduced a fric-
tion model involving structural tensors that describe evolution of
friction anisotropy resulting from relative motion of contacting
bodies. Computational schemes for anisotropic frictional contact
problems have been developed, for instance, by Hjiaj et al. (2004),
Buczkowski and Kleiber (2006), Jones and Papadopoulos (2006)
and Rodriguez-Tembleque and Abascal (2013).

In contrast to the macroscopic models mentioned above, micro-
mechanical modeling approach considers interaction mechanisms
at the microscale with the aim to provide a refined description of
macroscopic properties and an improved understanding of physi-
cal phenomena. The general goal of micromechanics is to establish
a link between macroscopic properties of materials, interfaces, etc.,
and their microscopic features, including microstructure and local
interaction mechanisms. Classical applications of micromechanical
modeling are concerned with heterogeneous bulk materials and
their macroscopic bulk properties, and a variety of related
approaches have been developed over the last decades, see, for
instance, Nemat-Nasser and Hori (1999) and Qu and Cherkaoui
(2006). However, the concepts of micromechanics can also be
applied to interfaces. Contact interfaces, considered further in this
work, are here typical examples, but other types of interfaces are
also analyzed, for instance, microstructured interfaces at phase
boundaries (Stupkiewicz et al., 2007; Petryk et al., 2010), imperfect
or corrugated interfaces in composites (Bertoldi et al., 2007; Vinh
and Tung, 2012; Quang et al., 2013), and others.

In the present context of contact of rough surfaces, the goal of
micromechanical modeling is to predict macroscopic properties
of a contact pair by considering interaction of surface asperities
at the microscale. The macroscopic properties of interest may
include, for instance, friction, contact compliance, real contact area
fraction, thermal or electrical contact conductance, and wear.
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A popular approach for computing the overall contact response
relies on a solution for a single asperity contact that is averaged
over a distribution of asperity heights, radii, etc. That approach
has been initiated by the pioneering work of Greenwood and
Williamson (1966) and followed in numerous papers over the last
decades. A related theory of Persson (2001) does not consider indi-
vidual asperities but rather a spectrum of roughness length-scales
and the corresponding length-scale distributions of contact pres-
sure and real contact area fraction. Carbone et al. (2009) have
extended that theory to anisotropic surface roughness with appli-
cation to anisotropic rubber friction.

Computational contact homogenization is an alternative
approach in which a microscopic boundary value problem is
solved, typically using the finite element method, for a representa-
tive sample of rough contact interface, and macroscopic response is
obtained by averaging the corresponding microscopic fields. The
benefit of this approach is that geometrical and material nonlinear-
ities, including arbitrary constitutive behavior of surface layers, can
be directly included in the microscopic problem at the cost that the
range of scales considered and spatial resolution are limited by the
available computational resources. Related theoretical consider-
ations within the framework of two-scale asymptotic expansions
can be found in Orlik (2004) and Stupkiewicz (2007). Representa-
tive developments in computational contact homogenization
include analysis of frictionless normal contact of hyperelastic and
elastoplastic bodies (Bandeira et al., 2004; Pei et al., 2005), hyster-
etic effects in rubber contacts in the finite deformation regime
(Wriggers and Reinelt, 2009; De Lorenzis and Wriggers, 2013),
thermal contact conductance and thermomechanical contact
(Varadi et al., 1996; Sadowski and Stupkiewicz, 2010b; Temizer,
2011), and third-body particles in contact interface (Temizer and
Wriggers, 2008; Temizer and Wriggers, 2010). Interactions
between the macroscopic deformation and the local deformation
inhomogeneities at asperity contacts have been studied by
Stupkiewicz (2007) and Sadowski and Stupkiewicz (2010a). Analy-
sis of atomic-scale contact phenomena using molecular dynamics
(MD) can be found in Anciaux and Molinari (2010) and Spijker
et al. (2013).

Micromechanical modeling of friction anisotropy has attracted
so far little attention. It seems that, apart from a recent model of
rubber friction anisotropy (Carbone et al., 2009), the only micro-
mechanical model of anisotropic friction is that developed by
Mróz and Stupkiewicz (1994). In that model, one surface is repre-
sented by parallel rigid wedges, the other surface is represented by
isotropically distributed asperities that may deform only in the
normal direction (which corresponds to a Winkler foundation),
and the contact interaction at the microscale is governed by the
isotropic Coulomb friction model. Upon averaging, an orthotropic
macroscopic friction model is obtained with the following three
qualitative features:

(i) direction-dependent macroscopic friction coefficient is
higher than the local friction coefficient;

(ii) friction is higher for sliding across the wedge-like asperities
than for sliding along the wedges;

(iii) the macroscopic slip rule is not associated in the tangential
plane.

Concerning the third property, we note that the local slip rule is
associated in the tangential plane1 and this associativity is not
1 By the associativity in the tangential plane, we mean that the slip velocity is
normal to the section of the Coulomb cone by a plane of constant contact pressure.
The local friction model obeys thus the normality rule in the tangential plane. Clearly,
in the space of total contact tractions, the slip rule is not associated due to pressure
dependence of the friction traction.
transmitted to the macroscopic friction model. This is in contrast
to the classical micromechanics of heterogeneous materials, where
the normality rule at the microscale is transmitted to the macroscale
(Hill and Rice, 1973).

The present work has been directly inspired by the simple
micromechanical model of Mróz and Stupkiewicz (1994). Our
aim here is to apply the computational contact homogenization
approach to study friction anisotropy resulting from asperity inter-
action in elastic contacts. Friction at local contacts is thus assumed
to be the only dissipative mechanism in the system. Note that, in
the model of Carbone et al. (2009), anisotropy of friction results
from orientation-dependent hysteretic contribution due to visco-
elastic deformation in a surface layer. Compared to the model of
Mróz and Stupkiewicz (1994), more realistic surface roughness
topographies are here considered, and asperity interaction is gov-
erned by a contact problem formulated for a deformable surface
layer in the finite deformation regime. Micromechanical study of
such a scope is carried out for the first time, to the best of the
authors’ knowledge.

The micro-to-macro transition procedure that is the basis of the
adopted micromechanical framework can be regarded rather stan-
dard. Basic concepts concerning formulation of the microscopic
problem, periodicity along the contact interface, boundary condi-
tions and averaging rules are briefly introduced in Section 3,
following Stupkiewicz (2007) and Temizer and Wriggers (2008).
Section 4 is the main part of the paper and presents the results
obtained for an idealized sinusoidal roughness as well as for ran-
domly rough surfaces in relative sliding motion. It is shown that
the three features (i)–(iii) of the micromechanical model of Mróz
and Stupkiewicz (1994) are also observed in the present more gen-
eral setting, but only for a nearly incompressible material. Quite
surprisingly, properties (i) and (ii) do not hold for compressible
hyperelastic materials and, in particular, for materials with nega-
tive Poisson’s ratio (auxetics).

2. Orthotropic friction model

An orthotropic friction model is briefly introduced in this sec-
tion as a reference for the micromechanical analysis of Section 4.
Although a different notation is used in the presentation below,
the model is fully equivalent to that proposed by Mróz and
Stupkiewicz (1994). The model is a direct generalization of the
classical isotropic Coulomb friction model, hence the friction coef-
ficient and the slip potential are assumed independent of contact
pressure.

Consider friction response of a contact pair that exhibits ortho-
tropic symmetry. It is thus characterized by two friction coeffi-
cients l1 > 0 and l2 > 0 corresponding to the orthotropy axes
specified by orthogonal unit vectors e1 and e2, respectively. Fur-
ther, define the average friction coefficient l as the geometric
mean of l1 and l2 and parameter m characterizing the anisotropy
according to

l ¼
ffiffiffiffiffiffiffiffiffiffiffi
l1l2

p
; m ¼

ffiffiffiffiffiffi
l1

l2

r
; ð1Þ

so that l1 ¼ ml and l2 ¼ l=m.
An orthotropic friction condition can now be written in the

following form,

U ¼ ktTkM � ltN 6 0; ktTkM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tTaMabtTb

q
; ð2Þ

where tN P 0 and tT are, respectively, the normal and tangential
components of the contact traction vector t,

t ¼ �tNnþ tT ; tN ¼ �t � n; tT ¼ tTas
a; ð3Þ
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n is the unit normal to the contact surface, and sa is the tangent
basis. k � kM denotes an elliptic norm defined by a symmetric, posi-
tive-definite tensor M that depends solely on parameter m. Specif-
ically, in the Cartesian coordinate system aligned with the
orthotropy axes, the components of tensor M are given by

Mab ¼ 1=m2 0
0 m2

" #
: ð4Þ

Assume further that frictional slip is governed by a slip poten-
tial W so that the tangential slip velocity vT obeys the following slip
rule

vT ¼ _k
@W
@t

; _k P 0; _kU ¼ 0; ð5Þ

where the slip potential is assumed in the following form

W ¼ ktTkP; Pab ¼ 1=m2p 0
0 m2p

" #
; 0 6 p 6 1; ð6Þ

and the above components Pab of tensor P correspond to the Carte-
sian coordinate system aligned with the orthotropy axes.

Parameter p scales the semi-axes of the ellipse defining the slip
potential with respect to the semi-axes of the friction condition (2),
thus Eq. (6) is in general a non-associated slip rule. Here and in the
following, associativity or non-associativity of the slip rule refers to
the tangent plane, i.e., to the section of the limit friction surface
corresponding to a constant normal traction tN . Considering the
total contact traction t, the slip rule (6) is, of course, not associated
due to pressure-dependence of the friction traction, just like in case
of the usual isotropic Coulomb friction model.

For p ¼ 1, we have P ¼M and the associated slip rule is
obtained. For p ¼ 0, the slip velocity vT is coaxial with the friction
traction tT . For p ¼ 1

2, the model of Zmitrowicz (1989) is obtained.
Clearly, the isotropic Coulomb friction model is recovered for
l1 ¼ l2.

The above orthotropic friction model is illustrated in Fig. 1
which shows a section of the limit friction surface corresponding
to a constant tN . Angles a and b define the directions of the vectors
of friction traction tT and slip velocity vT , respectively, with respect
to the orthotropy axis e1. The angle between the two vectors is
denoted by d,

d ¼ a� b: ð7Þ

Note that, according to this definition, the angle d indicated in Fig. 1
is actually negative.

An alternative, more general description of anisotropic friction
can be introduced using a polar representation of the friction trac-
tion tT . The friction condition and the slip potential are then
expressed as
Fig. 1. Orthotropic friction model.
~U ¼ ktTk
f ðaÞ � tN 6 0; ~W ¼ ktTk

gðaÞ ; ð8Þ

where f ðaÞ is the directional friction coefficient
lðaÞ ¼ ktTk=tN ¼ f ðaÞ, and gðaÞ defines a convex slip potential. The
slip rule (5) evaluated for the slip potential ~W yields

vT ¼ _k
@ ~W
@t
¼

_k
gðaÞktTk

tT �
g0ðaÞ
gðaÞ n� tT

� �
; ð9Þ

from which the following simple expression for the angle d is
obtained (Mróz and Stupkiewicz, 1994),

tan d ¼ g0ðaÞ
gðaÞ ; ð10Þ

where g0ðaÞ denotes the derivative of gðaÞ. In case of the associated
slip rule, we have gðaÞ ¼ f ðaÞ and tan d ¼ f 0ðaÞ=f ðaÞ.

3. Micromechanical framework

The goal of the present micromechanical analysis is to deter-
mine macroscopic (effective) friction properties of a contact pair
in a relative sliding motion by considering surface roughness and
asperity interactions. The scope of this work is restricted to elastic
contacts so that the dissipation in the system is assumed to
originate only from friction at the microscale, i.e., at local asperity
contacts. Other dissipative mechanisms such as plasticity, visco-
elasticity, thermal effects, etc., are not considered.

Assuming that the contacting bodies are elastic, the macro-
scopic friction properties depend only on surface roughness, which
plays here the role of microstructure, and on the local friction
model, which governs the contact interactions at the microscale.
Real engineering surfaces are known to exhibit roughness on mul-
tiple scales, and fractal description is often adopted in that context,
e.g., Majumdar and Bhushan (1991) and Persson (2001). In the
approach adopted here, only a limited range of roughness length
scales is explicitly considered due to the limitations imposed by
the finite element discretization and by the associated computa-
tional cost. At the same time, contact at the microscale is assumed
to be governed by the isotropic Coulomb friction model, and this can
be interpreted to result from the asperity interactions at the lower
scales that are not explicitly represented in the model.

In view of the specific assumptions adopted above, it is hard to
identify a physically relevant system that would directly corre-
spond to the considered class of problems. Rather, the aim of the
present micromechanical analysis is to contribute to the basic
understanding of the related phenomena and, in a broader per-
spective, to the development of micromechanical modeling
approaches.

In the following, it is assumed that one of the bodies is rigid.
Relaxing that assumption would not change much in the microme-
chanical framework, except that implementation would be some-
what more involved (and the computation time would increase).
Clearly, the actual frictional response would probably be affected.

The macroscopic friction properties are obtained through a
micromechanical testing procedure that is described below. The
macroscopic friction traction �tT is expected to depend on the mac-
roscopic normal contact traction �tN and on the macroscopic slip
velocity �vT . Actually, since a rate-independent friction model is
assumed at the microscale, the macroscopic friction is also rate-
independent, and only the orientation of �vT matters, characterized
by angle b, see Section 2. Here and below, the macroscopic quanti-
ties are denoted by a superimposed bar.

In principle, the micromechanical testing procedure amounts to
solving a microscopic problem for prescribed control parameters
ð�tN; bÞ, and the macroscopic friction traction �tT is obtained by aver-
aging the respective local fields. In practice, the microscopic
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problem is formulated for a roughness sample of limited size so
that representativeness of the sample cannot be guaranteed. As a
remedy, several roughness samples can be analyzed, and the mac-
roscopic response can then be obtained by averaging over an
ensemble.

The main part of the micromechanical testing procedure is the
solution of the microscopic problem. Following the ideas discussed
in detail by Stupkiewicz (2007), see also Temizer and Wriggers
(2008), the microscopic problem is formulated for a rough hyper-
elastic half-space that is brought to contact with a rough rigid
surface of nominal normal �n. The periodicity of the solution along
the tangential direction is a necessary assumption that allows a
consistent treatment of tangential friction stresses, see
Stupkiewicz (2007). Accordingly, the half-space is fully repre-
sented by a periodic unit cell X, as illustrated in Fig. 2. The height
of the cell in the direction normal to the nominal contact surface is
selected such that the boundary conditions applied at the upper
boundary Cl do not affect the solution up to a desired accuracy
(Stupkiewicz, 2007; Temizer and Wriggers, 2008; De Lorenzis
and Wriggers, 2013).

The assumption of periodicity implies that the roughness of
both surfaces must also be periodic. This is schematically indicated
in Fig. 2 where l denotes the period which is identical for both
surfaces. An adequate notion of periodicity is also introduced for
three-dimensional problems. Note that periodicity must be main-
tained in the deformed configuration which constrains the relative
motion to be a translation, since a rotation about the normal direc-
tion would immediately break the periodicity. Also, the macro-
scopic in-plane deformation is not allowed as that would change
the dimensions of the unit cell in the deformed current
configuration.

The loading program applied in the microscopic problem con-
sists of three phases:

(i) compression to a prescribed macroscopic normal contact
traction �tN (or normal displacement �uN) applied at the upper
boundary Cl;

(ii) initial dragging at constant �tN (or �uN);
(iii) the actual testing phase in which the unit cell is dragged at

constant �tN (or �uN) over the distance corresponding to the
roughness period.

The purpose of the initial dragging phase (ii) is to erase the
path-dependent effects associated with phase (i), so that the
response in phase (iii) is truly periodic with respect to the time-like
loading parameter.

The loading is applied at Cl, the upper boundary of the unit cell.
Two types of boundary conditions can be considered: either a
uniform normal traction (equal to �tN) or a constant normal
Fig. 2. Periodic unit cell used in the m
displacement �uN can be applied at Cl. In the latter case, the macro-
scopic normal contact traction is not known a priori – it is obtained
as a part of the solution of the microscopic problem. In both cases,
the lateral displacements at the upper boundary are fully
prescribed.

Concerning the boundary conditions at the remaining part of
the boundary, periodicity of the displacement is enforced on the
lateral faces C� of the unit cell, which implies anti-periodicity of
the corresponding tractions, and frictional contact with the rigid
counter-surface is considered at the contact surface Cc which con-
stitutes the bottom boundary of the unit cell.

The following weak form of the equilibrium equation consti-
tutes the basis of the finite element implementation,Z

X
S �rdudXþ

Z
Cl

�tN �n �dudCþ
Z

Cc

ð�tNdgNþ tT �dgTÞdC¼0; ð11Þ

where S is the first Piola–Kirchhoff stress, the displacement is
periodic in the tangential plane, thus

uðxþÞ ¼ uðx�Þ; duðxþÞ ¼ duðx�Þ; ð12Þ

where xþ 2 Cþ and x� 2 C� are two associated points on the lateral
boundary of the unit cell, and the following boundary condition
holds on Cl,

ðI� �n� �nÞuðxÞ ¼ �uT for x 2 Cl; ð13Þ

where �uT is a prescribed time-dependent tangential displacement,
�uT � �n ¼ 0. If the normal displacement �uN is prescribed on Cl instead
of the normal traction �tN , then the second integral in Eq. (11) van-
ishes, and the boundary condition (13) is replaced by the condition
u ¼ �uNnþ �uT on Cl.

The third integral in the weak form (11) describes the contact
contribution at Cc . The adopted finite-deformation contact formula-
tion is standard; the details can be found in the monographs
(Laursen, 2002; Wriggers, 2006). The contact kinematics is based
on the closest-point projection with the deformable surface Cc being
the slave surface. The inequality constraints resulting from unilate-
ral contact and isotropic Coulomb friction conditions are enforced
using the augmented Lagrangian method (Alart and Curnier, 1991;
Pietrzak and Curnier, 1999). The details of the present contact imple-
mentation can be found in Lengiewicz et al. (2011).

The hyperelastic material model, used in this work, is specified
by the following neo-Hookean-type elastic strain energy function,

S ¼ @W
@F

; WðFÞ ¼ 1
2

leðtr �b� 3Þ þ 1
4

jeðdet b� 1� logðdet bÞÞ;

ð14Þ

where F is the deformation gradient, b is the Finger deformation
tensor, �b is its isochoric part,
icromechanical testing procedure.



2 The negative Poisson’s ratio m, i.e., the auxetic behavior, is obtained in practice by
microstructuring the material. In the present micromechanical framework, it is
assumed that the material is homogeneous at the scale of asperities, which is not
expected to hold for the known auxetic materials. In spite of that, the negative values
of the Poisson’s ratio m are included in the analysis for completeness.
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b ¼ FFT; �b ¼ ðdet bÞ�1=3 b; ð15Þ

and the elastic shear modulus le and bulk modulus je are related to
the Young’s modulus E and Poisson’s ratio m by the usual relation-
ships le ¼ 1

2 E=ð1þ mÞ and je ¼ 1
3 E=ð1� 2mÞ.

The macroscopic tangential contact traction �tT and, if applica-
ble, the macroscopic normal contact traction �tN are obtained by
averaging of the local traction t at the upper boundary Cl according
to

�t ¼ 1
Dt

Z t0þDt

t0

htiCl
dt; htiCl

¼ 1
jClj

Z
Cl

S�n dC: ð16Þ

Here, the averaging involves spatial averaging over the upper
boundary Cl and time averaging over the time period Dt correspond-
ing to phase (iii). Additionally, ensemble averaging over several real-
izations (samples) of surface roughness is necessary if the
roughness sample is not representative. Finally, the macroscopic
friction coefficient �l and angle a characterizing the orientation of
the friction traction are given by

�l ¼ k
�tTk
�tN

; a ¼ arctan
�tT2

�tT1
: ð17Þ

Note that �l and a may, in general, depend on both �tN and b.
Considering that the isotropic Coulomb friction is assumed at

local contacts and that local friction is the only dissipative mecha-
nism in the system, the macroscopic friction is expected to be
affected by surface roughness only in the finite deformation
regime, i.e., when the effects of non-zero asperity slope effectively
appear.

4. Anisotropic friction effects in rough elastic contacts

4.1. Sinusoidal rigid surface

In this section, a detailed micromechanical analysis of aniso-
tropic friction effects is carried out for the case of contact of a
smooth hyperelastic half-space with a rigid sinusoidal surface. This
is possibly the simplest configuration that features anisotropic
(actually orthotropic) roughness and is thus expected to exhibit
friction anisotropy at the macroscale. More realistic roughness is
considered in the subsequent sections.

The sinusoidal rigid surface with a period l along the x-direction
and an amplitude 2h is defined by the following equation

zðx; yÞ ¼ z0 þ h cosð2px=lÞ: ð18Þ

The roughness profile does not depend on the y-coordinate so that
the microscopic problem is effectively two-dimensional, i.e., all
unknowns depend only on x- and z-coordinates. However, the
out-of-plane y-displacements are fully accounted for, and the prob-
lem is formulated as a generalized plane strain problem.

Further, the deformable surface is smooth, i.e., planar in the
undeformed reference configuration. The microscopic problem
can thus be formulated as a steady-state problem in an Eulerian
frame attached to the rigid surface. Accordingly, the time averaging
in the averaging rule (16) is omitted, and only the spacial averaging
is applied to determine the macroscopic tangential contact traction
(while the normal contact traction is prescribed). Since the mate-
rial is hyperelastic, the solid part in the microscopic problem is
not affected by the adopted Eulerian steady-state formulation. A
non-standard treatment is only needed in the contact part when
defining the slip velocity at the local contacts. Specifically, in
steady-state conditions, the slip velocity vT is given by the follow-
ing relationship

vT ¼ F�vT ; ð19Þ
where F is the deformation gradient and �vT is the macroscopic slip
velocity, i.e., the constant velocity of material points with respect to
the fixed Eulerian frame in the undeformed reference configuration.
Actually, only the tangential part of the deformation gradient F
affects vT which can thus be computed using surface data only.

The computations have been carried out for the asperity height
h=l equal to 0.025, 0.05, 0.075 and 0.1, the local friction coefficient
l0 equal to 0.1, 0.2 and 0.3, and the Poisson’s ratio m equal to
�0:8;�0:4, 0, 0.25 and 0.45.2 The value of the Young’s modulus E
may be left unspecified because the contact tractions are reported
below only as the dimensionless tractions normalized by the
reduced Young’s modulus E� ¼ E=ð1� m2Þ.

In the finite-element implementation, four-node quadrilateral
elements employing the F-bar formulation (de Souza Neto et al.,
1996) are used for the solid part. Displacement periodicity (12) is
enforced using the Lagrange multiplier technique, and the aug-
mented Lagrangian method (Alart and Curnier, 1991; Pietrzak
and Curnier, 1999) is used to enforce contact constraints. Com-
puter implementation and finite-element computations are carried
out using the AceGen/AceFEM system (Korelc, 2002, 2009), see also
Lengiewicz et al. (2011) for the details of the present implementa-
tion of contact.

Fig. 3 shows the undeformed finite element mesh of the unit
cell, as well as the deformed mesh for the case of the macroscopic
slip velocity perpendicular to the sinusoidal wedges of the rigid
surface, b ¼ 0, for h=l ¼ 0:1 and m ¼ 0:45. The deformation pattern
is further illustrated in Fig. 4, which shows the deformed mesh cor-
responding to the macroscopic slip velocity inclined with respect
to the sinusoidal wedges. The color map in Fig. 4 shows the out-
of-plane y-displacement which is otherwise not seen in the in-
plane mesh deformation.

Note that a coarse mesh is shown in Figs. 3 and 4. The actual
computations have been performed using a much finer mesh with
element size reduced four times (and in some cases even eight
times) with respect that shown in Figs. 3 and 4. In fact, a careful
mesh convergence study has been performed, and a sufficiently
fine mesh has been used so that the reported results are not visibly
affected by the finite-element discretization.

The deformation pattern illustrated in Figs. 3 and 4 consists of
overall shear (and compression) of the surface layer with a super-
imposed inhomogeneity due to contact with asperities. The associ-
ated distortion of the unit cell, and thus also the distortion of the
individual finite elements, increases with increasing macroscopic
friction traction, and this limits the range of contact pressures that
can be simulated.

Results obtained for l0 ¼ 0:2 and m ¼ 0:45 are summarized in
Fig. 5. Anisotropy and pressure-dependence of the macroscopic
friction coefficient are clearly seen in the polar plots of �lðaÞ shown
in Fig. 5(a). The resulting orthotropic friction condition can be well
approximated by the elliptic friction condition (2). It has been
checked that the error of this approximation is below 1% in all
cases that have been studied.

The markers in Fig. 5(a) denote the friction coefficients corre-
sponding to the inclination angle b incremented by 10 degrees
(in the computations, angle b has been incremented by
2.5 degrees). The non-radial placement of the markers correspond-
ing to different contact pressures indicates that the macroscopic
slip rule is also pressure-dependent. The macroscopic slip rule is
further discussed at the end of this section.



Fig. 3. Sinusoidal rigid surface: (a) undeformed mesh, (b) deformed mesh at �tN=E� ¼ 0:2, (c) deformed mesh at �tN=E� ¼ 0:6. Macroscopic slip velocity is perpendicular to the
sinusoidal wedges (b ¼ 0). A much finer mesh is used in the actual computations (see text).

Fig. 4. Deformed mesh corresponding to the macroscopic slip velocity inclined at (a) b ¼ 30� , (b) b ¼ 60� , (c) b ¼ 90� to the sinusoidal wedges at �tN=E� ¼ 0:6. The color map
shows the out-of-plane displacement uy=l. A much finer mesh is used in the actual computations (see text). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 5. Orientation- and pressure-dependence of the macroscopic friction coefficient for nearly incompressible material (m ¼ 0:45): (a) polar plots �lðaÞ corresponding to
selected values of macroscopic contact pressure �tN=E�; (b) principal friction coefficients �lð1Þ and �lð2Þ as a function of contact pressure �tN=E� . The dashed circle in figure (a)
corresponds to the isotropic local friction coefficient l0 ¼ 0:2.
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Sinusoidal roughness implies orthotropic symmetry of the mac-
roscopic friction coefficient, and two principal friction coefficients
can be defined: �lð1Þ and �lð2Þ corresponding to macroscopic slip
velocity, respectively, perpendicular (b ¼ 0) and parallel (b ¼ 90�)
to the sinusoidal wedges. The principal friction coefficients �lð1Þ
and �lð2Þ are shown in Fig. 5(b) as a function of the dimensionless
macroscopic normal contact traction �tN=E�.

As a reference, the principal friction coefficients are compared
to those predicted by the simple micromechanical model of Mróz
and Stupkiewicz (1994). The latter are indicated by two dashed
lines in Fig. 5(b), while their values are given by the following ana-
lytical formulae derived by Mróz and Stupkiewicz (1994),

�l�ð1Þ ¼
l0

1� ð1þl2
0Þsin2 u

; �l�ð2Þ ¼
l0

cosu
; �l�ð1Þ > �l�ð2Þ > l0; ð20Þ

where u denotes the inclination angle of the wedge-like asperities
considered in the simple micromechanical model, l0 is the local
friction coefficient, and the inequalities in (20)3 hold for u > 0
and l0 > 0. The values of �l�ð1Þ and �l�ð2Þ shown in Fig. 5(b) correspond
to the average asperity slope of the sinusoidal wedges considered in
the present work, i.e., u ¼ arctanð4h=lÞ.

Three general features of the macroscopic friction model
resulting from the present micromechanical analysis can be
observed in Fig. 5. Firstly, surface roughness results in an
increase of the macroscopic friction coefficient with respect to
the local friction coefficient l0 (a dashed circle corresponding
to the isotropic local friction model is included in Fig. 5(a)).
Further, sliding across the sinusoidal wedges results in a higher
friction than sliding along the wedges, i.e., �lð1Þ > �lð2Þ. Finally,
the macroscopic friction coefficient increases with increasing
contact pressure. The first two features are in a qualitative agree-
ment with the micromechanical model of Mróz and Stupkiewicz
(1994), see Eq. (20)3.

Note, however, that the three effects mentioned above are
reversed at very low contact pressures. For instance, it is seen in
Fig. 5(b) that �lð1Þ < l0 for �tN=E� < 0:02, and �lð1Þ < �lð2Þ for
�tN=E� < 0:05. This has been found quite unexpected, and a detailed
study of the corresponding effects has been carried out in order to
confirm and understand those effects.
Fig. 6. Orientation- and pressure-dependence of the macroscopic friction coefficient fo
values of macroscopic contact pressure �tN=E�; (b) principal friction coefficients �lð1Þ and �l
to the isotropic local friction coefficient l0 ¼ 0:2.
As illustrated and discussed in more detail later, the unexpected
effects mentioned above have been found to be related to elastic
compressibility of the material. Indeed, the results analogous to
those presented in Fig. 5 for a nearly incompressible material
(m ¼ 0:45), but corresponding to an auxetic material with
m ¼ �0:8, exhibit similar qualitative features which are, however,
much more pronounced, see Fig. 6. The principal macroscopic
friction coefficient �lð1Þ across the sinusoidal wedges is now
significantly lower than both the principal macroscopic friction
coefficient �lð2Þ along the wedges and the local friction coefficient
l0, and this occurs in a wide range of contact pressures.

The effect of elastic compressibility on friction anisotropy is fur-
ther illustrated in Fig. 7 which shows the ratio of the principal fric-
tion coefficients, �lð1Þ=�lð2Þ, as a function of the contact pressure
�tN=E�. The solid and dashed lines in Fig. 7 correspond to l0 ¼ 0:3
and l0 ¼ 0:1, respectively, while the results corresponding to
l0 ¼ 0:2 (not shown) are in between. The effect of the local friction
coefficient l0 on the anisotropy ratio is not much pronounced. The
black dotted lines in Fig. 7 indicate the ratio �l�ð1Þ=�l�ð2Þ resulting from
Eq. (20) for l0 ¼ 0:3.

As shown in Fig. 7, the anisotropy ratio �lð1Þ=�lð2Þ decreases with
decreasing Poisson’s ratio m. Further, for all Poisson’s ratios, there is
a range of contact pressures for which �lð1Þ=�lð2Þ < 1, so that the fric-
tion coefficient across the sinusoidal wedges is lower than that along
the wedges, and the corresponding range of contact pressures
increases with decreasing Poisson’s ratio. For a nearly incompressible
material (m ¼ 0:45), the corresponding range of pressures is relatively
small but it significantly increases with decreasing Poisson’s ratio.

The effect of the Poisson’s ratio on the principal macroscopic
friction coefficient �lð1Þ (sliding across the wedges) normalized by
the local friction coefficient l0 is illustrated in Fig. 8. It is seen that
�lð1Þ is lower than l0 for some range of applied macroscopic contact
pressures, and that range increases with decreasing Poisson’s ratio.
This confirms the counterintuitive effect already illustrated in
Figs. 5 and 6, namely that surface roughness may lead to reduction
of friction in rough elastic contacts. This effect is clearly visible for
a compressible material with m ¼ 0:25, and it is even more pro-
nounced for lower values of m. Also, higher roughness (i.e.,
increased asperity height) results in a higher reduction of �lð1Þ,
compare Fig. 8(a) and Fig. 8(b).
r compressible material (m ¼ �0:8): (a) polar plots �lðaÞ corresponding to selected
ð2Þ as a function of contact pressure �tN=E� . The dashed circle in figure (a) corresponds



Fig. 7. Anisotropy ratio �lð1Þ=�lð2Þ as a function of dimensionless normal contact traction �tN=E� for: (a) h=l ¼ 0:05, (b) h=l ¼ 0:1. Solid and dashed lines correspond to l0 ¼ 0:3
and l0 ¼ 0:1, respectively.

Fig. 8. Normalized principal macroscopic friction coefficient �lð1Þ=l0 as a function of dimensionless normal contact traction �tN=E� for: (a) h=l ¼ 0:05, (b) h=l ¼ 0:1. Solid and
dashed lines correspond to l0 ¼ 0:3 and l0 ¼ 0:1, respectively.
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The effect of asperity height h=l is further illustrated in Fig. 9
where the principal friction coefficients �lð1Þ and �lð2Þ are shown
for a representative case of m ¼ 0. As expected, higher roughness
results in higher friction, except at low pressures where �lð1Þ is
reduced with respect to l0, and here higher roughness results in
higher reduction of friction.

From Figs. 7–9, it follows that surface roughness influences the
macroscopic friction only when finite deformation effects accom-
pany asperity interaction. In fact, for very low contact pressures
(�tN ! 0), the macroscopic friction coefficient �l tends to the local
friction coefficient l0 (�l! l0) so that friction at the macroscale
is trivially governed by the local isotropic Coulomb friction model.
Nontrivial effects are related to nonzero slope of asperity contacts
which may only occur for sufficiently high contact pressures.
Clearly, this concerns only elastic contacts, as considered in this
work, and the above conclusion would not apply if inelastic defor-
mation mechanisms (viscoelasticity, plasticity, etc.) were present
in the surface layer or if another friction law was assumed to gov-
ern contact at the microscale.
Orientation- and pressure-dependence of the macroscopic fric-
tion coefficient, discussed in detail above, does not fully character-
ize the macroscopic friction model. Of interest is also the
macroscopic slip rule which has been analyzed by comparing the
actual angle d ¼ a� b resulting from the micromechanical scheme
to the one that would be observed for the associated macroscopic
slip rule, see Fig. 10. The former is easily obtained by processing
the results of finite element computations. The latter has been
obtained by introducing an approximate polar representation
f ðaÞ of the macroscopic friction condition according to Eq. (8)
and by applying Eq. (10) with gðaÞ ¼ f ðaÞ that corresponds to the
associated slip rule. Specifically, the numerically obtained depen-
dence �lðaÞ has been fitted using the following function,

f ðaÞ ¼ f 0 þ
XN

k¼1

f k cosð2kaÞ; ð21Þ

with N ¼ 3 (it has been checked that increasing the number of
terms does not change the result visibly). As the macroscopic



Fig. 9. Principal friction coefficients �lð1Þ (solid lines) and �lð2Þ (dashed lines) as a
function of dimensionless normal contact traction �tN=E� for m ¼ 0 and l0 ¼ 0:2.
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friction coefficient is pressure dependent, this procedure has been
repeated for each value of contact pressure.

The results presented in Fig. 10 indicate that the macroscopic
slip rule is a non-associated one, though non-associativity is not
much pronounced. In fact, the actual angle d is close to the one cor-
responding to the associated slip rule, and the difference is small
and is below 1 degree in all analyzed cases (i.e., also for m equal
to �0:4, 0 and 0.25; the corresponding results are not reported
here). As the difference is small, a careful mesh convergence study
has been performed which confirmed that the observed departure
from associativity is not a numerical artefact.

Recall that the slip rule at the microscale is an associated one
hence the visible non-associativity of the macroscopic slip rule
results from nonlinear effects accompanying asperity interaction
and is revealed by micromechanical averaging. The same qualita-
tive effect, though more pronounced, results also from the simple
micromechanical model of Mróz and Stupkiewicz (1994). We
believe that confirmation of this qualitative effect constitutes one
of the main results of the present paper. Quantitatively, the effect
is small, hence an associated slip rule may be a sufficiently good
approximation in practice.
Fig. 10. Comparison of the actual angle d ¼ a� b (indicated by the dots) and the one tha
for: (a) m ¼ �0:8 and (b) m ¼ 0:45.
4.2. Randomly rough surfaces: isotropic roughness

Although the present paper is focused on friction anisotropy,
the case of two isotropic randomly rough surfaces is considered
in this section as a reference for the anisotropic case that is studied
in the next section. However, the results of the corresponding
micromechanical analysis are interesting themselves: it will be
shown that some effects observed in the previous section for the
idealized sinusoidal roughness are observed also for randomly
rough isotropic surfaces.

Randomly rough surfaces have been generated using the ran-
dom-field model, see Torquato (2002), extended to non-isotropic
rough surfaces by Temizer (2011). The adopted procedure is briefly
summarized below. First, an initial Nx � Ny matrix of roughness
heights gð0Þij with a Gaussian distribution is generated. The
sequence of Ns smoothing operations with the periodic filter F is
then performed,

gðkÞij ¼ Fðg
ðk�1Þ
ij Þ ¼

Xr

p¼�r

Xr

q¼�r

gðk�1Þ
ðiþpÞðjþqÞKðp; qÞ; k ¼ 1; . . . ;Ns; ð22Þ

where Kðp; qÞ is an anisotropic kernel,

Kðp;qÞ¼Exp �ðp0=aÞ2�ðq0=bÞ2
� �

; ðp0;q0Þ ¼
cosh �sinh

sinh cosh

� �
p

q

� �
:

ð23Þ

Here, the ratio a=b refers to the magnitude of anisotropy, and the
angle h describes the orientation of anisotropy axis with respect
to the global axes. The special case of isotropy corresponds to
a ¼ b. The smoothed roughness gðNsÞ

ij is then normalized so that
the matrix gij of zero mean value and unit standard deviation is
obtained, and a periodic ðNx þ 1Þ � ðNy þ 1Þ matrix of roughness
heights �gij is subsequently constructed by appending a copy of the
first row and the first column to the respective end of the original
matrix gij.

Isotropic roughness samples used in the present study have
been generated according to the procedure described above using
the following parameters: Nx ¼ Ny ¼ 180, Ns ¼ 6; r ¼ 6, and
a ¼ b ¼ 9. These parameters have been selected by trial and error
so that the roughness sample covers several asperities, say, 3–4
primary asperities along the sample edge. Of course, a larger
t would be observed if the macroscopic slip rule was an associated one (solid lines)



Fig. 11. Three isotropic roughness samples used in the computations. The height is scaled by the factor of five.
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sample would be desirable, but the corresponding computational
cost would be prohibitive, see the discussion below.

The actual finite element mesh used in the computations is
coarser than the generated array of roughness heights, hence the
positions of the finite element nodes of the contact surface are
obtained by mapping the fine roughness topography to the coarser
finite element mesh (Temizer, 2011). When generating the finite
element mesh, the roughness heights have been finally scaled such
that the ratio of the standard deviation of roughness heights to the
sample size is equal to 0.01. Fig. 11 shows three samples of gener-
ated isotropic rough surfaces. Note that asperity height in Fig. 11
has been scaled by the factor of five for better visualization.

In the present computations, statistically identical roughness
has been prescribed for both contact surfaces. Specifically, an iso-
tropic roughness sample has been randomly generated for each
surface independently, and the microscopic problem has been
solved for the corresponding pair of roughness topographies. This
has been repeated for other pairs of roughness topographies, and
Fig. 12. Randomly rough surfaces in sliding contact: (a) overall view of the finite element
unit cell of deformable surface layer).

Fig. 13. Randomly rough isotropic surfaces: macroscopic friction coefficient �l
the macroscopic response has then been obtained by averaging
over the ensemble. In the computations reported below, ten such
samples have been analyzed for each value of the Poisson’s ratio
and for each value of the normal contact traction.

In the present microscopic problem, the bottom surface is
assumed to be rigid, and the unit cell of the deformable upper sur-
face is slid against the bottom surface by prescribing the displace-
ments at the upper boundary Cl. The normal displacement at Cl is
constant during the dragging phase so that the macroscopic nor-
mal contact traction is obtained by averaging the corresponding
nodal reaction forces, see Section 3. The local friction coefficient
is assumed as l0 ¼ 0:2.

Compared to the two-dimensional example of the previous sec-
tion, the present case of two randomly rough surfaces is associated
with a much higher computational cost. This is because, in addition
to spacial averaging, also time averaging and ensemble averaging
must be performed, see Section 3. The achievable resolution of
the present three-dimensional finite-element model is thus
mesh (the bottom surface is rigid) and (b) detailed view of the upper body (periodic

as a function of dimensionless macroscopic normal contact traction �tN=E� .
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significantly constrained by the overall computational cost. Even
though the actual mesh is relatively coarse, the present computa-
tions yield consistent results, as illustrated below.

The finite element mesh used in the computations is shown in
Fig. 12. The bottom surface is periodically extended along the slid-
ing direction. It is also extended transversally to accommodate 3D
deformations of the unit cell. Contact smoothing is applied to the
bottom surface using bicubic Bézier patches with 16-node support
(Pietrzak, 1997), see also Lengiewicz et al. (2011). The mesh com-
prises about 16,500 displacement unknowns and about 4,000
contact Lagrange multipliers. The third phase of the microscopic
problem requires 20–90 time increments (adaptive time stepping
is used) depending on the contact pressure, Poisson’s ratio and
roughness sample.

Fig. 13 shows the macroscopic friction coefficient �l as a func-
tion of the dimensionless normal contact traction �tN=E� and the
Poisson’s ratio m. The markers denote the ensemble average, and
the error bars indicate the standard deviation of the friction
coefficients computed for individual roughness samples.

The results confirm two effects that have been observed for the
sinusoidal roughness in Section 4.1. The macroscopic friction coef-
ficient �l decreases with decreasing Poisson’s ratio and it may be
lower than the local friction coefficient l0 ¼ 0:2. In fact, the results
reported in Fig. 13 are similar to those reported in Fig. 8. The main
qualitative difference is that the macroscopic friction coefficient �l
does not seem to tend to the local friction coefficient l0 as the con-
tact pressure tends to zero, in particular, for the nearly incompress-
ible material (m ¼ 0:45). This probably results from insufficient
resolution of the finite element model. Note that a very fine mesh
was needed to reproduce that effect in the case of sinusoidal
roughness in Section 4.1.
Fig. 14. Three anisotropic roughness samples used in the c

Fig. 15. Anisotropic roughness: macroscopic friction coefficient �l as a function of dim
elongated asperities) and b ¼ 90� (sliding along the elongated asperities).
4.3. Randomly rough surfaces: anisotropic roughness

In this section, the example of the previous section is modified
by adopting an anisotropic roughness for the bottom, rigid surface.
All the other details of the computational model are unaltered,
including the finite element mesh shown in Fig. 12 and local fric-
tion coefficient l0 ¼ 0:2.

Fig. 14 shows three samples of the anisotropic roughness gener-
ated following the procedure described in the previous section.
Application of the anisotropic filter with parameters
k ¼ 6; r ¼ 20; a ¼ 5; b ¼ 20 and h ¼ 90� results now in elongated
asperities with clearly visible preferential direction. At the same
time, roughness of the upper surface is assumed isotropic, as in
Fig. 11. As a result, friction at the macroscale is expected to exhibit
orthotropic symmetry with two principal directions corresponding
to sliding across and along the elongated asperities of the bottom
surface. The corresponding principal macroscopic friction coeffi-
cients have been computed for a nearly incompressible material
(m ¼ 0:45) and for a compressible auxetic material (m ¼ �0:8).

The results are reported in Fig. 15. As previously, the error bars
indicate the standard deviation of the friction coefficients com-
puted for individual roughness samples. Note that convergence
problems have been encountered at higher contact pressures for
m ¼ 0:45 and b ¼ 0 (sliding across the elongated asperities), hence
the corresponding two points are missing in Fig. 15.

As previously, the results shown in Fig. 15 confirm the effects
observed for the idealized sinusoidal roughness in Section 4.1. In
the case of a nearly incompressible material (m ¼ 0:45), the macro-
scopic friction coefficient corresponding to sliding across the elon-
gated asperities (b ¼ 0) is higher than that corresponding to sliding
along the asperities (b ¼ 90�). At the same time, the effect is
omputations. The height is scaled by the factor of five.

ensionless macroscopic normal contact traction �tN=E� for b ¼ 0 (sliding across the
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reversed in the case of the compressible (auxetic) material
(m ¼ �0:8). Also, it is seen that the macroscopic friction coefficient
decreases with decreasing Poisson’s ratio, and it may be lower than
the local friction coefficient l0.
5. Conclusion

Friction anisotropy resulting from asperity interaction in rough
elastic contacts has been studied using the computational contact
homogenization approach with full account for finite deformation
effects. Friction at local contacts has been assumed to be the only
dissipative mechanism in the system. The study is thus only con-
cerned with the effect of anisotropic roughness on macroscopic
friction of elastic bodies. While the adopted micromechanical
framework can be considered rather standard, a micromechanical
study of such a scope has not been reported in the literature yet.

The influence of local friction coefficient, asperity height, and
elastic compressibility on friction anisotropy has been studied in
detail in the case of contact of a smooth hyperelastic half-space
with a rigid surface with sinusoidal roughness. As the correspond-
ing microscopic problem is a two-dimensional steady-state prob-
lem, a highly accurate finite element model could have been
developed for that case. The effects predicted for the idealized
sinusoidal roughness have been confirmed by the results obtained
for a more general case of contact of two randomly rough surfaces.
The latter case is computationally much more demanding as it
involves solution of several three-dimensional transient contact
problems followed by averaging over an ensemble.

The results of the present study confirm that roughness anisot-
ropy leads to anisotropy of friction at the macroscale, i.e., to an
orientation-dependent macroscopic friction coefficient. For the
roughness topographies considered in this work, the macroscopic
friction is actually orthotropic. The macroscopic friction coefficient
is also found to depend on the contact pressure, which is expected
since the average asperity slope depends on the contact pressure.
In fact, nontrivial effects are only observed for relatively high con-
tact pressures because, for the contact pressure close to zero, the
surfaces interact at practically undeformed asperity tops, and
the local isotropic Coulomb friction model is valid also at the
macroscale.

It has been also found that the macroscopic friction condition is
accompanied by a non-associated slip rule, though the non-asso-
ciativity is not much pronounced (it is recalled that associativity
refers here only to the tangent plane). Note that the slip rule at
the microscale is an associated one; the associativity is thus not
transmitted to the macroscale. The predicted non-associativity of
the macroscopic slip rule results from nonlinear effects accompa-
nying asperity interaction at the microscale. This effect is in a qual-
itative agreement with the simple model of Mróz and Stupkiewicz
(1994).

The results of the present micromechanical study show a signif-
icant effect of material compressibility. For a nearly incompressible
material, the macroscopic friction coefficient is higher than the
local friction coefficient. Further, in case of anisotropic roughness,
sliding across elongated asperities results in a higher friction than
sliding along them. However, with increasing compressibility (i.e.,
with decreasing Poisson’s ratio), both effects are gradually
reversed. Those counterintuitive effects are particularly pro-
nounced for auxetic materials, i.e., for a negative Poisson’s ratio.
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de Souza Neto, E.A., Perić, D., Dutko, M., Owen, D.R.J., 1996. Design of simple low

order finite elements for large strain analysis of nearly incompressible solids.
Int. J. Solids. Struct. 33, 3277–3296.

Greenwood, J.A., Williamson, J.B.P., 1966. Contact of nominally flat surfaces. Proc. R.
Soc. Lond. A 295, 300–319.

Hazel, J., Stone, M., Grace, M.S., Tsukruk, V.V., 1999. Nanoscale design of snake skin
for reptation locomotions via friction anisotropy. J. Biomech. 32, 477–484.

He, Q.C., Curnier, A., 1993. Anisotropic dry friction between 2 orthotropic surfaces
undergoing large displacements. Eur. J. Mech. A/Solids 12, 631–666.

Hill, R., Rice, J.R., 1973. Elastic potentials and the structure of inelastic constitutive
laws. SIAM J. Appl. Math. 25, 448–461.

Hirano, M., Shinjo, K., 1993. Superlubricity and frictional anisotropy. Wear 168,
121–125.

Hjiaj, M., Feng, Z.Q., de Saxcé, G., Mróz, Z., 2004. On the modelling of complex
anisotropic frictional contact laws. Int. J. Eng. Sci. 42, 1013–1034.

Hjiaj, M., Feng, Z.Q., de Saxcé, G., Mróz, Z., 2004. Three-dimensional finite element
computations for frictional contact problems with non-associated sliding rule.
Int. J. Numer. Methods. Eng. 60, 2045–2076.

Jones, R.E., Papadopoulos, P., 2006. Simulating anisotropic frictional response using
smoothly interpolated traction fields. Comput. Methods. Appl. Mech. Eng. 195,
588–613.

Konyukhov, A., Schweizerhof, K., 2006. Covariant description of contact interfaces
considering anisotropy for adhesion and friction: part 2. Linearization, finite
element implementation and numerical analysis of the model. Comput.
Methods. Appl. Mech. Eng. 196, 289–303.

Konyukhov, A., Vielsack, P., Schweizerhof, K., 2008. On coupled models of
anisotropic contact surfaces and their experimental validation. Wear 264,
579–588.

Korelc, J., 2002. Multi-language and multi-environment generation of nonlinear
finite element codes. Eng. Comput. 18, 312–327.

Korelc, J., 2009. Automation of primal and sensitivity analysis of transient coupled
problems. Comput. Mech. 44, 631–649.

Laursen, T.A., 2002. Computational Contact and Impact Mechanics. Springer-Verlag,
Berlin.

Le Quang, H., He, Q.C., Le, H.T., 2013. Multiscale homogenization of elastic layered
composites with unidirectionally periodic rough interfaces. SIAM Multiscale
Model. Simul. 11, 1127–1148.

Lengiewicz, J., Korelc, J., Stupkiewicz, S., 2011. Automation of finite element
formulations for large deformation contact problems. Int. J. Numer. Methods.
Eng. 85, 1252–1279.

Majumdar, A., Bhushan, B., 1991. Fractal model of elastic–plastic contact between
rough surfaces. Trans. ASME J. Tribol. 113, 1–11.

Michałowski, R., Mróz, Z., 1978. Associated and non-associated sliding rules in
contact friction problems. Arch. Mech. 30, 259–276.

Mróz, Z., Stupkiewicz, S., 1994. An anisotropic friction and wear model. Int. J. Solids
Struct. 31, 1113–1131.

Murphy, M., Aksak, B., Sitti, M., 2007. Adhesion and anisotropic friction
enhancements of angled heterogeneous micro-fiber arrays with spherical and
spatula tips. J. Adhes. Sci. Technol. 21, 1281–1296.

Nemat-Nasser, S., Hori, M., 1999. Micromechanics: Overall Properties of
Heterogeneous Materials. Elsevier, Amsterdam.

Orlik, J., 2004. Homogenization for Contact Problems with Periodically Rough
Surfaces. Tech. Rep., Fraunhofer Institut Techno- und Wirtschaftsmathematik,
Kaiserslautern, Germany.

Ozaki, S., Hikida, K., Hashiguchi, K., 2012. Elastoplastic formulation for friction with
orthotropic anisotropy and rotational hardening. Int. J. Solids. Struct. 49, 648–
657.

Pei, L., Hyun, S., Molinari, J.F., Robbins, M.O., 2005. Finite element modelling of
elasto-plastic contact between rough surfaces. J. Mech. Phys. Solids 53, 2385–
2409.

Persson, B.N.J., 2001. Theory of rubber friction and contact mechanics. J. Chem. Phys.
115, 3840–3861.

http://refhub.elsevier.com/S0020-7683(14)00287-X/h0005
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0005
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0005
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0010
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0010
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0015
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0015
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0015
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0020
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0020
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0025
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0025
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0025
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0030
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0030
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0030
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0035
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0035
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0040
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0045
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0045
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0050
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0050
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0050
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0055
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0055
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0060
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0060
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0065
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0065
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0070
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0070
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0075
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0075
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0080
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0080
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0085
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0085
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0085
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0090
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0090
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0090
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0095
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0095
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0095
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0095
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0100
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0100
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0100
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0105
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0105
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0110
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0110
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0115
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0115
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0120
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0120
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0120
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0125
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0125
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0125
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0130
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0130
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0135
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0135
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0140
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0140
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0145
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0145
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0145
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0150
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0150
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0160
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0160
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0160
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0165
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0165
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0165
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0170
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0170


S. Stupkiewicz et al. / International Journal of Solids and Structures 51 (2014) 3931–3943 3943
Petryk, H., Stupkiewicz, S., Maciejewski, G., 2010. Interfacial energy and dissipation
in martensitic phase transformations. Part II: size effects in pseudoelasticity. J.
Mech. Phys. Solids 58, 373–389.

Pietrzak, G., 1997. Continuum mechanics modelling and augmented Lagrangian
formulation of large deformation frictional contact problems (Ph.D. thesis).
Lausanne, EPFL.

Pietrzak, G., Curnier, A., 1999. Large deformation frictional contact mechanics:
continuum formulation and augmented Lagrangian treatment. Comput.
Methods Appl. Mech. Eng. 177, 351–381.

Qu, J., Cherkaoui, M., 2006. Fundamentals of Micromechanics of Solids. John Wiley &
Sons Inc, Hoboken, New Jersey.

Rodriguez-Tembleque, L., Abascal, R., 2013. Fast FE–BEM algorithms for orthotropic
frictional contact. Int. J. Numer. Methods Eng. 94, 687–707.

Sadowski, P., Stupkiewicz, S., 2010a. Combined effect of friction and macroscopic
deformation on asperity flattening. Tribol. Int. 43, 1735–1741.

Sadowski, P., Stupkiewicz, S., 2010b. A model of thermal contact conductance at
high real contact area fractions. Wear 268, 77–85.

Spijker, P., Anciaux, G., Molinari, J.F., 2013. Relations between roughness,
temperature and dry sliding friction at the atomic scale. Tribol. Int. 59, 222–229.

Stupkiewicz, S., 2007. Micromechanics of Contact and Interphase Layers. Springer,
Berlin Heidelberg New York.

Stupkiewicz, S., Maciejewski, G., Petryk, H., 2007. Low-energy morphology of the
interface layer between austenite and twinned martensite. Acta Mater. 55,
6292–6306.

Sung, N.H., Suh, N.P., 1979. Effect of fiber orientation on friction and wear of fiber
reinforced polymeric composites. Wear 53, 129–141.

Temizer, I., 2011. Thermomechanical contact homogenization with random rough
surfaces and microscopic contact resistance. Tribol. Int. 44, 114–124.
Temizer, I., Wriggers, P., 2008. A multiscale contact homogenization technique for
the modelling of third bodies in the contact interface. Comput. Methods Appl.
Mech. Eng. 198, 377–396.

Temizer, I., Wriggers, P., 2010. Inelastic analysis of granular interfaces via
computational contact homogenization. Int. J. Numer. Methods Eng. 84, 883–
915.

Torquato, S., 2002. Random Heterogeneous Materials: Microstructure and
Macroscopic Properties. Springer, Berlin Heidelberg New York.

Varadi, K., Neder, Z., Friedrich, K., 1996. Evaluation of the real contact areas,
pressure distributions and contact temperatures during sliding contact between
real metal surfaces. Wear 200, 55–62.

Vinh, P.A., Tung, D.X., 2012. Explicit homogenized equation of a boundary-value
problem in two-dimensional domains separated by an interface highly
oscillating between two concentric ellipses. Arch. Mech. 64, 461–476.

Wriggers, P., 2006. Computational Contact Mechanics, 2nd Edition. Springer, Berlin
Heidelberg New York.

Wriggers, P., Reinelt, J., 2009. Multi-scale approach for frictional contact of
elastomers on rough rigid surfaces. Comput. Methods Appl. Mech. Eng. 198,
1996–2008.

Zhang, H., Komvopoulos, K., 2009. Scale-dependent nanomechanical behavior and
anisotropic friction of nanotextured silicon surfaces. J. Mater. Res. 24, 3039–
3043.

Zhang, Q.S., Chen, X.B., Yang, Q., Zhang, W.J., 2012. Development and
characterization of a novel piezoelectric-driven stick-slip actuator with
anisotropic-friction surfaces. Int. J. Adv. Manuf. Technol. 61, 1029–1034.

Zmitrowicz, A., 1989. Mathematical descriptions of anisotropic friction. Int. J. Sol.
Struct. 25, 837–862.

http://refhub.elsevier.com/S0020-7683(14)00287-X/h0175
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0175
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0175
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0185
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0185
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0185
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0190
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0190
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0195
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0195
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0200
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0200
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0205
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0205
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0210
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0210
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0215
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0215
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0220
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0220
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0220
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0225
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0225
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0230
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0230
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0235
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0235
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0235
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0240
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0240
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0240
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0245
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0245
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0250
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0250
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0250
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0255
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0255
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0255
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0260
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0260
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0265
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0265
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0265
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0270
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0270
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0270
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0275
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0275
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0275
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0280
http://refhub.elsevier.com/S0020-7683(14)00287-X/h0280

	Micromechanical analysis of friction anisotropy in rough elastic contacts
	1 Introduction
	2 Orthotropic friction model
	3 Micromechanical framework
	4 Anisotropic friction effects in rough elastic contacts
	4.1 Sinusoidal rigid surface
	4.2 Randomly rough surfaces: isotropic roughness
	4.3 Randomly rough surfaces: anisotropic roughness

	5 Conclusion
	Acknowledgement
	References


