View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

SCIENCE@DIREOT“ FINITE FIELDS
L AND THEIR

AL APPLICATIONS
ELSEVIER Finite Fields and Their Applications 11 (2005) 56—70

http://lwww.elsevier.com/locate/ffa

Factoring polynomials ovex, and over certain
Galois rings

Ana Slagear
Department of Computer Science, Loughborough University, Loughborough LE11 3TU, UK

Received 2 September 2003; revised 7 May 2004

Communicated by Igor Shparlinski

Abstract

It is known that univariate polynomials over finite local rings factor uniquely into primary
pairwise coprime factors. Primary polynomials are not necessarily irreducible. Here we describe
a factorisation into irreducible factors for primary polynomials ov&; and more generally
over Galois rings of characterist';tzz. An algorithm is also given. As an application, we factor
x" —1 andx” 4+ 1 over such rings.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Univariate polynomials over a finite local ring factor uniquely into primary pairwise
coprime factors (sed9]). A primary polynomial might be irreducible (for example
x2 + 2 is irreducible inZ4[x]) or reducible, in which case its factorisation will in
general not be unique (for exampté = (x + 2)2 in Z4[x]). Not even the number of
factors and their degrees are unique (for examfle= (x2 4 2)2 in Z4[x]).

We describe a factorisation of primary polynomials into irreducible factors over a
Galois ring of characteristip? (p being a prime), giving also an algorithm. The
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factorisation we obtain has the property that it has the maximum number of irreducible
factors; moreover, among all factorisation into the maximum number of irreducible
factors, it has the minimal number of distinct factors (this number will turn out to be

always one or two). We also describe all the factorisations into the maximum number
of irreducible factors.

Our interest in polynomials ovef4, and more generally, Galois rings was motivated
by the existence of good error-correcting codes ofgrand over Galois ringg8].
Cyclic codes of lengtn over a ringR are ideals inR[x]/{(x" —1). So the factorisation
of x" —1 is particularly important for this application. Another closely related motivation
comes from sequences ovéy and over Galois rings. Here again polynomials of the
form x" — 1 play an important role. As all recurrent sequences are periodic, they are in
particular linearly recurrent and satisfy the linear recurrence (of not necessarily minimal
degree) defined by” — 1, with n the period of the sequence.

An algorithm for determining all factorisations of a polynomial over a ring of the
form Z,« (and some other types of rings) was developedl1®]. One factorisation is
derived from the factorisation of the polynomial over thadic integers (this can be
obtained by the algorithms of Chistov, Ford—Zassenhaus, Buchmann-Lenstra, Cantor—
Gordon, Pauli, Ford et al. sd2,4,5,6,7,10]. However, this approach only works when
the discriminant of the polynomial (asm@adic number) is not a multiple op¢. (For
example, it cannot be directly applied to factoriny — 1 over Z4, whenn is even.)
Factoring over thep-adics and then projecting the factorisation 4g.[x] does not
always result in a factorisation into irreducible factors, as irreducible monic polynomials
over thep-adic integers may no longer be irreducible when projected (see Exahtple
for illustration).

The advantage of our results compared18] is that they hold for all polynomials,
regardless of the value of their discriminant. The disadvantage is that they only hold in
Galois rings of characteristip?, with no immediate way of extending them to Galois
rings of characteristip? with a > 2.

The paper is organised as follows. We start by recalling known results in Section
2. Section3 gives an irreducibility criterion for polynomials over a Galois ring. We
then restrict our attention to Galois rings of characterigtfc and fully describe in
Section4 factorisations of the primary polynomials in this case. An algorithm will also
result. We also note an interesting connection between the factorisation of a polynomial
f and GRp2, r)[x]/(f) being a principal ideal ring (see TheorefriL0. In Section5
we apply our results to factoring” — 1 andx” 4+ 1 over Galois rings of characteristic
p? (including Z4 as an important special case).

2. Preliminaries

Recall that ifK is a field, K[x] is a unique factorisation domain. A polynomial is
prime if and only if it is irreducible. WherK is a finite field there are algorithms for
factoring a polynomial into irreducible factors ové&rx] (see[1]).

We will recall some known results on the factorisation of polynomials over a finite
local ring, following mainly[9].
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Let R be a finite local ring and leM be its maximal ideal. All elements d¥l are
nilpotent and all elements at\ M are units. The fiel&k := R/M is called the residue
field of R We denote byc the image ofc € R under the canonical projection from
R to K. This projection extends naturally to a projection fratpx] to K[x]. We will
call a polynomialmonicif its leading coefficient is 1. A polynomial iR[x] is called
regular if it is not a zero-divisor.

Theorem 2.1([9, Theorems XIII.2 and XII.§] Let f =7, cix' e R[x]\{0}. Then

(i) fis a zero-divisor iffc; e M fori =0,...,m,
(i) fis a unit iff cg is a unit andc; e M fori =1,...,m,
(i) fis regular iff there is an,i0<i <m such thatc; is a unit
(iv) If fis regular then there are unique polynomiafs’, u € R[x] such thatf = uf*,
u is a unit and f* is monic

So based on Theorer®.1(iv) we can assume that a regular polynomial is monic.
Also, when looking at factorisations of a monic polynomial we can assume, without
loss of generality, that all factors are monic.

Prime polynomials are irreducible. However, unlike in the case of fields, irreducible
polynomials need not be prime. Recall that a polynomfak R[x] is called basic
irreducible if f is irreducible in K[x]. Obviously, basic irreducible polynomials are
irreducible.

A polynomial f € R[x] is called primary if the ideal f) is primary in R[x], i.e.
if for all gh € (f) we haveg € (f) or " € (f) for some integern >1. Primary
polynomials inK[x] are powers of prime polynomials. Primary polynomials Rifix]
are characterised below:

Theorem 2.2 ([9, Proposition XIII.12). Let f be a regular non-unit polynomial. The
following assertions are equivalent

(i) fis primary,
(i) f=uG™ for some unitu € K, m>1 and G € K[x] prime,
(i) f =ug™ + h for someu, g, h € R[x], m >1 with u unit g basic irreducible and
h € M[x].

R[x] is not a unique factorisation domain. However, polynomialsRifx] factor
uniquely into primary pairwise coprime factors:

Theorem 2.3([9, Theorem XIII.11). Let f € R[x] be a regular polynomial. Then
f=ufif2--- fs withu € R[x] a unitand fi, ..., fs € R[x] regular primary pairwise
coprime polynomials. The factor§ are unique up to multiplication by units.

The proof of the above theorem is constructive and uses Hensel lifting. We recall
here the main steps. By Theoretl(iv) we may assume thaft is monic. First we
factor f in K[x], say f = Fi"l...Fs’"S with F; € K[x] irreducible andm; >1 for
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i=1,...,5. SinceF/ are coprime polynomials, one can use Hensel lifting to obtain
a factorisationf = f1--- f; with f; € R[x], f; = Fim" and f; pairwise coprime. By
Theorem2.2, f; are primary polynomials.

Throughout the papg will be a prime number and ,« the ring of integers modulo
p?. The Galois field withp” elements is denoted GF"). We denote by GRv?, r)
the Galois ring obtained a# ,«[y]/(f) with f € Z,«[y] a monic basic irreducible
polynomial of degree. Note that the characteristic of G, r) is p®. In this paper
we will assumea >2, so that the Galois ring is not a field.

Note that Galois rings are finite local rings. The maximal ideal of(@Rr) is M =
(p) and the residue field i€ = GF(p"). We havec = cmodp for all ¢ € GR(p?, r).
Every element of GRy?, r) can be uniquely written agp’ with 0<i < a, i uniquely
determined andi € GR(p?, r) a unit, unique modulg“~. For anyc € GR(p?, r) if
pic =0 thenc is divisible by p®—.

All the previous theorems hold in particular for Galois rings. Theo&gyields in
this case:

Corollary 2.4. Let f € GR(p?, r)[x] be a monic polynomial. Then f is primaiff
f = g™+ ph for someg, h € GR(p?, r)[x], m =1 with g monic and basic irreducible.

Note that the polynomialg andh in the corollary above are in general not unique.

3. Irreducibility criterion for primary polynomials over Galois rings

We start with a necessary (but not sufficient in general) condition for the reducibility
of a primary polynomial over a Galois ring.

Theorem 3.1. Let f € GR(p%, r)[x] be a monic primary polynomial which is not basic
irreducible. Letg, h € GR(p“, r)[x] and m>2 be such thatf = ¢ + ph and g is
monic basic irreducible. If f factors thel = 0 or g|h.

Proof. Sincef factors, there arg1, f> € GR(p“, r)[x] monic non-constant polynomials
such thatf = f1f>. Since f = g™ = f1f2, we can write f; = g™ + ph; for some
m; > 0, h; € GR(p?, r)[x] for i =1, 2 with m1 + m2 = m. Without loss of generality
we can assumer; < my. We have

f = (g™ + ph1) (g™ + pha) = g" + pg" (h2 + h1g"2™™) + p®hihy
= g" + ph.

Hence i = g™i(hp 4+ h1g™2>~1) and therefore we have eithdr = 0 or g|h as
required. [J

The converse of the above theorem does not hold in general, as the following example
shows. However, if the Galois ring is of the form GR, r), the converse does hold,
see Theoren#.1
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Example 3.2. Let f = (x + 1)* + 4x € Zg[x]. Puttingg = x + 1 andh = 2x we have
f = g*+2h and g is monic basic irreducible. Note that= 0. Moreover, any other
polynomialsg, # such thatf = g* + 2k and g is monic basic irreducible are of the
form g = x + 1+ 2w for somew € Zg and &t = f — (x + 1+ 2w)* = 4x, and so
h = 0. Sof satisfies the conclusion of TheoreBil However, we will show shortly
thatf is irreducible. So Theorer.1 gives a necessary, but not sufficient condition for
a polynomial to factor.

We show now thatf is irreducible. It can be easily checked tlidtas no roots /g,
so it cannot have any monic factor of degree one. So we are left with the possibility
of f factoring into two monic factors of degree twg:= ((x + 1)° + 2(Ax + B))((x +
1)2 + 2(Cx + D)) for someA, B, C, D € Zg. By comparing like coefficients of these
polynomials we obtain a system of equations in the unknown®, C and D which
has no solutions iZg.

A sufficient condition for the irreducibility of a polynomial immediately results from
Theorem3.1 It can be viewed as a generalised Eisenstein criterion:

Corollary 3.3. Let f € GR(p“, r)[x] be a monic primary polynomial which is not
basic irreducible. Letg, h € GR(p?, r)[x] and m >2 be such thatf = ¢g" + ph and
g is monic basic irreducible. If: 0 and gtk then f is irreducible.

Example 3.4.A polynomial of the form f = x* + p(ag_1x* 1+ --- + ag) €
GR(p®, r)[x] with ap a unit is called an Eisenstein polynomial (see for example
[9, p. 341). Puttingg = x and h = a;_1x* "1 + --- + ap, we see thati # 0 and
gth. So by Corollary3.3, f is irreducible, as expected.

If fis a polynomial such tha¥ is square-free, the factorisation ®finto primary
pairwise coprime factors (given by Theoréh8) is a factorisation into basic irreducible
factors. If f is not square-free, some of the primary factors may factor further. Below
we give a sufficient condition for all primary factors in the factorisation given by
Theorem 2.3 to be irreducible. Note that checking this condition does not require
factoring the polynomial.

Proposition 3.5. Let f € GR(p?, r)[x] be such thatf is not square-free. Leff1, f2
be any f polynomials irGR(p?, r)[x] such that f; is the square- -free part off and
f = fifo. Leth € GR(p®, r)[x] be such thatph = f — fifo. If h #0 andk and f,
are coprime then the factorisation of f into primary pairwise coprime facigisen
by Theoren2.3) is a factorisation into irreducible factors.

Proof. Let f = []i_; G!" be the factorisation off into irreducible polynomials in
GF(p”")[x]. Let g; be any polynomials such thgt = G;. We haveﬁ =[[_,G: and
Fo=T1_1G" Y s0 fi = [y + pw1 and f> = [Ty /""" + pwy for some
w1, w2 € GR(p%, r)[x]. The factorisation off given by Theorem2.3 is of the form
f= l_[le(g;”" + ph;) for someh; € GR(p?, r). To show that this is a factorisation
into irreducible factors it suffices (by Corolla®.3) to show that for anyi for which
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m; > 1 we haveh; # 0 andG; 1h;. By hypothesish # 0 andh and f, are coprime, so
h is not divisible by any of thes; for which m; > 1. Computingf — f1 > we obtain
=33 1hi[]. G —willi Gt —w,[[i_, G;. Fix ani such thatm; > 1. In

the last equality above, all the terms on the right hand side are divisibl&; byxcept
possibly forn; ]_[j#. G;'.”. Since the left hand side is not divisible liy; we deduce

hi #0 andG; 1h; as required. OJ

4. Factorisation of primary polynomials over GR(p?, r)

From this point on, we will restrict the coefficient ring to a Galois ring of character-
istic p2. Theorem3.1 can be improved in this setting, giving a necessary and sufficient
condition for a primary polynomial to factor.

Theorem 4.1. Let f € GR(p?, r)[x] be a monic primary polynomial which is not basic
irreducible. Letg, h € GR(p?, r)[x] and m>2 be such thatf = g" + ph and g is
monic basic irreducible. Then f factors if and onlyif= 0 or g|A.

Proof. The direct implication follows from TheorerB.1L We prove the converse. If
h =0 thenph =0 so f = g™ and this is a factorisation dfinto irreducible factors.
If » # 0 let my>1 be maximal such thag™t|h and choosew so thath = g™w.
Since p2 = 0, we haveph = pg™iw. We thus obtain the factorisatiofi = g" + ph =
g" 4+ pg™tw = gM (g™ ™ + pw). By Corollary 3.3, g™ + pw is irreducible since
w # 0 andg{w by construction. So we factorefdinto irreducible factors. OJ

The proof of the above theorem also yields:

Corollary 4.2. Let f € GR(p?, r)[x] be a monic primary polynomial which is not
basic irreducible The following assertions are equivalent

(i) f factors
(i) f has a basic irreducible factor
(iii) for all g € GR(p?, r)[x], if g is basic irreducible andg|f theng|f.

When the Galois ring has characteristié, the converse of Corollang.3 also
holds:

Corollary 4.3. Let f € GR(p?, r)[x] be a monic primary polynomial which is not
basic irreducible. Letg, 1 € GR(p?, r)[x] and m >2 be such thatf = ¢” + ph and
g is monic basic irreducible. Then f is irreducible if and onlyzit£ 0 and g+1h.

If a polynomial in GRp?, r) factors, there are in general several possible factorisa-
tions. We will concentrate here on factorisations that are “maximal” in the sense that
they contain the maximum number of (not necessarily distinct) factors.
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Theorem 4.4.Let f € GR(p? r)[x] be a monic primary polynomial which is not
irreducible. Letm>2 and G € GF(p")[x] be the uniquely determined elements such
that £ = G™ in GF(p”)[x]. Then f admits a factorisation into monic irreducible factors
of one(but not both of the following two types

@)
f=g" 1)

for someg € GR(p?, r)[x] such that g is monic ang = G.
(ii)
f=g"""" + pw) 2

for someg, w € GR(p?, r)[x] and 1<m1 < m such that g is monicg = G,
g" ™™ + pw is irreducible and ifptm thenm —m1>2.

The factorisations given above have the following property: they are factorisations
of f into the maximum number of (not necessarily distinct) irreducible factors, and
among all possible factorisations into the maximum number of irreducible factors, they
consist of a minimum number of distinct factors. Moreover, all factorisations of f into
monic irreducible factors having this property are factorisations of type (i) or (ii) and
can be obtained as follows: In case (i), iffm then g is uniquely determined; if
plm then any monicg € GR(p?, r)[x] with g = G satisfies 1). In case (ii),m; is
uniquely determined and for any mongce GR(p?, r)[x] with g = G there is a unique
irreducible polynomial of the forng” "1 + pw, with w € GR(p?, r)[x], so that )
is satisfied.

Proof. The fact thatf can be written as in1) or (2) follows from Theorem4.1 and
its proof. We show that if can be written as in2) but ptm andmi = m — 1, then
f can be written as in1) for a different choice ofg. We have f = g" (g + pw).

Putting g2 = g + pu whereu is any polynomial such that = (@) 1w one can verify
that f = g5'.

Assume now, for a contradiction, thatadmits both a factorisation of type (i), say
f = g and a factorisation of type (i), saf = g"*(g" "+ pw). Sinceg = g1 = G,
there is au € GR(p?, r)[x] so thatgy = g + pu. Henceg” + pg™w = (g + pu)" =
g¢" + pmg"u, sow = mg"™ " 1u. We deduce that ifp|m thenw =0 and if ptm
thenm —m1 — 1>1 henceG|w. But then, by Corollary.3, g™~ + pw would not
be irreducible, so we obtain a contradiction.

Next we prove the assertions about the number of factors. For (i) it is obvi-
ous that the number of (non-distinct) factors is maximal, and that the number of
distinct factors is one, therefore minimal. For (ii) consider an arbitrary factorisa-
tion of f into irreducible factors. It will have the forny = ]'[le(gki + pw;) with
1<ki<ka< -+ <kg, Yiqki=m, wj € GR(p2, r)[x] and gk + pw; irreducible.
From f = g" + pYi_jwig" % = g" + pg™w we deduceg” % 31_ wigh
g"w. Hencem — ky < m1. SinceY i1 k; = m — ky <m1, we deduce that <mj+1,
som1+1 is the maximal number of factors in any factorisationf.dfVe also note that

[ p—
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the equalitys = m1 + 1 (i.e. factorisation into a maximal number of factors) can only
be reached whehy =ky =--- =k,_1 =1 andk; = m — m1. As factorisations of the
form (ii) cannot be written in the form (i), the number of distinct irreducible factors
has to be at least two.

Given a factorisation of of type (i) or (ii) we will examine now what happens
for a different choice ofg with g = G. Let g1 be another polynomial such that
2, = G. There is au € GR(p?, r)[x] so thatg = g1 + pu and pu # 0. If f is
in case (i) we havef = (g1 + pw)" = gi' + pmnglu. This means that ifp|m
then g1 satisfies 1), otherwise it does not. If is in case (i) we havef = (g1 +

pu)"™ + p(gr + pu)™w = g + p(mgyu + gitw) = g (g{'™" + pwa), where
we denotedw; = mg; ~ " ‘u + w. One can prove "+ pw; is irreducible
denoted o 0 thag]' " ducibl

either using Corollary4.3 or using the fact thatn; + 1 is the maximum number
of factors off, so any factorisation inteny + 1 factors can only contain irreducible
factors.

It is easy to verify that these constructions give all the possible factorisations satis-
fying the stated requirements regarding the number of factdrs.

We note that in the above theorem,fifis in case (ii) or iff is in case (i) and
plm, there are|GF(p")|9€98) ways of choosing a monig with g = G. Hence, up to
multiplication by units, there argsF(p”)|9€98) factorisations satisfying the property in
the theorem regarding the number of factors.

Based on Theoremé.1 and 4.4 we can now develop an algorithm for deciding if a
primary polynomial factors, and, in the affirmative case, obtaining a factorisation into
the maximum number of irreducible factors.

Algorithm 4.5 (Factorisation of a primary polynomial

Input: f € GR(p2,r)[x], a primary polynomial.

Output: A list of pairs((f1, m1), ..., (fs,my)) so thatf = f"*... i and f; are
irreducible or one of the messagefsis irreducible” or ‘f is basic
irreducible”.

Note: The factorisation has the maximum number of factors; among all
factorisations into the maximum number of factors, this has the minimum
number of distinct factors.

begin

DetermineG € GF(p")[x] andm >1 so thatf = G™ and G is irreducible.

if m =1 then return(“f is basic irreducible”)

Chooseg € GR(p?, r)[x] monic so thag = G and determinéh so thatph = f — g".

if 7 =0 then return(((g, m)))

Determine the maximunmy so thatG™|h and determinay so thath = G™1w.

if m1 = 0 then return(“f is irreducible”)

if (plm) or (m1<m — 2) then return( ((g, m1), (" "™ + pw, 1)) )

Chooseu such thati = (m)1w.

return (((g + pu, m)))

end
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It is easy to see that the worst-case complexity of the algorithm above is quadratic
in the degree of. Once a factorisation has been obtained, one can easily write down
all possible factorisations having the properties in Theode# Let us now apply the
algorithm to an example:

Example 4.6. Let f = x3+6x2+4 € Zg[x]. In Z3[x] we havef = x3+1 = (x+1)3.
Hencef is primary but it is not basic irreducible. Pyt = x + 1 € Zg[x], m = 3

and i = x2 + 2x + 1. Since’ is divisible by g% and p|m, a factorisation off into
irreducible factors isf = (x + 1)2(x + 4). By taking all other possible values for

g so thatg = x +1 we get all the other factorisations &fof this type, namely
f=x+4%x+7) and f = (x + 7)%(x + 1). Note that when viewed as a polynomial
over the 3-adic numberd, is irreducible (for exampld has no roots inZ,7 so it is
irreducible in Zy7 already). Hence none of these factorisations could be obtained by
projecting toZg[x] the factorisation of over the 3-adic numbers.

Using Theorem4.4 and its proof, one can also obtain all the factorisations of a
primary polynomial into the maximum number of irreducible factors (without the re-
striction on having a minimal number of distinct factors):

Corollary 4.7. Let f € GR(p?, r)[x] be a monic primary polynomial which is not
irreducible.

(i) Assume f admits a factorisatiofi= g as in Theorem#.4(i). Then f = [/ (g +
pw;) with w; € GR(p2 r)[x] arbitrary of degree less thandegg), for
i=1....m—1and w, = —Z?”Z_ll w;, gives all the possible factorisations
of f into a maximum number of monic irreducible factors.

(i) If f admits a factorisationf = g"1(g” "™ 4+ pw) as in Theoremd.4(ii), then
f = 1"(g + pw))(@™ ™™ + pwy,11) With w; € GR(p?, r)[x] arbitrary of

dggree less thaﬂegg) for i =1, S, ma, and Wiyl = W — gmmi—1 2721 wi,
gives all the factorisations of f into a maximum number of monic irreducible
factors.

Proof. One can immediately verify that the formulae above are indeed factorisations
of f into the maximum number of factors, hence all factors will be irreducible.

Next we have to show that we obtain indeed all the possible factorisations into
a maximum number of factors. For (i), this is immediate. For (ii), we noted in the
proof of Theorend.4 that (with the notations from that proof), any factorisation into a
maximum number of factors has to satidghy=ky = --- = k;_1 = 1 andky = m —m.

O

Remark 4.8. Polynomials in GRp?, r)[x] may also factor into fewer than the max-
imum number of irreducible factors given by Theorehd. For example, iff = g”

with m >4, we can writef = (g* + pu)(gk — pu)g™ =% for any 2<k<m/2 and any

u € GR(p?, r)[x] so that deg:) < deggX), u # 0 andg{u. This is a factorisation
into m — 2k + 2 < m irreducible factors. For example we have the two factorisations
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x% = (x2 4 2)2 in Z4[x] and x2 + 2 is irreducible. We will not examine this type of
factorisations any further in this paper.

Using Corollary4.3, one can easily show that the converse of Proposii@holds
for Galois rings of characteristip?:

Corollary 4.9. Let f € GR(p2, r)[x] be such thatf is not square-free. Letf1, f>
be any polynomials inGR(p?2, r)[x] such thatfi is the square-free part off and
f = fif2. Let h € GR(p?, r)[x] be such thatph = f — f1 f». The factorisation of f
into primary pairwise coprime factorggiven by Theoren2.3) is a factorisation into

irreducible factors if and only if2 # 0 and & and f» are coprime.

We note an interesting connection between the factorisation of a polyndraiad
GR(p4, r)[x]/{f) being a principal ideal ring.

Theorem 4.10.Let f € GR(p%, r)[x].

() If GR(p4, r)[x]/{f) is a principal ideal ring then the factorisation of f into primary
pairwise coprime factors (given by Theoréh8) is a factorisation into irreducible
factors.

(i) Whena = 2, GR(p?, r)[x]/(f) is a principal ideal ring if and only if the fac-
torisation of f into primary pairwise coprime factogiiven by Theoren2.3) is a
factorisation into irreducible factors.

Proof. With the notations of PropositioB.5, we have that GRp?, r)[x]/(f) is a princi-
pal ideal ring if and only if2# # 0 and » and f, are coprime (see
[3, Theorem 4] also[11, Theorem 3.212]). The result now follows from Proposition
3.5for (i) and from Corollary4.9 for (ii). O

Remark 4.11. Note that the converse of point (i) in the theorem above does not hold
for a > 2. For example, one can check that althoufik= (x + 1)* + 4x € Zg[x] is
primary and irreducible (see Exampme?), Zg[x]/(f) is not a principal ideal ring (for
example the idealx + 1, 2) is not principal).

5. Application: factoring x” —1 and x" + 1

In this section we determine factorisations.df— 1 and ofx” + 1 into a maximal
number of irreducible factors over GR2, r)[x].

The polynomialx” —1 is important for numerous applications. Our motivation comes
from coding theory, where cyclic codes over a Galois ring are ideals i6GpGR)[x]/
(x" — 1). Negacyclic codes are ideals in GiR, r)[x]/{x" + 1). One usually assumes
thatn is not divisible byp, but the case whep|n, yielding the so-called repeated-roots
codes, is also of interest.

When n is not divisible by p, the polynomialx” — 1 has no multiple factors
over GHp"). Hensel lifting will produce then a unique factorisation 0f — 1 over
GR(p4, r)[x] with all factors basic irreducible. The same happensxfor- 1.
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Factoringx” — 1 (or x" + 1) is more complicated whep|n. Here we deal with this
case in rings of the form G2, r) (these rings include in particulas, which is an
important ring for coding theory applications).

Theorem 5.1. Let x" — 1 € GR(p?, r)[x] and assumep|n. Write n asn = kp” with
b>1landptk. Leth e GR(p2, r)[x] be any polynomial such that

o if p=2,
h = 2 (i 1)\ il
lezl (le:lj 1) xkp if p>2.

Then

0}
1= kP Tk = PP oy

and 4 is relatively prime tox* — 1 in GHp")[x].
(i) Letx* —1=T['_, f; be the factorisation ofk* — 1 into basic irreducible factors
over GR(p2, r)[x] and letw; € GR(p2, r)[x] be such thatx —1)P=Dr" " 4 pp =
b—1 _
[E_ (77 + pwy) is the factorisation ofx —1)(*=DP"™ 4 pp into primary
pairwise coprime factors. Then

s
b1 b1
X" 1= l_[ fiP (fl(P )p 4 sz) (3)
i=1

is a factorisation ofx” — 1 into the maximum number @hot necessarily distingt
irreducible factors among all possible factorisations into the maximum number
of irreducible factors the factorisation above consists of the minimum number of
distinct factors.

Proof. (i) In GF(p”")[x] we havex” —1 = (x* — 1)1’}’. Hence in GRp2, r)[x] we have
= 1= k- 1)1’b + pt for some polynomiat which we will now determine.

b
For any O< j < p?, we know by Kummer's theorem th%l} ) is divisible by

pP=¢ (and by no higher power gf) wherec is the highest exponent so that|j. So
b

in particular(pj ) = 0modp? for all values O< j < p” for which j is not divisible

b
by p’~1. Whenj is of the formj = ip®~1 with 0 <i < p, (ip€’1> is divisible by
p but not by p2.
We will treat the casep = 2 first:
%=1k —)? = — 1 (22T 1y = 2T

2h71

=2(xF—1)
Thereforex” — 1 can be written as in the theorem, with= 1 in this case.
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Now we assume > 2. We have

L b\ e .
pr=x"—1-(F -’ =213 <i ’Z_1>x"<!”’ el
i=0 P

[7_1 pb ik b—1 .
-2 (i b_l)xl Py,
i=1 P

b
By LemmaA.1 in the Appendix,(ip€_1> = pc; modp? wherec; = (—1)"~1i L.

Hence

p-1 p—1
_ 1.1 irpb-1 _ 1 irpb-1
= — 2 :(_1)1 ll 1xzkp (_1)]7 i 2 : i lxzkp .
i=1 j

1=

In GF(p")[x] we divide 7 by (xk — )P"™" = x*"" _ 1. We obtain the remainder

—Zf’;fi*l = —Zfz_lli = —p(p —1)/2 = Omodp (as i~ will take all values
between 1 ang — 1 wheni varies from 1 top — 1) and the quotient

p=2 p1 b—1 p=2 i b—1
H=— j—lxtkp — Z Z j—lxtkp
i=0 j=i+1 i=1 j=1

(here again we used the fact th@{:lli—l = 0modp).

It remains to show thak is coprime tox* — 1. Assume they had a common factor.
Then they would have a common rodtin a suitable extension field. A§ is a root
of x¥ — 1, we haved* = 1. Evaluatingh at & we obtain

p—2 p-1 p—1 p—1
RO==) > jt=-) jit=-) 1=-(p-H=1
i=0 j=it+1 j=1 j=1

Hence we obtain a contradiction, dscannot be a root of.

(i) By Corollary 4.9, (x* — D=9 4 pn = TE_,(zP" """ 4 puy) is the
factorisation of (x¥ — 1)»=DP"™ 1 pi into irreducible factors, ag is coprime to
x¥ — 1. Hence ) is a factorisation into irreducible factors.

It remains to prove the assertions about the number of irreducible factors. The factori-

sation ofx” — 1 into monic primary pairwise coprime factors is unique (TheotzB)
b—1 1y b1
and from @) there ares primary pairwise coprime factors, nameﬁf ( fi(’7 ey

pw;), fori =1,...,s. By Theorem4.4, each of these factors is factored ) {nto a
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maximal number of irreducible factors, and the number of distinct factors is minimal
among all such factorisations. [J

Using similar techniques one can determine a factorisation”of 1. Note that the
casesp = 2 and p > 2 differ more substantially here.

Theorem 5.2. Let x” + 1 € GR(p2, r)[x] and assumep|n.

(i) If p = 2 then the factorisation of” + 1 into primary pairwise coprime factors
in GR(22, r)[x] (given by Theoren®.3) is also a factorisation into irreducible
factors.

(i) Let p > 2. Write n asn = kp” with b>1 and p{k. Let h be any polyno-
mial such thath = Y7~ 2(~1) (X _; j~Hx™" " Thenx" +1 = (% + 17"
((F + P=Dr"" 4 by and 7 is relatively prime tox* + 1 in GF(p")[x].
Letx* + 1 =TT_, f; be the factorisation ok* + 1 into basic irreducible factors
over GR(p?, r)[x] and letw; € GR(p2, r)[x] be such thatxk+1)P=Dr" " 4 pp =
]_[le(f,.(”_l)pb 1+pwi) is the factorisation ofx* +1)»=D?"™ 1 pi into primary
pairwise coprime factors. Then

N
b1 _1ph1l
Xn 4 1= l_[ f,’p (fl(P )P + pwl) (4)
i=1

is a factorisation ofx” 4+ 1 into the maximum number @hot necessarily distingt
irreducible factors among all possible factorisations into the maximum number
of irreducible factors the factorisation above consists of the minimum number of
distinct factors.

Proof. We will use the same notations as in the proof of Theo®t (i) Assume
p =2 Thenx" +1= (x*+ 12 +2r and 2 = 2x*2"". Obviously7 = x*2"* is
non-zero and coprime te + 1. Hence by Corollaryt.9, the factorisation ofc” + 1
into primary coprime factors is also a factorisation into irreducible factors.

(i) Assume p > 2. We havex" + 1 = (x* + 1)?” + pr with

r—1 p-1
_ R R | S b1
= — 2 :(_1)1 11 1xtkp — § :(_1)1 i 1xzkp .
i=1 i=1

When dividing? by (x* + 1P = xk" 11 in GR(p”) we obtain the remainder zero
and the quotient, which one can check that is relatively primetb+ 1. The rest of
the proof is similar to the proof of Theorethl [J

Remark 5.3. We note that the results of Theored and5.2 together with Corollary
4.9imply in particular that GRp?2, r)[x]/(x" — 1) is not a principal ideal ring whereas
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GR(p2, r)[x]/(x" + 1) is a principal ideal ring ifp = 2 but it is not a principal ideal
ring when p > 2. We retrieve thus particular cases|[&fL,, Theorem 3.4, 12]
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Appendix A

Lemma A.1l. Let p be a prime numbeb>1 and0 <i < p. We have

b
() (ip’il) = (’f ) (modp?),

(i) Letc = (f)/p € Z (the division is exagt Thencmodp = (-1)'~1i~1in Z,.

n

Proof. (i) We will use the usual formula(k

) = 2D kD - separating the
factors that are divisible by?~1:

PPN P (p=Dptte o (p—i4+DphTt
ipb~1 )~ pb=1.2pb=1. . iph-1

W=D =2 =P DG = p =D (P i 4 D)
1.2 (pr=D(pt-1+1-...-(ip1-1 )
We denote byA and B the first and the second fraction above, respectively. Aare
have inZ

A

:p(p—l)-...-(p—i—i-l):(p).

il i

Obviously A is divisible by p. So for evaluatingAB modp” it suffices to evaluate
B modp®~1. One can check that, modupg—*, both the numerator and the denominator
of B equal (p’* — 1! -i, so Bmodp®~t = 1.

(i) We havec = @=D@=2-(p—i4D) g5 - mod p = D2 CED) — (q)i-1;-1
inZ,. O
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