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Abstract

It is known that univariate polynomials over finite local rings factor uniquely into primary
pairwise coprime factors. Primary polynomials are not necessarily irreducible. Here we describe
a factorisation into irreducible factors for primary polynomials overZ4 and more generally
over Galois rings of characteristicp2. An algorithm is also given. As an application, we factor
xn − 1 and xn + 1 over such rings.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Univariate polynomials over a finite local ring factor uniquely into primary pairwise
coprime factors (see[9]). A primary polynomial might be irreducible (for example
x2 + 2 is irreducible inZ4[x]) or reducible, in which case its factorisation will in
general not be unique (for examplex2 = (x + 2)2 in Z4[x]). Not even the number of
factors and their degrees are unique (for examplex4 = (x2 + 2)2 in Z4[x]).

We describe a factorisation of primary polynomials into irreducible factors over a
Galois ring of characteristicp2 ( p being a prime), giving also an algorithm. The
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factorisation we obtain has the property that it has the maximum number of irreducible
factors; moreover, among all factorisation into the maximum number of irreducible
factors, it has the minimal number of distinct factors (this number will turn out to be
always one or two). We also describe all the factorisations into the maximum number
of irreducible factors.

Our interest in polynomials overZ4, and more generally, Galois rings was motivated
by the existence of good error-correcting codes overZ4 and over Galois rings[8].
Cyclic codes of lengthn over a ringR are ideals inR[x]/〈xn −1〉. So the factorisation
of xn−1 is particularly important for this application. Another closely related motivation
comes from sequences overZ4 and over Galois rings. Here again polynomials of the
form xn −1 play an important role. As all recurrent sequences are periodic, they are in
particular linearly recurrent and satisfy the linear recurrence (of not necessarily minimal
degree) defined byxn − 1, with n the period of the sequence.

An algorithm for determining all factorisations of a polynomial over a ring of the
form Zpa (and some other types of rings) was developed in[13]. One factorisation is
derived from the factorisation of the polynomial over thep-adic integers (this can be
obtained by the algorithms of Chistov, Ford–Zassenhaus, Buchmann–Lenstra, Cantor–
Gordon, Pauli, Ford et al. see[2,4,5,6,7,10]). However, this approach only works when
the discriminant of the polynomial (as ap-adic number) is not a multiple ofpa . (For
example, it cannot be directly applied to factoringxn − 1 over Z4 when n is even.)
Factoring over thep-adics and then projecting the factorisation toZpa [x] does not
always result in a factorisation into irreducible factors, as irreducible monic polynomials
over thep-adic integers may no longer be irreducible when projected (see Example4.6
for illustration).

The advantage of our results compared to[13] is that they hold for all polynomials,
regardless of the value of their discriminant. The disadvantage is that they only hold in
Galois rings of characteristicp2, with no immediate way of extending them to Galois
rings of characteristicpa with a > 2.

The paper is organised as follows. We start by recalling known results in Section
2. Section3 gives an irreducibility criterion for polynomials over a Galois ring. We
then restrict our attention to Galois rings of characteristicp2 and fully describe in
Section4 factorisations of the primary polynomials in this case. An algorithm will also
result. We also note an interesting connection between the factorisation of a polynomial
f and GR(p2, r)[x]/〈f 〉 being a principal ideal ring (see Theorem4.10). In Section5
we apply our results to factoringxn − 1 andxn + 1 over Galois rings of characteristic
p2 (including Z4 as an important special case).

2. Preliminaries

Recall that if K is a field, K[x] is a unique factorisation domain. A polynomial is
prime if and only if it is irreducible. WhenK is a finite field there are algorithms for
factoring a polynomial into irreducible factors overK[x] (see[1]).

We will recall some known results on the factorisation of polynomials over a finite
local ring, following mainly[9].
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Let R be a finite local ring and letM be its maximal ideal. All elements ofM are
nilpotent and all elements ofR\M are units. The fieldK := R/M is called the residue
field of R. We denote byc the image ofc ∈ R under the canonical projection from
R to K. This projection extends naturally to a projection fromR[x] to K[x]. We will
call a polynomialmonic if its leading coefficient is 1. A polynomial inR[x] is called
regular if it is not a zero-divisor.

Theorem 2.1 ([9, Theorems XIII.2 and XIII.6]). Let f = ∑m
i=0 cix

i ∈ R[x]\{0}. Then:

(i) f is a zero-divisor iffci ∈ M for i = 0, . . . , m,
(ii) f is a unit iff c0 is a unit andci ∈ M for i = 1, . . . , m,

(iii) f is regular iff there is an i, 0� i�m such thatci is a unit,
(iv) If f is regular then there are unique polynomialsf ∗, u ∈ R[x] such thatf = uf ∗,

u is a unit andf ∗ is monic.

So based on Theorem2.1(iv) we can assume that a regular polynomial is monic.
Also, when looking at factorisations of a monic polynomial we can assume, without
loss of generality, that all factors are monic.

Prime polynomials are irreducible. However, unlike in the case of fields, irreducible
polynomials need not be prime. Recall that a polynomialf ∈ R[x] is called basic
irreducible if f is irreducible inK[x]. Obviously, basic irreducible polynomials are
irreducible.

A polynomial f ∈ R[x] is called primary if the ideal〈f 〉 is primary in R[x], i.e.
if for all gh ∈ 〈f 〉 we haveg ∈ 〈f 〉 or hm ∈ 〈f 〉 for some integerm�1. Primary
polynomials inK[x] are powers of prime polynomials. Primary polynomials inR[x]
are characterised below:

Theorem 2.2 ([9, Proposition XIII.12]). Let f be a regular non-unit polynomial. The
following assertions are equivalent:

(i) f is primary,
(ii) f = uGm for some unitu ∈ K, m�1 and G ∈ K[x] prime,

(iii) f = ugm + h for someu, g, h ∈ R[x], m�1 with u unit, g basic irreducible and
h ∈ M[x].

R[x] is not a unique factorisation domain. However, polynomials inR[x] factor
uniquely into primary pairwise coprime factors:

Theorem 2.3 ([9, Theorem XIII.11]). Let f ∈ R[x] be a regular polynomial. Then
f = uf1f2 · · · fs with u ∈ R[x] a unit andf1, . . . , fs ∈ R[x] regular primary pairwise
coprime polynomials. The factorsfi are unique up to multiplication by units.

The proof of the above theorem is constructive and uses Hensel lifting. We recall
here the main steps. By Theorem2.1(iv) we may assume thatf is monic. First we
factor f in K[x], say f = F

m1
1 . . . F

ms
s with Fi ∈ K[x] irreducible andmi �1 for
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i = 1, . . . , s. SinceF
mi

i are coprime polynomials, one can use Hensel lifting to obtain
a factorisationf = f1 · · · fs with fi ∈ R[x], fi = F

mi

i and fi pairwise coprime. By
Theorem2.2, fi are primary polynomials.

Throughout the paperp will be a prime number andZpa the ring of integers modulo
pa . The Galois field withpr elements is denoted GF(pr). We denote by GR(pa, r)

the Galois ring obtained asZpa [y]/〈f 〉 with f ∈ Zpa [y] a monic basic irreducible
polynomial of degreer. Note that the characteristic of GR(pa, r) is pa . In this paper
we will assumea�2, so that the Galois ring is not a field.

Note that Galois rings are finite local rings. The maximal ideal of GR(pa, r) is M =
〈p〉 and the residue field isK = GF(pr). We havec = c modp for all c ∈ GR(pa, r).
Every element of GR(pa, r) can be uniquely written asupi with 0� i < a, i uniquely
determined andu ∈ GR(pa, r) a unit, unique modulopa−i . For anyc ∈ GR(pa, r) if
pic = 0 thenc is divisible bypa−i .

All the previous theorems hold in particular for Galois rings. Theorem2.2 yields in
this case:

Corollary 2.4. Let f ∈ GR(pa, r)[x] be a monic polynomial. Then f is primaryiff
f = gm+ph for someg, h ∈ GR(pa, r)[x], m�1 with g monic and basic irreducible.

Note that the polynomialsg andh in the corollary above are in general not unique.

3. Irreducibility criterion for primary polynomials over Galois rings

We start with a necessary (but not sufficient in general) condition for the reducibility
of a primary polynomial over a Galois ring.

Theorem 3.1. Let f ∈ GR(pa, r)[x] be a monic primary polynomial which is not basic
irreducible. Letg, h ∈ GR(pa, r)[x] and m�2 be such thatf = gm + ph and g is
monic basic irreducible. If f factors thenh = 0 or g|h.

Proof. Sincef factors, there aref1, f2 ∈ GR(pa, r)[x] monic non-constant polynomials
such thatf = f1f2. Sincef = gm = f1f2, we can writefi = gmi + phi for some
mi > 0, hi ∈ GR(pa, r)[x] for i = 1,2 with m1 + m2 = m. Without loss of generality
we can assumem1 ≤ m2. We have

f = (gm1 + ph1)(g
m2 + ph2) = gm + pgm1(h2 + h1g

m2−m1) + p2h1h2

= gm + ph.

Hence h = gm1(h2 + h1gm2−m1) and therefore we have eitherh = 0 or g|h as
required. �

The converse of the above theorem does not hold in general, as the following example
shows. However, if the Galois ring is of the form GR(p2, r), the converse does hold,
see Theorem4.1.
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Example 3.2. Let f = (x + 1)4 + 4x ∈ Z8[x]. Puttingg = x + 1 andh = 2x we have
f = g4 + 2h and g is monic basic irreducible. Note thath = 0. Moreover, any other
polynomialsg, h such thatf = g4 + 2h and g is monic basic irreducible are of the
form g = x + 1 + 2w for somew ∈ Z8 and 2h = f − (x + 1 + 2w)4 = 4x, and so
h = 0. So f satisfies the conclusion of Theorem3.1. However, we will show shortly
that f is irreducible. So Theorem3.1 gives a necessary, but not sufficient condition for
a polynomial to factor.

We show now thatf is irreducible. It can be easily checked thatf has no roots inZ8,
so it cannot have any monic factor of degree one. So we are left with the possibility
of f factoring into two monic factors of degree two:f = ((x + 1)2 + 2(Ax +B))((x +
1)2 + 2(Cx + D)) for someA,B,C,D ∈ Z8. By comparing like coefficients of these
polynomials we obtain a system of equations in the unknownsA,B,C and D which
has no solutions inZ8.

A sufficient condition for the irreducibility of a polynomial immediately results from
Theorem3.1. It can be viewed as a generalised Eisenstein criterion:

Corollary 3.3. Let f ∈ GR(pa, r)[x] be a monic primary polynomial which is not
basic irreducible. Letg, h ∈ GR(pa, r)[x] and m�2 be such thatf = gm + ph and
g is monic basic irreducible. Ifh �= 0 and g �h then f is irreducible.

Example 3.4.A polynomial of the form f = xs + p(as−1x
s−1 + · · · + a0) ∈

GR(pa, r)[x] with a0 a unit is called an Eisenstein polynomial (see for example
[9, p. 341]). Putting g = x and h = as−1x

s−1 + · · · + a0, we see thath �= 0 and
g �h. So by Corollary3.3, f is irreducible, as expected.

If f is a polynomial such thatf is square-free, the factorisation off into primary
pairwise coprime factors (given by Theorem2.3) is a factorisation into basic irreducible
factors. If f is not square-free, some of the primary factors may factor further. Below
we give a sufficient condition for all primary factors in the factorisation given by
Theorem 2.3 to be irreducible. Note that checking this condition does not require
factoring the polynomial.

Proposition 3.5. Let f ∈ GR(pa, r)[x] be such thatf is not square-free. Letf1, f2
be any polynomials inGR(pa, r)[x] such thatf1 is the square-free part off and
f = f1f2. Let h ∈ GR(pa, r)[x] be such thatph = f − f1f2. If h �= 0 and h and f2
are coprime then the factorisation of f into primary pairwise coprime factors(given
by Theorem2.3) is a factorisation into irreducible factors.

Proof. Let f = ∏s
i=1 G

mi

i be the factorisation off into irreducible polynomials in
GF(pr)[x]. Let gi be any polynomials such thatgi = Gi . We havef1 = ∏s

i=1 Gi and

f2 = ∏s
i=1 G

mi−1
i , so f1 = ∏s

i=1 gi + pw1 and f2 = ∏s
i=1 g

mi−1
i + pw2 for some

w1, w2 ∈ GR(pa, r)[x]. The factorisation off given by Theorem2.3 is of the form
f = ∏s

i=1(g
mi

i + phi) for somehi ∈ GR(pa, r). To show that this is a factorisation
into irreducible factors it suffices (by Corollary3.3) to show that for anyi for which
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mi > 1 we havehi �= 0 andGi �hi . By hypothesis,h �= 0 andh andf2 are coprime, so
h is not divisible by any of theGi for which mi > 1. Computingf − f1f2 we obtain
h = ∑s

i=1 hi

∏
j �=i G

mj

j −w1
∏s

i=1 G
mi−1
i −w2

∏s
i=1 Gi . Fix an i such thatmi > 1. In

the last equality above, all the terms on the right hand side are divisible byGi except
possibly forhi

∏
j �=i G

mj

j . Since the left hand side is not divisible byGi we deduce

hi �= 0 andGi �hi as required. �

4. Factorisation of primary polynomials over GR(p2, r)

From this point on, we will restrict the coefficient ring to a Galois ring of character-
istic p2. Theorem3.1 can be improved in this setting, giving a necessary and sufficient
condition for a primary polynomial to factor.

Theorem 4.1. Let f ∈ GR(p2, r)[x] be a monic primary polynomial which is not basic
irreducible. Letg, h ∈ GR(p2, r)[x] and m�2 be such thatf = gm + ph and g is
monic basic irreducible. Then f factors if and only ifh = 0 or g|h.

Proof. The direct implication follows from Theorem3.1. We prove the converse. If
h = 0 thenph = 0 so f = gm and this is a factorisation off into irreducible factors.
If h �= 0 let m1�1 be maximal such thatgm1|h and choosew so thath = gm1w.
Sincep2 = 0, we haveph = pgm1w. We thus obtain the factorisationf = gm +ph =
gm + pgm1w = gm1(gm−m1 + pw). By Corollary 3.3, gm−m1 + pw is irreducible since
w �= 0 andg �w by construction. So we factoredf into irreducible factors. �

The proof of the above theorem also yields:

Corollary 4.2. Let f ∈ GR(p2, r)[x] be a monic primary polynomial which is not
basic irreducible. The following assertions are equivalent:

(i) f factors,
(ii) f has a basic irreducible factor,

(iii) for all g ∈ GR(p2, r)[x], if g is basic irreducible andg|f then g|f .

When the Galois ring has characteristicp2, the converse of Corollary3.3 also
holds:

Corollary 4.3. Let f ∈ GR(p2, r)[x] be a monic primary polynomial which is not
basic irreducible. Letg, h ∈ GR(p2, r)[x] and m�2 be such thatf = gm + ph and
g is monic basic irreducible. Then f is irreducible if and only ifh �= 0 and g �h.

If a polynomial in GR(p2, r) factors, there are in general several possible factorisa-
tions. We will concentrate here on factorisations that are “maximal” in the sense that
they contain the maximum number of (not necessarily distinct) factors.
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Theorem 4.4. Let f ∈ GR(p2, r)[x] be a monic primary polynomial which is not
irreducible. Letm�2 and G ∈ GF(pr)[x] be the uniquely determined elements such
that f = Gm in GF(pr)[x]. Then f admits a factorisation into monic irreducible factors
of one (but not both) of the following two types:

(i)
f = gm (1)

for someg ∈ GR(p2, r)[x] such that g is monic andg = G.
(ii)

f = gm1(gm−m1 + pw) (2)

for someg,w ∈ GR(p2, r)[x] and 1�m1 < m such that g is monic, g = G,
gm−m1 + pw is irreducible and ifp �m thenm − m1�2.

The factorisations given above have the following property: they are factorisations
of f into the maximum number of (not necessarily distinct) irreducible factors, and
among all possible factorisations into the maximum number of irreducible factors, they
consist of a minimum number of distinct factors. Moreover, all factorisations of f into
monic irreducible factors having this property are factorisations of type (i) or (ii) and
can be obtained as follows: In case (i), ifp �m then g is uniquely determined; if
p|m then any monicg ∈ GR(p2, r)[x] with g = G satisfies (1). In case (ii),m1 is
uniquely determined and for any monicg ∈ GR(p2, r)[x] with g = G there is a unique
irreducible polynomial of the formgm−m1 + pw, with w ∈ GR(p2, r)[x], so that (2)
is satisfied.

Proof. The fact thatf can be written as in (1) or (2) follows from Theorem4.1 and
its proof. We show that iff can be written as in (2) but p �m and m1 = m − 1, then
f can be written as in (1) for a different choice ofg. We havef = gm−1(g + pw).
Putting g2 = g + pu whereu is any polynomial such thatu = (m)−1w one can verify
that f = gm

2 .
Assume now, for a contradiction, thatf admits both a factorisation of type (i), say

f = gm
1 and a factorisation of type (ii), sayf = gm1(gm−m1 +pw). Sinceg = g1 = G,

there is au ∈ GR(p2, r)[x] so thatg1 = g + pu. Hencegm + pgm1w = (g + pu)m =
gm + pmgm−1u, so w = mgm−m1−1u. We deduce that ifp|m thenw = 0 and if p �m
then m − m1 − 1�1 henceG|w. But then, by Corollary4.3, gm−m1 + pw would not
be irreducible, so we obtain a contradiction.

Next we prove the assertions about the number of factors. For (i) it is obvi-
ous that the number of (non-distinct) factors is maximal, and that the number of
distinct factors is one, therefore minimal. For (ii) consider an arbitrary factorisa-
tion of f into irreducible factors. It will have the formf = ∏s

i=1(g
ki + pwi) with

1 � k1 � k2 � · · · � ks ,
∑s

i=1 ki = m, wi ∈ GR(p2, r)[x] and gki + pwi irreducible.
From f = gm + p

∑s
i=1 wig

m−ki = gm + pgm1w we deducegm−ks
∑s

i=1 wig
ks−ki =

gm1w. Hencem− ks � m1. Since
∑s−1

i=1 ki = m− ks �m1, we deduce thats�m1 + 1,
so m1 +1 is the maximal number of factors in any factorisation off. We also note that
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the equalitys = m1 + 1 (i.e. factorisation into a maximal number of factors) can only
be reached whenk1 = k2 = · · · = ks−1 = 1 andks = m − m1. As factorisations of the
form (ii) cannot be written in the form (i), the number of distinct irreducible factors
has to be at least two.

Given a factorisation off of type (i) or (ii) we will examine now what happens
for a different choice ofg with g = G. Let g1 be another polynomial such that
g1 = G. There is au ∈ GR(p2, r)[x] so that g = g1 + pu and pu �= 0. If f is
in case (i) we havef = (g1 + pu)m = gm

1 + pmgm−1
1 u. This means that ifp|m

then g1 satisfies (1), otherwise it does not. Iff is in case (ii) we havef = (g1 +
pu)m + p(g1 + pu)m1w = gm

1 + p(mgm−1
1 u + g

m1
1 w) = g

m1
1 (g

m−m1
1 + pw1), where

we denotedw1 = mg
m−1−m1
1 u + w. One can prove thatgm−m1

1 + pw1 is irreducible
either using Corollary4.3 or using the fact thatm1 + 1 is the maximum number
of factors of f, so any factorisation intom1 + 1 factors can only contain irreducible
factors.

It is easy to verify that these constructions give all the possible factorisations satis-
fying the stated requirements regarding the number of factors.�

We note that in the above theorem, iff is in case (ii) or if f is in case (i) and
p|m, there are|GF(pr)|deg(g) ways of choosing a monicg with g = G. Hence, up to
multiplication by units, there are|GF(pr)|deg(g) factorisations satisfying the property in
the theorem regarding the number of factors.

Based on Theorems4.1 and 4.4 we can now develop an algorithm for deciding if a
primary polynomial factors, and, in the affirmative case, obtaining a factorisation into
the maximum number of irreducible factors.

Algorithm 4.5 (Factorisation of a primary polynomial).

Input: f ∈ GR(p2, r)[x], a primary polynomial.
Output: A list of pairs((f1,m1), . . . , (fs,ms)) so thatf = f

m1
1 . . . f

ms
s and fi are

irreducible or one of the messages “f is irreducible” or “f is basic
irreducible”.

Note: The factorisation has the maximum number of factors; among all
factorisations into the maximum number of factors, this has the minimum
number of distinct factors.

begin
DetermineG ∈ GF(pr)[x] andm�1 so thatf = Gm and G is irreducible.
if m = 1 then return (“ f is basic irreducible”)
Chooseg ∈ GR(p2, r)[x] monic so thatg = G and determineh so thatph = f − gm.
if h = 0 then return (((g,m)))
Determine the maximumm1 so thatGm1|h and determinew so thath = Gm1w.
if m1 = 0 then return (“ f is irreducible”)
if (p|m) or (m1�m − 2) then return ( ((g,m1), (g

m−m1 + pw,1)) )
Chooseu such thatu = (m)−1w.
return (((g + pu,m)))
end
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It is easy to see that the worst-case complexity of the algorithm above is quadratic
in the degree off. Once a factorisation has been obtained, one can easily write down
all possible factorisations having the properties in Theorem4.4. Let us now apply the
algorithm to an example:

Example 4.6. Let f = x3+6x2+4 ∈ Z9[x]. In Z3[x] we havef = x3+1 = (x+1)3.
Hence f is primary but it is not basic irreducible. Putg = x + 1 ∈ Z9[x], m = 3
and h = x2 + 2x + 1. Sinceh is divisible by g2 and p|m, a factorisation off into
irreducible factors isf = (x + 1)2(x + 4). By taking all other possible values for
g so that g = x + 1 we get all the other factorisations off of this type, namely
f = (x + 4)2(x + 7) andf = (x + 7)2(x + 1). Note that when viewed as a polynomial
over the 3-adic numbers,f is irreducible (for examplef has no roots inZ27 so it is
irreducible in Z27 already). Hence none of these factorisations could be obtained by
projecting toZ9[x] the factorisation off over the 3-adic numbers.

Using Theorem4.4 and its proof, one can also obtain all the factorisations of a
primary polynomial into the maximum number of irreducible factors (without the re-
striction on having a minimal number of distinct factors):

Corollary 4.7. Let f ∈ GR(p2, r)[x] be a monic primary polynomial which is not
irreducible.

(i) Assume f admits a factorisationf = gm as in Theorem4.4(i). Thenf = ∏m
i=1(g+

pwi) with wi ∈ GR(p2, r)[x] arbitrary of degree less thandeg(g), for
i = 1, . . . , m − 1 and wm = − ∑m−1

i=1 wi , gives all the possible factorisations
of f into a maximum number of monic irreducible factors.

(ii) If f admits a factorisationf = gm1(gm−m1 + pw) as in Theorem4.4(ii), then
f = (

∏m1
i=1(g + pwi))(g

m−m1 + pwm1+1) with wi ∈ GR(p2, r)[x] arbitrary of
degree less thandeg(g) for i = 1, . . . , m1, and wm1+1 = w − gm−m1−1 ∑m1

i=1 wi ,
gives all the factorisations of f into a maximum number of monic irreducible
factors.

Proof. One can immediately verify that the formulae above are indeed factorisations
of f into the maximum number of factors, hence all factors will be irreducible.

Next we have to show that we obtain indeed all the possible factorisations into
a maximum number of factors. For (i), this is immediate. For (ii), we noted in the
proof of Theorem4.4 that (with the notations from that proof ), any factorisation into a
maximum number of factors has to satisfyk1 = k2 = · · · = ks−1 = 1 andks = m−m1.

�

Remark 4.8. Polynomials in GR(p2, r)[x] may also factor into fewer than the max-
imum number of irreducible factors given by Theorem4.4. For example, iff = gm

with m�4, we can writef = (gk + pu)(gk − pu)gm−2k for any 2�k�m/2 and any
u ∈ GR(p2, r)[x] so that deg(u) < deg(gk), u �= 0 and g � u. This is a factorisation
into m − 2k + 2 < m irreducible factors. For example we have the two factorisations
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x4 = (x2 + 2)2 in Z4[x] and x2 + 2 is irreducible. We will not examine this type of
factorisations any further in this paper.

Using Corollary4.3, one can easily show that the converse of Proposition3.5 holds
for Galois rings of characteristicp2:

Corollary 4.9. Let f ∈ GR(p2, r)[x] be such thatf is not square-free. Letf1, f2
be any polynomials inGR(p2, r)[x] such thatf1 is the square-free part off and
f = f1f2. Let h ∈ GR(p2, r)[x] be such thatph = f − f1f2. The factorisation of f
into primary pairwise coprime factors(given by Theorem2.3) is a factorisation into
irreducible factors if and only ifh �= 0 and h and f2 are coprime.

We note an interesting connection between the factorisation of a polynomialf and
GR(pa, r)[x]/〈f 〉 being a principal ideal ring.

Theorem 4.10.Let f ∈ GR(pa, r)[x].
(i) If GR(pa, r)[x]/〈f 〉 is a principal ideal ring then the factorisation of f into primary

pairwise coprime factors (given by Theorem2.3) is a factorisation into irreducible
factors.

(ii) Whena = 2, GR(p2, r)[x]/〈f 〉 is a principal ideal ring if and only if the fac-
torisation of f into primary pairwise coprime factors(given by Theorem2.3) is a
factorisation into irreducible factors.

Proof. With the notations of Proposition3.5, we have that GR(pa, r)[x]/〈f 〉 is a princi-
pal ideal ring if and only if h �= 0 and h and f2 are coprime (see
[3, Theorem 4]; also [11, Theorem 3.2, 12]). The result now follows from Proposition
3.5 for (i) and from Corollary4.9 for (ii). �

Remark 4.11. Note that the converse of point (i) in the theorem above does not hold
for a > 2. For example, one can check that althoughf = (x + 1)4 + 4x ∈ Z8[x] is
primary and irreducible (see Example3.2), Z8[x]/〈f 〉 is not a principal ideal ring (for
example the ideal〈x + 1,2〉 is not principal).

5. Application: factoring xn − 1 and xn + 1

In this section we determine factorisations ofxn − 1 and ofxn + 1 into a maximal
number of irreducible factors over GR(p2, r)[x].

The polynomialxn−1 is important for numerous applications. Our motivation comes
from coding theory, where cyclic codes over a Galois ring are ideals in GR(pa, r)[x]/
〈xn − 1〉. Negacyclic codes are ideals in GR(pa, r)[x]/〈xn + 1〉. One usually assumes
that n is not divisible byp, but the case whenp|n, yielding the so-called repeated-roots
codes, is also of interest.

When n is not divisible by p, the polynomial xn − 1 has no multiple factors
over GF(pr). Hensel lifting will produce then a unique factorisation ofxn − 1 over
GR(pa, r)[x] with all factors basic irreducible. The same happens forxn + 1.
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Factoringxn − 1 (or xn + 1) is more complicated whenp|n. Here we deal with this
case in rings of the form GR(p2, r) (these rings include in particularZ4, which is an
important ring for coding theory applications).

Theorem 5.1. Let xn − 1 ∈ GR(p2, r)[x] and assumep|n. Write n asn = kpb with
b�1 and p � k. Let h ∈ GR(p2, r)[x] be any polynomial such that

h =
{

1 if p = 2,∑p−2
i=1

(∑i
j=1 j−1

)
xikpb−1

if p > 2.

Then

(i)
xn − 1 = (xk − 1)p

b−1
((xk − 1)(p−1)pb−1 + ph)

and h is relatively prime toxk − 1 in GF(pr)[x].
(ii) Let xk − 1 = ∏s

i=1 fi be the factorisation ofxk − 1 into basic irreducible factors

overGR(p2, r)[x] and letwi ∈ GR(p2, r)[x] be such that(xk−1)(p−1)pb−1+ph =∏s
i=1(f

(p−1)pb−1

i +pwi) is the factorisation of(xk −1)(p−1)pb−1 +ph into primary
pairwise coprime factors. Then

xn − 1 =
s∏

i=1

f
pb−1

i

(
f

(p−1)pb−1

i + pwi

)
(3)

is a factorisation ofxn − 1 into the maximum number of(not necessarily distinct)
irreducible factors; among all possible factorisations into the maximum number
of irreducible factors, the factorisation above consists of the minimum number of
distinct factors.

Proof. (i) In GF(pr)[x] we havexn − 1 = (xk − 1)p
b
. Hence in GR(p2, r)[x] we have

xn − 1 = (xk − 1)p
b + pt for some polynomialt which we will now determine.

For any 0< j < pb, we know by Kummer’s theorem that

(
pb

j

)
is divisible by

pb−c (and by no higher power ofp) wherec is the highest exponent so thatpc|j . So

in particular

(
pb

j

)
≡ 0 modp2 for all values 0< j < pb for which j is not divisible

by pb−1. When j is of the form j = ipb−1 with 0 < i < p,

(
pb

ipb−1

)
is divisible by

p but not byp2.
We will treat the casep = 2 first:

2t = xn − 1 − (xk − 1)2b = xn − 1 − (xn + 2xk2b−1 + 1) = −2(xk2b−1 + 1)

= 2(xk − 1)2b−1
.

Thereforexn − 1 can be written as in the theorem, withh = 1 in this case.
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Now we assumep > 2. We have

pt = xn − 1 − (xk − 1)p
b = xn − 1 −

p∑
i=0

(
pb

ipb−1

)
xikpb−1

(−1)(p−i)pb−1

= −
p−1∑
i=1

(
pb

ipb−1

)
xikpb−1

(−1)p−i .

By Lemma A.1 in the Appendix,

(
pb

ipb−1

)
≡ pci modp2 where ci = (−1)i−1 i−1.

Hence

t = −
p−1∑
i=1

(−1)i−1 i−1xikpb−1
(−1)p−i = −

p−1∑
i=1

i−1xikpb−1
.

In GF(pr)[x] we divide t by (xk − 1)p
b−1 = xkpb−1 − 1. We obtain the remainder

− ∑p−1
i=1 i−1 = − ∑p−1

i=1 i = −p(p − 1)/2 ≡ 0 modp (as i−1 will take all values
between 1 andp − 1 when i varies from 1 top − 1) and the quotient

h = −
p−2∑
i=0

p−1∑
j=i+1

j−1xikpb−1 =
p−2∑
i=1

i∑
j=1

j−1xikpb−1

(here again we used the fact that
∑p−1

i=1 i−1 ≡ 0 modp).
It remains to show thath is coprime toxk − 1. Assume they had a common factor.

Then they would have a common root� in a suitable extension field. As� is a root
of xk − 1, we have�k = 1. Evaluatingh at � we obtain

h(�) = −
p−2∑
i=0

p−1∑
j=i+1

j−1 = −
p−1∑
j=1

jj−1 = −
p−1∑
j=1

1 = −(p − 1) = 1.

Hence we obtain a contradiction, as� cannot be a root ofh.

(ii) By Corollary 4.9, (xk − 1)(p−1)pb−1 + ph = ∏s
i=1(f

(p−1)pb−1

i + pwi) is the

factorisation of (xk − 1)(p−1)pb−1 + ph into irreducible factors, ash is coprime to
xk − 1. Hence (3) is a factorisation into irreducible factors.

It remains to prove the assertions about the number of irreducible factors. The factori-
sation ofxn − 1 into monic primary pairwise coprime factors is unique (Theorem2.3)

and from (3) there ares primary pairwise coprime factors, namelyf pb−1

i (f
(p−1)pb−1

i +
pwi), for i = 1, . . . , s. By Theorem4.4, each of these factors is factored in (3) into a
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maximal number of irreducible factors, and the number of distinct factors is minimal
among all such factorisations. �

Using similar techniques one can determine a factorisation ofxn + 1. Note that the
casesp = 2 andp > 2 differ more substantially here.

Theorem 5.2. Let xn + 1 ∈ GR(p2, r)[x] and assumep|n.

(i) If p = 2 then the factorisation ofxn + 1 into primary pairwise coprime factors
in GR(22, r)[x] (given by Theorem2.3) is also a factorisation into irreducible
factors.

(ii) Let p > 2. Write n as n = kpb with b�1 and p � k. Let h be any polyno-

mial such thath = ∑p−2
i=1 (−1)i(

∑i
j=1 j−1)xikpb−1

. Then xn + 1 = (xk + 1)p
b−1

((xk + 1)(p−1)pb−1 + ph) and h is relatively prime to xk + 1 in GF(pr)[x].
Let xk + 1 = ∏s

i=1 fi be the factorisation ofxk + 1 into basic irreducible factors

over GR(p2, r)[x] and letwi ∈ GR(p2, r)[x] be such that(xk+1)(p−1)pb−1+ph =∏s
i=1(f

(p−1)pb−1

i +pwi) is the factorisation of(xk +1)(p−1)pb−1 +ph into primary
pairwise coprime factors. Then

xn + 1 =
s∏

i=1

f
pb−1

i (f
(p−1)pb−1

i + pwi) (4)

is a factorisation ofxn + 1 into the maximum number of(not necessarily distinct)
irreducible factors; among all possible factorisations into the maximum number
of irreducible factors, the factorisation above consists of the minimum number of
distinct factors.

Proof. We will use the same notations as in the proof of Theorem5.1. (i) Assume
p = 2. Then xn + 1 = (xk + 1)2b + 2t and 2t = 2xk2b−1

. Obviously t = xk2b−1
is

non-zero and coprime toxk + 1. Hence by Corollary4.9, the factorisation ofxn + 1
into primary coprime factors is also a factorisation into irreducible factors.

(ii) Assumep > 2. We havexn + 1 = (xk + 1)p
b + pt with

t = −
p−1∑
i=1

(−1)i−1 i−1xikpb−1 =
p−1∑
i=1

(−1)i i−1xikpb−1
.

When dividingt by (xk +1)p
b−1 = xkpb−1 +1 in GF(pr) we obtain the remainder zero

and the quotienth, which one can check that is relatively prime toxk + 1. The rest of
the proof is similar to the proof of Theorem5.1. �

Remark 5.3. We note that the results of Theorems5.1 and5.2 together with Corollary
4.9 imply in particular that GR(p2, r)[x]/〈xn −1〉 is not a principal ideal ring whereas
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GR(p2, r)[x]/〈xn + 1〉 is a principal ideal ring ifp = 2 but it is not a principal ideal
ring whenp > 2. We retrieve thus particular cases of[11, Theorem 3.4, 12].
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Appendix A

Lemma A.1. Let p be a prime number, b�1 and 0 < i < p. We have:

(i)

(
pb

ipb−1

)
≡

(
p

i

)
(modpb),

(ii) Let c =
(

p

i

)
/p ∈ Z (the division is exact). Thenc modp = (−1)i−1 i−1 in Zp.

Proof. (i) We will use the usual formula

(
n

k

)
= n·(n−1)·...·(n−k+1)

k! , separating the

factors that are divisible bypb−1:(
pb

ipb−1

)
= pb · (p − 1)pb−1 · . . . · (p − i + 1)pb−1

pb−1 · 2pb−1 · . . . · ipb−1

· (p
b − 1)(pb − 2) . . . (pb − pb−1 + 1)(pb − pb−1 − 1) · . . . · (pb − ipb−1 + 1)

1 · 2 · . . . · (pb−1 − 1)(pb−1 + 1) · . . . · (ipb−1 − 1)
.

We denote byA and B the first and the second fraction above, respectively. ForA we
have inZ

A = p(p − 1) · . . . · (p − i + 1)

i! =
(

p

i

)
.

Obviously A is divisible by p. So for evaluatingAB modpb it suffices to evaluate
B modpb−1. One can check that, modulopb−1, both the numerator and the denominator
of B equal (pb−1 − 1)! · i, so B modpb−1 = 1.

(ii) We havec = (p−1)(p−2)·...·(p−i+1)
i! , soc modp = (−1)(−2)·...·(−(i−1))

i! = (−1)i−1i−1

in Zp. �
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