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Abstract

This paper develops measures of information for multivariate distributions when their supports are trun-
cated progressively. The focus is on the joint, marginal, and conditional entropies, and the mutual information
for residual life distributions where the support is truncated at the current ages of the components of a system.
The current ages of the components induce a joint dynamic into the residual life information measures. Our
study of dynamic information measures includes several important bivariate and multivariate lifetime models.
We derive entropy expressions for a few models, including Marshall–Olkin bivariate exponential. However,
in general, study of the dynamics of residual information measures requires computational techniques or
analytical results. A bivariate gamma example illustrates study of dynamic information via numerical inte-
gration. The analytical results facilitate studying other distributions. The results are on monotonicity of the
residual entropy of a system and on transformations that preserve the monotonicity and the order of entropies
between two systems. The results also include a new entropy characterization of the joint distribution of
independent exponential random variables.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Study of duration is a subject of interest common to reliability, survival analysis, actuary,
economics, business, and many other fields. In lifetime studies, consideration of the current age
truncates the support of lifetime distribution progressively and leads to the past and remaining
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lifetime distributions where the age becomes a parameter. The information measures of the trun-
cated distributions are functions of time, and thus are dynamic. When the subject of duration study
is other than lifetime (e.g., search time, unemployment period) the present time point plays the
role of “age”. More generally, the dynamic measures are applicable to any continuous distribution
with a positive support. For example, for the distributions of wage, income, and depletable natural
resources such as petroleum, the minimum wage, poverty line, and amount of oil extracted to date
play the role of the current age, respectively.

Several authors have considered information functions that take age into account in the univari-
ate case [5,7,11–13,17,18]. Consideration of age has led to some important insights about lifetime
models such as an information characterization of the proportional hazards model [17] and max-
imum dynamic entropy characterization of various univariate lifetime models, including some
mixture distributions, for which no other maximum entropy formulation is available [5]. Tests of
distributional hypotheses based on the univariate dynamic information have been developed for
reliability analysis [14,15].

Frequently, the subject of duration analysis is a group of items or individuals such as components
of a system or members of a family. Capturing effects of the members’ ages on the information
about their remaining lifetimes as a group, and on the dependence between their remaining
lifetimes are important in many applications. Examples in reliability and survival analysis are
abundant. In the theory of multiple life functions in actuarial science, for example, the time-until-
failure of a status is a function of the current lifetimes of the lives involved. Similar issues arise
in other fields.

The objective of this paper is to develop measures of information for multivariate lifetime
distributions when their supports are truncated at the current ages of the components of a sys-
tem. The primary objectives are to introduce measures for assessing: (a) whether a distribution
becomes more/less informative about prediction of the remaining lifetimes jointly, individually,
and conditionally, and (b) if the components of a system become more/less dependent as they age.
Such assessments are essential when using a multivariate model in an application. The entropies
of joint, marginal, and conditional residual distributions provide diagnostics for the first purpose
and the mutual information of the residual distribution serves the second purpose.

Residual information measures may be found in closed form for a few well-known distributions.
As an example, we derive the residual entropy of Marshall–Olkin bivariate exponential distribu-
tion [29]. For some distributions, residual information measures may be studied using numerical
integration. As an example, we study residual information measures of a bivariate gamma distri-
bution. In general, residual information measures are mathematically unwieldy. Examples include
bivariate Gumbel [22] and bivariate exponential conditionals (BEC) of Arnold and Strauss [4].
We develop some results that are useful for studying residual information measures of these and
other bivariate lifetime models which possess mathematically unwieldy information measures.

Several lifetime models, such as a multivariate exponential and multivariate Weibull, can be
obtained from multivariate Pareto distribution by transformations. The information measures for
these distributions can be studied via the information measures of Pareto [10]. Pareto distribution
yields closed form dynamic information measures, which are particularly useful because the
moment-based measures such as variance and correlation coefficient do not exist for the entire
family. We provide some results that enable one to examine the information properties of lifetime
models that can be obtained by transformations of simpler models.

This paper is organized as follows. Section 2 presents information measures for the bivariate
residual lifetime distribution. Section 3 gives results on the dynamic behavior of some entropy
measures. To simplify the notations, we consider the bivariate case which are extendable to
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multivariate. Section 4 explores the information properties of five well-known bivariate lifetime
models. Section 5 presents multivariate information measures, gives some results on transfor-
mations of dynamic entropy, and explores the properties of multivariate Pareto and some related
distributions. Section 6 gives some concluding remarks. Throughout the paper “increasing” means
“non-decreasing” and “decreasing” means “non-increasing”.

2. Bivariate residual information

Let (X1, X2) be a vector of non-negative random variables. We may think of Xj , j = 1, 2, as
the lifetimes of the members of a group or components of a system. (An alternative interpretation is
given in [19]) At ages t1, t2, tj �0 of the components, the joint residual lifetime distribution is the
conditional (truncated) distribution denoted by F(x1, x2; t1, t2) = PF (X1 �x1, X2 �x2|X1 >

t1, X2 > t2). The residual density function will be denoted by f (x1, x2; t1, t2) = f (x1,x2)

F̄ (t1,t2)
for

x1 > t1, x2 > t2, where f (x1, x2) is the probability density functions and F̄ (t1, t2) = P(X1 >

t1, X2 > t2) is the joint survival function. For new systems and minimal repairs it is reasonable
to assume that t1 = t2 = t . The general case of (t1, t2) includes the equal ages as well as the case
when the components are replaced with new components.

The discrimination information function of interest is the mean information in a vector of
observations (x1, x2), xj � tj , j = 1, 2, for discriminating between two residual life distributions,
given by the Kullback–Leibler function

K(f : g; t1, t2) =
∫ ∞

t2

∫ ∞

t1

f (x1, x2; t1, t2) log
f (x1, x2; t1, t2)

g(x1, x2; t1, t2)
dx1 dx2, (1)

where g(x1, x2; t1, t2) = g(x1, x2)/Ḡ(t1, t2), and Ḡ(t1, t2) is the survival function of G; F is
absolutely continuous with respect to G.

It is clear that K(f : g; 0, 0) = K(f : g) is the Kullback–Leibler function between F and
G. By (1), for each (t1, t2), K(f : g; t1, t2) possesses all the properties of the discrimination
information function K(f : g). If we consider T = {(t1, t2) : tj > 0, j = 1, 2} as a bivariate
index set, then K(f : g; t1, t2) provides a dynamic discrimination information ranging over T .
The discrimination information function has many desirable properties [20,27]. Two properties
of particular interest to us are: (a) K(f : g; t1, t2)�0 and the equality holds if and only if
f (x1, x2; t1, t2) = g(x1, x2; t1, t2), almost everywhere; and (b) if (Y1, Y2) = �(X1, X2) is a
non-singular transformation, then K[fY : gY ; �(t1, t2)] = K(fX : gX; t1, t2).

The joint residual entropy of an absolutely continuous distribution is given by

H(X1, X2; t1, t2) ≡ H [f (x1, x2; t1, t2)]
= −

∫ ∞

t2

∫ ∞

t1

f (x1, x2; t1, t2) log f (x1, x2; t1, t2) dx1 dx2

= log F̄ (t1, t2) − 1

F̄ (t1, t2)

∫ ∞

t2

∫ ∞

t1

f (x1, x2)

× log f (x1, x2) dx1 dx2. (2)

The residual entropy (2) measures uncertainty of the remaining lifetimes when the ages of com-
ponents are t1, t2. Note that for the uniform distribution with rectangular support {xj : aj < xj <

bj , j = 1, 2}, the residual life distribution is also uniform over {xj : tj < xj < bj , j = 1, 2}.
Thus the negative entropy −H [f (x1, x2; t1, t2)] measures lack of uniformity of f (x1, x2; t1, t2).
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The informativeness of f (x1, x2; t1, t2) about the prediction of its outcomes is measured by neg-
ative entropy I (X1, X2; t1, t2) = −H(X1, X2; t1, t2), which is the average log-height of the
density [34].

Unlike the discrimination information (1), the joint entropy (2) is not invariant under non-
singular transformations. It can be shown that if Yj = �j (Xj ), j = 1, 2, are one-to-one trans-
formations, then

H [Y1, Y2; �1(t1), �2(t2)] = H(X1, X2; t1, t2)

−E[log J (X1, X2)|X1 > t1, X2 > t2], (3)

where

J (y1, y2) =
∣∣∣∣∣��−1

1 (y1)

�y1
× ��−1

2 (y2)

�y2

∣∣∣∣∣
is the absolute value of the Jacobian of transformation and the expectation is taken with respect
to the residual distribution.

The marginal residual entropy of X1 given X1 > t1, X2 > t2 is

H(X1; t1, t2) = H [f1(x1; t1, t2)] = −
∫ ∞

t1

f1(x1; t1, t2) log f1(x1; t1, t2) dx1, (4)

where

f1(x1; t1, t2) =
∫ ∞

t2

f (x1, x2; t1, t2) dx2, x1 > t1, x2 > t2 (5)

is the marginal residual density of X1 given X1 > t1, X2 > t2. The marginal residual density and
entropy of X2 given X1 > t1, X2 > t2 are defined similarly.

Comparison of H(Xj ; t1, t2) with the univariate residual entropy H(Xj ; tj ) = H [fj (xj ; tj )]
provides an assessment of the effect of considering both ages vis á vis only one age tj on the
uncertainty about the residual lifetime of the component j. In general, the difference H(Xj ; tj )−
H(Xj ; t1, t2), j = 1, 2, can be positive or negative. That is, considering both ages may decrease
or increase the uncertainty about the residual lifetime of a component or leave it unchanged. A
definite answer is possible under certain conditions. For example, it can be shown that if P(Xi >

xi |Xj > xj ) is decreasing in xj for all xi (Xi is right tail decreasing dependence in Xj , j �= i

[16]), and if the univariate marginal distributions fj (xj ), j = 1, 2, have decreasing hazard
rates, then H(Xj ; t1, t2)�H(Xj ; tj ). That is, right tail decreasing dependence and marginal
decreasing hazard rates are sufficient for the uncertainty reduction about the residual lifetime of
one component due to consideration of the age of the other component.

The conditional residual density of Xj given that Xj > tj , Xi = xi is

fj |i (xj |xi; t1, t2) =
⎧⎨
⎩

f (x1, x2; t1, t2)

fi(xi; t1, t2)
, x1 > t1, x2 > t2,

0 otherwise.
(6)

Its entropy is denoted by H [fj |i (xj |xi; t1, t2)] = H(Xj |xi; t1, t2), i �= j = 1, 2, which in general
is a function of xi .

The conditional residual entropy is defined by

H(Xj |Xi; t1, t2) =
∫ ∞

ti

H (Xj |xi; t1, t2)fi(xi; t1, t2) dxi . (7)
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This measure quantifies uncertainty about Xj on average when we know Xi, i �= j . The con-
ditional entropy plays important roles in entropy decomposition and information measure of
dependence discussed below. In Section 3, we will show that the conditional residual entropy
characterizes the independent exponential distribution.

The joint residual entropy can be decomposed as

H(X1, X2; t1, t2) = H(Xi; t1, t2) + H(Xj |Xi; t1, t2), i �= j, j = 1, 2. (8)

An important question in statistics is to what extent the use of a variable Xi reduces uncertainty
about predicting the outcomes of another variableXj . The worth of an outcomexi ofXi for predict-
ing Xj , given that X1 > t1, X2 > t2, is assessed by comparing fj (xj ; t1, t2) and fj |i (xj |xi; t1, t2).
Two information measures that may be used for this purpose are K[fj |i (xj |xi) : fj (xj ); t1, t2]
and the entropy difference

ϑ(Xj |xi; t1, t2) = H(Xj ; t1, t2) − H(Xj |xi; t1, t2). (9)

In general, both K[fj |i (xj |xi) : fj (xj ); t1, t2] and ϑ(Xj |xi; t1, t2) depend on xi . The non-negative
discrimination function K[fj |i (xj |xi) : fj (xj ); t1, t2] quantifies the discrepancy between the
marginal and conditional distributions, but it does not indicate which of the two distributions
is more informative for the prediction of the outcome of Xj . The entropy difference (9) may be
positive or negative depending on which of the two distributions is more informative. Interestingly,
the mean values of the two measures are the same and defines the mutual information between
two variables:

M(X1, X2; t1, t2) =
∫ ∞

ti

ϑ(Xj |xi; t1, t2)fi(xi; t1, t2) dxi (10)

=
∫ ∞

ti

K[fj |i (xj |xi) : fj (xj ); t1, t2]fi(xi; t1, t2) dxi . (11)

The Kullback–Leibler and entropy representations of mutual information between two residual
lifetimes are as follows:

M(X1, X2; t1, t2) = K [f (x1, x2; t1, t2) : f1(x1; t1, t2)f2(x2; t1, t2)] (12)

= H(X1; t1, t2) + H(X2; t1, t2) − H(X1, X2; t1, t2) (13)

= H(Xj ; t1, t2) − H(Xj |Xi; t1, t2), i �= j. (14)

By (12), M(X1, X2; t1, t2)�0 and the residual lifetimes are independent if and only if M(X1,

X2; t1, t2) = 0. Thus, M(X1, X2; t1, t2) measures the extent of dependence between the residual
lifetimes.

It is clear that M(X1, X2; 0, 0) = M(X1, X2), which is the global information measure of
dependence. Anderson et al [2] suggested three desirable properties for association measures:
(a) symmetry with respect to the coordinates when (X1, X2) are exchangeable; (b) being as free
as possible from the influence of marginals (e.g., locations and scales of the marginals); and (c)
amenable to interpretation. The mutual information possesses all these three properties at a more
general level. As seen in (12) and (13), for any bivariate distribution the mutual information is
symmetric with respect to the coordinates, M(X1, X2) = M(X2, X1). An important property of
M(X1, X2) is invariance under one-to-one transformations of each component implied by (12).
For more properties and statistical applications of mutual information see [33].

For many purposes, a single global measure of dependence might be satisfactory for failure
time data. But for equally many cases it is useful to consider the dependence in more detail.
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One consideration, for example, is whether the dependence is most marked at early or late times.
For discussing such concepts, local measures of dependence are needed. The dynamic mutual
information M(X1, X2; t1, t2) measures the extent of dependency between the remaining lifetimes
of the components when the components are already survived to times t1, t2. Thus it is a local
measure, among other things, that can be used to address the concepts of early/late dependence
and short-term and long-term dependence.

From (13) and (14) we have

H(X1, X2; t1, t2)�H(X1; t1, t2) + H(X2; t1, t2),

H(Xj |Xi; t1, t2)�H(Xj ; t1, t2), i �= j. (15)

The equalities hold if and only if the residual lifetimes are independent.
The following example illustrates various residual information measures, their interrelation-

ships, and insights that can be gained from a dynamic information analysis.

Example 1. Consider the bivariate distribution with the following density on the unit square:

f (x1, x2) =
{

x1 + x2, 0�x1, x2 �1,

0 otherwise.

The survival function is F̄ (t1, t2) = .5(1− t2
1 )(1− t2)+ .5(1− t2)(1− t2

2 ), and the joint residual
entropy is given by

H(X1, X2; t1, t2) = log F̄ (t1, t2) + 1

F̄ (t1, t2)

1∑
n=0

1∑
m=0

(−1)m+n(tm1 + tn2 )3

×
[

5

6
− log(tm1 + tn2 )

]
.

The expressions for H(Xj ; t1, t2) and H(Xj |Xi; t1, t2) are more messy. It can be shown that all
residual entropies are decreasing in t1 and t2 and the rate of decrease is highest on the diagonal
(t, t).

Fig. 1(a) shows the graphs of four residual entropies on the diagonal. The joint residual entropy is
shown by the solid curve, the marginal residual entropy by the dashed curve, the univariate residual
entropy H(Xj ; t) by the dashed-dotted and the conditional residual entropy by the dotted curve.
We note that H(Xj ; t, t) < H(Xj ; t), which indicates that considering the age of component i is
informative about the residual life of the component j �= i.

The mutual information increases in t1 and t2. Thus, by (13), the joint residual entropy decreases
with a faster rate than the total marginal residual entropies, and by (14), the conditional residual
entropy decreases with a faster rate than the marginal residual entropy. Fig. 1(b) shows the graph of
M(X1, X2; t, t). Although dependency between lifetimes of the two components is low to begin
with, it sharply decreases with t. Note that the regression relationship is non-linear, E(Xj |xi) =
(3xi +2)/(6xi +3), thus the correlation coefficient is not useful. The residual mutual information
serves as a useful measure due to the fact that it captures any kind of functional dependency.

3. Dynamics of residual information

This section presents results that are useful for studying the dynamic information properties
of some well-known bivariate distributions and addresses the question of dynamic information
properties of parallel and series systems.
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Fig. 1. Residual entropies and mutual information for the distribution of Example 1.

3.1. Memoryless information

A residual information function of a distribution is said to be memoryless if it is free from
the ages of the components. In the univariate case, memoryless residual entropy characterizes
the exponential distribution. In the bivariate case, some residual information, e.g., the mutual
information, may be free from the ages without others being so. Also, the entire set of bivariate
residual information measures may be free from the ages only in certain direction, e.g., t1 = t2 = t ,
with or without the marginals being exponential.

The next theorem characterizes the independent exponential model in terms of memoryless
conditional entropies.

Theorem 1. The conditional residual entropies H(Xj |Xi; t1, t2), j = 1, 2, are constants free
from t1, t2 if and only if X1 and X2 are independently exponentially distributed,

f (x1, x2) = �1�2e
−�1x1−�2x2 , xj > 0, �j > 0.

Proof. For the sufficient condition, by (14) for two independent random variables X1 and X2,
H(Xj |Xi; t1, t2) = H(Xj ; t1, t2) and by the result of [13] on dynamic entropy of an exponentially
distributed random variable being constant independent of time.

The proof of the necessary condition follows from the fact that

�
�t1

H(X1|X2; t1, t2) = H(X1|x2; t1, t2) − H(X1|X2; t1, t2)

F̄ (t1, t2)

∫ ∞

t2

f (t1, s) ds = 0.

Hence, H(X1|X2; t1, t2) = H(X1|x2; t1, t2) = a1, which by assumption is constant free from
t1, t2 �0. It follows from [13] that for some �1 > 0,

f1|2(x1|x2; t1, t2) = �1e
−�1x1 , x1 �0, t1, t2 �0.

Since the conditional residual density fj |i (xj |xi; t1, t2) is free from x2 and tj , j = 1, 2, the
marginal residual density is f1(x1; t1, t2) = �1e

−�1x1 . Similarly, we obtain H(X2|X1; t1, t2) =
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H(X2|x1; t1, t2) = a2 for all x1, t1, t2 �0 and f2(x2; t1, t2) = �2e
−�2x2 . Hence,

f (x1, x2; t1, t2) = �1e
−�1x1�2e

−�2x2 , x1, x2 �0. �

Since for the independent exponential model M(X1, X2; t1, t2) = 0 for all t1 and t2, from
Theorem 1 and (14) we have H(Xj ; t1, t2), j = 1, 2, free of (t1, t2). We also have from (13),
H(X1, X2; t1, t2) free of (t1, t2).

A bivariate distribution is said to have the bivariate lack of memory (BLM) property if [8,29]

F̄ (s1 + t, s2 + t) = F̄ (s1, s2)F̄ (t, t). (16)

The BLM property (16) implies that F̄ (s1+t, t) = F̄1(s1)F̄ (t, t) and for an absolutely continuous
distribution we have − �

�s1
F̄ (s1 + t, t) = f1(s1)F̄ (t, t). Consequently H(Xj ; t, t) = H(Xj ), j =

1, 2, and H(X1, X2; t, t) = H(X1, X2) for all t. Furthermore, by (8), H(Xj |Xi; t, t), and by (13),
M(X1, X2; t, t) are also free from t. However, H(Xj ; t) may be time-dependent; see Section 4.1.
These properties of information are in accord with the intuition that under BLM, information
quantities that are derived from the bivariate residual distribution are memoryless along the di-
agonal (t, t). Note that BLM is sufficient, but not necessary for obtaining these properties; see
Section 4.2.

3.2. Monotone entropy

The following theorem gives sufficient conditions for monotonicity of H(X1, X2; t1, t2) in
terms of the monotonicity of the hazard rate functions �j (xj ; t1, t2), j = 1, 2, and the conditional
entropies.

Theorem 2. If (a) �j (xj ; t1, t2) is increasing (decreasing) in xj , j = 1, 2, and (b) H(Xj |xi;
t1, t2) , i �= j , j = 1, 2, is decreasing (increasing) in xi for each j = 1, 2, then H(X1, X2; t1, t2)

is decreasing (increasing) in t1, t2.

Proof. For any random variable Z with survival function F̄Z , density fZ , and hazard function �Z ,
the residual entropy has the following representation:

H(Z; t) = 1 − 1

F̄Z(t)

∫ ∞

t

fZ(s) log �Z(s) ds. (17)

From (2), for j = 1, 2,

�
�tj

H(X1, X2; t1, t2) = �j (tj ; t1, t2)[H(X1, X2; t1, t2) − 1 + log �j (tj ; t1, t2)

−H(Xj |ti; t1, t2)]. (18)

Since �j (xj ; t1, t2), j = 1, 2, is increasing, from (17) we have H(Xj ; t1, t2)�1 − log �j (xj ; t1,

t2). Noting that P(Xi � ti ) = 1, by assumption (b) we have H(Xj |ti; t1, t2)�H(Xj |Xi; t1, t2).
Now using (8), we have

H(X1, X2; t1, t2)�1 − log �j (tj ; t1, t2) + H(Xj |ti; t1, t2). (19)

It follows from (18) and (19) that �H(X1,X2;t1,t2)
�tj

�0, for j = 1, 2. This completes the proof for

the increasing part. The proof for the decreasing part is similar. �
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Heuristically, Theorem 2 says that under conditions (a) and (b), the joint residual distribution
progressively become more (less) informative as the individuals age, and thus prediction of life-
times becomes easier (or more difficult). An analogue of Theorem 2 under the weaker condition
when both individuals have the same age can be proved similarly.

Next we address the important question of whether the residual entropies of lifetimes of series
and parallel systems of two components inherit monotonicity of the joint residual entropy.

Theorem 3. Suppose that X1 and X2 are independent and identically distributed random
variables.

(a) If H(X1, X2; t, t) is decreasing (increasing) in t, then H [min(X1, X2); t, t] is decreasing
(increasing) in t.

(b) If H(X1, X2; t, t) is decreasing in t, then H [max(X1, X2); t, t] is decreasing in t.

Proof. (a) We will prove for decreasing. From (2),

H [min(X1, X2); t, t] = 1 − log 2 − 2

F̄ 2(t)

∫ ∞

t

f (s)F̄ (s) log �F (s) ds,

where �F is the hazard function of Xj . It is sufficient to show that �(t) = 1 − log 2 − H [min
(X1, X2); t, t] is increasing in t. Integration by parts gives

�(t) = −2[H(Xj ; t) − 1] +
∫ ∞

t

[
H(Xj ; s) − 1

] 2f (s)

F̄ (t)
ds

= 2 − 2H(Xj ; t) +
∫ ∞

t

2f (s)F̄ (s)

F̄ 2(t)

[
− 1

F̄ (s)

∫ ∞

s

f (v) log �F (v) dv

]
ds

� 1 − H(Xj ; t) � log �F (t). (20)

The last two inequalities in (20) come from (17) and the fact that H(X1, X2; t, t) = 2H(Xj , t)

is decreasing in t. Taking the derivative

�′(t) = 2�F (t)[�(t) − log �F (t)]
and using (20) we get �′(t)�0.

(b) From (2),

H [max(X1, X2); t] = − 2

1 − F 2(t)

∫ ∞

t

f (x)F (x) log
F(x)

1 + F(t)
dx

− 2

1 − F 2(t)

∫ ∞

t

f (x)F (x) log
f (x)

F̄ (t)
dx − log 2.

It is sufficient to show that �(t) = −H [max(X1, X2); t] − log 2 is increasing in t. That is,

�′(t) = �(t) − log F(t) + log[1 + F(t)] − log �F (t)�0.

Integration by parts gives

�(t) − log F(t) + log[1 + F(t)]
= −1

2
− log F(t)

1 − F 2(t)
+
∫ ∞

t

2F(s)

1 + F(t)
H(Xj ; s) ds

= −1

2
− log F(t)

1 − F 2(t)
− H(Xj ; t)

2F(t)

1 + F(t)
−
∫ ∞

t

H(Xj ; s)
2f (s)

1 + F(t)
ds
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= −1

2
− log F(t)

1 − F 2(t)
− H(Xj ; t)

2F(t)

1 + F(t)

+
∫ ∞

t

2f (s)

1 + F(t)

[∫ ∞

s

f (u)

F̄ (t)
log

f (u)

F̄ (t)
du

]
ds

= −1

2
− log F(t)

1 − F 2(t)
− H(Xj ; t)

2F(t)

1 + F(t)

−
∫ ∞

t

[
2f (s)F̄ (s)

F̄ (t)[1 + F(t)] − 1

F̄ (s)

∫ ∞

s

log
f (u)

F̄ (s)
f (u) du

]
ds

+
∫ ∞

t

2f (s)F̄ (s)

1 − F 2(t)
log

F̄ (s)

F̄ (t)
ds

� − H(Xj ; t) − 1

1 + F(t)
− log F(t)

1 − F 2(t)

� log �F (t) − log F(t)

1 − F 2(t)
− 2 + F(t)

1 + F(t)
� log �F (t). (21)

From (21) we get that �′(t)�0. This completes the proof. �

It may be noted that H(max(X1, X2); t) need not be increasing even when H(X1, X2; t, t) is
increasing. For example, if X1 and X2 are independent with a common exponential distribution
then H [max(X1, X2); t] is decreasing. It should also be noted that the assumption of identical
distributions for X1 and X2 is essential in Theorem 4.

4. Examples: some bivariate lifetime models

This section illustrates applications of the dynamic information measures for some well-known
bivariate lifetime models.

4.1. Marshall–Olkin model

The joint survival function of Marshall–Olkin bivariate exponential is given by

F̄ (x1, x2) = e−�1x1−�2x2−�12 max(x1,x2), x1, x2 �0, �1, �2 > 0, �12 �0. (22)

The joint survival function (22) may be represented as

F̄ (x1, x2) = �1 + �2

�
F̄c(x1, x2) + �12

�
F̄s(x1, x2),

where � = �1 + �2 + �12, F̄c(x1, x2) is an absolutely continuous part with a bivariate density
function

fc(x1, x2) =

⎧⎪⎨
⎪⎩

�

�1 + �2
�1(�2 + �12) e−�1x1−(�2+�12)x2 , x1 < x2,

�

�1 + �2
�2(�1 + �12) e−(�1+�12)x1−�2x2 , x1 > x2,

(23)

and F̄s(x1, x2) is a singular part,

F̄s(x1, x2) = e−� max(x1,x2).
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The singular part reflects the fact that X1 = X2 has positive probability, whereas the line x1 = x2
has two-dimensional Lebesgue measure zero, see [29].

The absolutely continuous bivariate exponential distribution (ACBED) of Block and Basu [8]
is defined by the joint density (23). The ACBED distribution has the BLM property (16). Thus,
Hc(X1, X2; t, t), Hc(Xj ; t, t), Hc(Xj |Xi; t, t), and Mc(X1, X2; t, t) are all free from t.

For computing the entropy of (22) we use the partitioning property of Shannon entropy and
a more general representation than (2). The entropy of a random vector X with a probability
distribution F is defined by

H(X) ≡ H(F) = −
∫
S

log[dF(x)] dF(x),

where S is the support.
Let Ai , i = 1, . . . , n, be a partition of S and pi = ∫

Ai
dF (x). Let Hi(X) denote the entropy

of the truncated distribution Fi(x) = F(x)/pi for x ∈ Ai . Then

H(X) = H(p1, . . . , pn) +
n∑

i=1

piHi(X), (24)

where H(p1, . . . , pn) = −∑n
i=1 pi log pi is the entropy of the partition (mixing) probability

vector.
For the residual entropy of ACBED, we partition Ac by Ac1 = {(x1, x2) : x1 < x2} and

Ac2 = {(x1, x2) : x1 > x2}, where �j = Pc(Acj ) = �j /(�1 + �2), j = 1, 2, is the probability
(weight) given to Acj by ACBED. Application of (24) gives the entropy of (23) as

Hc(X1, X2; t, t) = H(�1, �2) +
2∑

j=1

�jHcj (X1, X2; t, t)

= H(�1, �2) + 2 − log � + log
(
��2

1 ��1
2

)
, (25)

where H(�1, �2) is the entropy of mixing probability vector, Hcj (X1, X2; t, t) = 2 − log[�(� −
�j )] is the residual entropy of the truncated distribution, and �j = (�j + �12)

−1 is the standard
deviation (also mean) ofXj . (Ahsanullah and Habibullah [1] computedHc(X1, X2)by integration.
Application of (24) simplifies the computation.)

Following the probabilistic argument of Marshall and Olkin [29, p. 35] we find the entropy of
(22) via partitioning the positive quadrant by As = {(x1, x2) : x1 = x2} and Ac = {(x1, x2) :
x1 �= x2}. The distribution gives P(As) = � = �12/�. This probability is distributed along the
line x1 = x2 according to the one-dimensional exponential density

fs(x) = �F̄s(x, x) = � exp{−�x}.
The residual entropy of the singular part is simply Hs(X; t, t) = 1 − log �.

The absolutely continuous part has density fc(x1, x2) over the subset Ac with P(Ac) = (�1 +
�2)/� = 1 − �. Application of (24) gives the entropy of (22) as

H(X1, X2; t, t) = H(�, 1 − �) + �Hs(X; t, t) + (1 − �)Hc(X1, X2; t, t), (26)

where H(�, 1−�) is the entropy of mixing probability vector (�, 1−�), Hs(X; t, t) is the residual
entropy of the exponential distribution for the singular part, and Hc(X1, X2; t, t) is the entropy
of ACBED (25). The parameter � = �12/� is also the correlation coefficient.
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Thus, H(X1, X2; t, t) is free from t. Also H(Xj ; t, t) = 1 + log �j , j = 1, 2, is free from t.
The entropy difference (13) is free from t and for the independent case is zero. But (12) is not
well-defined because the joint distribution is not absolutely continuous with respect to the product
measure F1F2. As such, the mutual information is not defined.

Thus, for both, Marshall–Olkin and ACBED, when components are at the same age and that is
taken into account, the informativeness of the joint residual distribution of the two components
as well as the residual lifetime distribution of each component remains unchanged as they age.
The dynamics of information for Marshall–Olkin and ACBED differ when the components are
considered singly. The marginal distributions of Marshal–Olkin distribution are exponential, so
the univariate residual entropy H(Xj ; t) are free from t, and the entropy difference H(Xj ; t) −
H(Xj ; t, t) = 0 for all t �0. Thus if both components are at the same age, there is no change of
uncertainty when ages of one or both components are considered. However, since the marginal
distributions of ACBED have increasing failure rates, and a result of [13] implies that, Hc(Xj ; tj ),
j = 1, 2, is decreasing in tj . Consequently, Hc(Xj ; t) − Hc(Xj ; t, t) is decreasing in t. Thus
when a component is considered singly, as it ages its residual lifetime distribution becomes more
informative (concentrated).

4.2. McKay bivariate gamma

Consider McKay bivariate gamma distribution [25,30] with joint density

f (x1, x2) = ��+	

�(�)�(	)
x�−1

1 (x2 − x1)
	−1e−�x2 , 0 < x1 < x2, �, 	, � > 0.

The marginal distributions are gamma with shape parameters � and 	, respectively, and scale �.
Let � = 1 and without loss of generality we can let � = 1. Then we have a one-parameter

subfamily of McKay bivariate gamma distributions where one marginal is exponential and one
is gamma with shape parameter 	. For this subfamily, F̄ (t, t) = e−t , f1(x1; t, t) is exponential
with shift parameter t for x1 > t , f2(x2; t, t) is gamma with shift parameter t and shape parameter
	 + 1 for x2 > t , and f2|1(x2|x1; t, t) is gamma with shape parameter 	 for x2 > x1, free from t.
Since entropy is not a function of shift parameter, H(X1; t, t) and H(X2|X1; t, t) are free from t.
Using the exponential and gamma entropy expressions in (8) and (13) gives H(X1, X2; t, t) and
M(X1, X2; t, t) as functions of 	 only. Thus, this subfamily has memoryless bivariate residual
information measures along the diagonal (t, t), without having BLM property (16). However,
H(X2; t) is decreasing in t because f2(x2) is gamma with shape parameter 	 + 1 for x2 > x1,
which is an increasing failure rate distribution. (Note that f2(x2; t) is truncated gamma which is
not free from t.)

4.3. Bivariate Gumbel model

Consider X1 and X2 with the bivariate Gumbel distribution [22] with joint density

f (x1, x2) = [(1 + �x1)(1 + �x2) − �]e−x1−x2−�x1x2 , x1, x2 > 0, 0���1.

The joint residual entropy for this density is not available in closed form. However, the
results of the preceding section allow us to learn about the behavior of H(X1, X2; t1, t2). The
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information properties of this distribution are as follows:

(a) H(X1, X2; t1, t2)�2 and is decreasing in tj , j = 1, 2.
(b) H(Xj ; t1, t2) = 1 − log(1 + �ti ), which is decreasing in ti , i �= j = 1, 2.
(c) H(Xj ; t1, t2)�H(Xj ; tj ) = 1.

Property (a) is obtained from Theorem 2. Since �j |i (xj ; t1 + �, t2)��j |i (xj ; t1, t2) for xj > 0, it
follows from [18] that H(Xj |xi; t1, t2)�H(Xj |xi; t1 + �, t2) for every � > 0. Because of this
and the exponentiality of the marginals, both assumptions of Theorem 2 are satisfied. Property
(b) is obtained directly

Property (c) is noted from (b). The bound is attainable when marginal distributions are indepen-
dent exponential variables. We also have H(Xj ; ti )−H(Xj ; t1, t2) = log(1 + �ti ), i �= j , which
is increasing in ti . That is, under the Gumbel model, the age of component i becomes progressively
more informative about the residual life distribution of the other component j, i �= j .

Thus, unlike the ACBED case, for the bivariate Gumbel model when a component is considered
singly, there is no age effect on informativeness of its residual lifetime distribution. However, when
the ages of both components are taken into account, each component’s residual lifetime distribution
and the joint residual lifetime distribution of the two components become more informative.

As a final note, despite the fact that the entropy of conditional distributions H(Xj |xi; t1, t2),
i �= j , are decreasing in xi > ti , analytical results for the conditional entropy H(Xj |Xi; t1, t2),
i �= j , and mutual information are not available. Numerical integration, however, suggests that
these information functions are decreasing in t1 and t2.

4.4. BEC model

The standard form (scale of Xj = 1, j = 1, 2) of the joint density of the BEC family of
distributions of Arnold and Strauss [4] is given by

f (x1, x2) = C(�)e−x1−x2−�x1x2 , x1, x2 > 0, ��0, (27)

where C(�) = [∫∞
0 (1 + �s)−1es ds

]−1
. The conditional distribution fj |i of Xj given Xi = xi >

0 is exponential with hazard rate function �j |i (xi) = �xi + 1, i �= j j = 1, 2.
The normalizing constant C(�) must be evaluated numerically, therefore the joint and marginal

residual dynamic entropies are not available in closed form. However, the results of the preceding
section allow us to determine following information properties of this distribution.

(a) H(X1, X2; t1, t2) is decreasing in tj .
(b) H(Xj |Xi; t1, t2), i �= j , is increasing in ti .
(c) H(Xj ; t1, t2), j = 1, 2, is decreasing in tj , j = 1, 2.
(d) M(X1, X2; t1, t2) is decreasing in tj , j = 1, 2.
(e) H(Xj ; tj ) is decreasing in tj .

Property (a) is obtained from Theorem 2 as follows. For every (x1, y1) and (x2, y2) such that
x1 < x2 and y1 < y2, for the density (27) we have f (x1, y1)f (x2, y2) − f (x1, y2)f (x2, y1)�0.
A result of [16] implies that P(Xj > xj + �|X1 > t1, X2 > t2) is decreasing in xj and therefore
�j (xj ; t1, t2), j = 1, 2, is increasing in xj . Hence, both assumptions of Theorem 2 are satisfied.
Property (b) is obtained from the facts that the conditionals are exponential with hazard rates
�j |i (xi) = �xi + 1, i �= j , so H(Xj |xi; t1, t2) = −�xi for xi > ti . Using this in (7) we find the
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result. Property (c) follows from using (a) and (b) in (8) and (d) follows from using (a) and (b) in
(14). Property (e) follows from (a) when ti = 0.

4.5. Bivariate gamma

Consider the bivariate gamma distribution with the following density:

f (x1, x2) = e−(x1+x2)

�(
0)�(
1)�(
2)

∫ x̃

0
y


0−1
0 (x1 − y0)


1−1(x2 − y0)

2−1ey0 dy0,

x1, x2 �0, 
0, 
1, 
2 > 0, (28)

where Xj = Y0 + Yj , j = 1, 2, Yi, i = 0, 1, 2, are distributed as gamma with shape parameters

i and common scale 1, and x̃ = min(x1, x2). The marginal distribution of Xj , j = 1, 2, is
gamma with shape parameter 
0 + 
j and scale 1.

Kotz et al. [25] give an expression for the density when 
1 = 
2 = 1 and 
0 an integer. In
general, for integer values of 
i , i = 0, 1, 2, the integral in (28) can be evaluated recursively. For
example, when 
1 = 
2 = 2 and 
0 an integer, we obtain the density

f (x1, x2) = e−(x1+x2)+x̃

(
0 − 1)!
[
x̃
0+1 − (x1 + x2 + 
0 + 1)x̃
0

+(−1)
0(
0 − 1)!{x1x2 + 
0(x1 + x2 + 
0 + 1)}

×
⎛
⎝e−x̃ −


0−1∑
k=0

(−1)kx̃k

k!

⎞
⎠
⎤
⎦ , x1, x2 �0. (29)

Closed form expressions for dynamic entropies of (29) are not available. However, for any 
0 =
1, 2, · · · the information functions can be obtained by numerical integration.

Fig. 2a shows the plots of residual entropies H(X1, X2; t, t), H(Xj ; t, t), H(Xj |Xi; t, t),
H(Xj ; t), and the total marginal residual entropy H(X1; t, t) + H(X2; t, t) of (29) for 
0 = 2.
Note that X1 and X2 are exchangeable. Fig. 2b shows the plot of residual mutual information
M(X1, X2; t, t). These plots suggest the following dynamic behaviors.

(a) The joint and marginal distributions and, on average, the conditional distributions progres-
sively become more concentrated as the components age.

(b) H(Xj ; t) < H(Xj ; t, t) for all t > 0. Thus under this model considering both ages in-
creases uncertainty about the residual life of a component, compared with the univariate case.
Furthermore, the gap between H(Xj ; t, t) and H(Xj ; t) increases with t, indicating that con-
sideration of both ages induces progressively more uncertainty about the residual lifetime of
component j.

(c) The joint residual entropy (solid) decreases with a slower rate than the total marginal residual
entropy (dashed-double dotted curve). The same phenomenon can be seen by comparing the
rates of decrease of the conditional residual entropy (dotted) and the marginal residual entropy
(dashed). Thus, by (13) and (14) M(X1, X2; t, t) decreases in t. These plots also illustrate the
inequalities in (15).

(d) The mutual information plot reveals that dependence between the lifetime of components
reduces as they age and that the lifetimes eventually become independent of each other.

Plots of joint residual entropy and residual mutual information of (29) for 
0 = 1, 2, 3 (not
shown here) indicated that all these information functions are decreasing in t. These plots also
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Fig. 2. Residual entropies and residual mutual information for the bivariate gamma distribution of Example 1 when

i = 2, i = 0, 1, 2.

indicated that the joint entropy and mutual information are ordered by 
0. Similar behaviors were
shown for 
1 = 
2 = 1 and 
0 = 1, 2, 3.

5. Multivariate information

For the case of more than two variables, extensions of the dynamic joint, marginal, and condi-
tional entropies are straightforward. Let X = (X1, . . . , Xd) and t = (t1, . . . , td ). Then K(f : g; t)
and H(X; t) are given by (1) and (2) with the double integrals replaced by d-fold integrals. The
marginal residual entropy of a subvector of length da , denoted by H(Xa; t), is defined by the
da-fold extension of (4) where the marginal residual density of Xa , given Xj > tj , j = 1, . . . , d,
is found by the (d − da)-dimensional counterpart of (5). The conditional residual density of Xa ,
given a subvector Xb, is defined by extension of (6) to fa|b(xa|xb; t) and the conditional residual
entropy H(Xa|Xb; t) is obtained by extension of (7) accordingly. The joint residual entropy can
be decomposed in terms of H(Xa; t) and H(Xb|Xa; t). A generalization of (8) provides a chain
rule decomposition,

H(X; t) =
d∑

j=1

H(Xj |X1, . . . , Xj−1; t), (30)

where H(Xj |X1, . . . , Xj−1; t) is the conditional residual entropy of Xj given X1, . . . , Xj−1,
Xj > tj , j = 1, . . . , d and H(X1|X0) = H(X1).

In the multivariate case, various mutual information functions can be defined for measuring
various dependencies between the components. The residual mutual information between two
subvectors Xa and Xb has Kullback–Leibler and entropy representations (12)–(14) where i and j
are replaced with a and b. For example, consider the trivariate case which is sufficiently general.
The mutual information between the residual lifetime of a component, say X3, and the lifetimes
of the other two components jointly is given by

M(X3, [X1, X2]; t) = K
(
f (x; t) : f3(x3; t)f1,2(x1, x2; t)

)
(31)

= H(X3; t) − H(X3|X1, X2; t) (32)
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= H(X1, X2; t) − H(X1, X2|X3; t) (33)

= M(X3, X1; t) + M(X3, X2|X1; t), (34)

where f1,2(x1, x2; t) is the bivariate marginal residual density, H(X3; t), H(X1, X2; t), H(X3|X1,

X2; t) and H(X1, X2|X3; t) are marginal and conditional residual entropies defined similarly to
(7), and M(X3, X2|X1; t) is the dynamic partial mutual information measures defined similarly
to (31). Note that M(X3, X2|X1; t) measures the conditional dependence between the residual
lifetimes of components 2 and 3, given the residual lifetime of the first component.

Let Xa contain a single component, say Xd , and Xb = Xd̄ contain all other components. Then
the mutual information has a chain rule decomposition,

M(Xd, Xd̄; t) =
d−1∑
j=1

M(Xd, Xj |X1, . . . , Xj−1; t),

where M(Xd, Xj |X1, . . . , Xj−1; t) is the dynamic partial mutual information, and M(Xd,

X1|X0) = M(Xd, X1).
Mutual information functions between more than two subvectors can be defined similarly. In

particular, the mutual information between the residual lifetimes of all d components is given by

M(X, t) = K[f (x; t) : f1(x1t) · · · fd(xd; t)]

=
d∑

j=1

H(Xj ; t) − H(X; t). (35)

Clearly, M(X, t) = 0 if and only if the residual lifetimes of all components are mutually in-
dependent. The mutual information (35) measures complexity of the system in terms of the
interdependency between the lifetimes of its components, where the simplest system consists of
independently distributed components.

5.1. Transformations

The following notion of dependence [23] is used to identify transformations that preserve
monotonicity of the joint dynamic entropy.

Definition 1. The random variables X1, . . . , Xd are said to be right corner set increasing (RCSI)
if P(X1 > x1, . . . , Xd > xd |X1 > t1, . . . , Xd > td) is increasing in t1, . . . , td for every choice
of x1, . . . , xd .

See Barlow and Proschan [6] for relationships between RCSI and other notions of dependence.

Theorem 4. Suppose that X1, . . . , Xd are RCSI and let Yj = �j (Xj ), �j = �j (tj ), j =
1, . . . , d, X = (X1, . . . , Xd), Y = (Y1, . . . , Yd), and � = (�1, . . . , �d).

(a) If �j (xj ), j = 1, . . . , d, are non-negative increasing and concave, and if H(X; t) is decreas-
ing in tj , j = 1, . . . , d, then H(Y; �) is decreasing in �j , j = 1, . . . , d.

(b) If �j (xj ), j = 1, . . . , d, are non-negative increasing and convex, and if H(X; t) is increasing
in tj , j = 1, . . . , d, then H(Y; �) is increasing in �j , j = 1, . . . , d.
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Proof. (a) By (3),

H(Y; �) = H(X; t) +
d∑

j=1

E

[
log

d

dXj

�−1
j (Yj )|(X1 > t1, . . . , Xd > td)

]
. (36)

Without loss of generality we give the proof for d = 2. Since X1, X2 are RCSI and �j (xj ), j =
1, 2, are increasing, then E{�j (Xj )|X1 > t1, X2 > t2} is increasing in tj , j = 1, 2. It follows
from (36) that if the joint entropy of X1 and X2 is decreasing in t1, t2, then H(Y1, Y2; �1, �2) is
decreasing in �1, �2. Proof of (b) is similar. �

Consider the joint residual entropies H(X; t) and H(Y; t) when X = (X1, . . . , Xd) and Y =
(Y1, . . . , Yd) are components of two systems, where Yj = �j (Xj ), j = 1, . . . , d. A question of
interest is that under what conditions the transformation increases/decreases the residual entropy.
We use the notion of dispersion ordering between random variables (see, e.g., [31]) for this
purpose.

Definition 2. The random variable Yj is said to be larger than Xj in dispersion ordering, denoted

as Yj

D
� Xj , if and only if Yj = �(Xj ) where � is a “dilation” function; i.e., the condition

�(xj ) − �(x∗
j )�xj − x∗

j holds for every xj �x∗
j .

The next theorem gives sufficient conditions for H(Y; t) to be more (less) than H(X; t).

Theorem 5. (a) If Yj

D
� Xj , j = 1, . . . , d, and if H(X; t) is decreasing in tj , j = 1, . . . , d, then

H(Y; t)�H(X; t).

(b) If Yj

D
� Xj , j = 1, . . . , d, and if H(X; t) is decreasing in tj , j = 1, . . . , d, then

H(Y; t)�H(X; t).

Proof. (a) Since Yj

D
� Xj , there exists a dilation function such that Yj = �j (Xj ), where �j is

non-negative and differentiable because Yj is lifetime of a component, and is non-negative and
absolutely continuous. The dilation property implies that �′

j (xj )�1 implies that �j (tj )� tj , and

tj ��−1
j (tj ) = sj , 1, . . . , d. Now by (36) H(Y; t)�H(X; s), where s = (s1, . . . , sd). The result

follows from the assumption that H(X; t) is decreasing.
(b) In this case Xj = �−1

j (Yj ), where �−1
j is also a dilation function, and the result follows

using similar argument as the proof of part (a). �

Theorem 5 is applicable to the linear transformations. For two systems where the components
are related as Yj = ajXj + bj , 0 < aj �1, j = 1, . . . , d, if H(X; t) is decreasing (increasing)
in tj , j = 1, . . . , d, then H(Y; t)�H(X; t); the inequality is reversed for aj �1. When the
linear transformation is applied to a single system, the ages will be transformed �j = aj tj +
bj , j = 1, . . . , d. Part (a) of Theorem 5 is also applicable to exponential transformation �j (xj ) =
exj , xj �0, and Part (b) to log transformations, see Section 5.2.

We should emphasize that the residual entropy ordering is not a partial ordering between
random vectors since the equality in entropy does not imply the equality in distribution. The
relation H(X;t)�H(Y; t) only indicates that the residual distribution of X is more concentrated
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(informative) than the residual distribution of Y, hence prediction of the remaining lifetimes of Y
is more difficult than the remaining lifetimes of X.

Another question of interest is that under what conditions an uncertainty ordering H(X; t)�H

(V; t) is preserved when the random variables Xj and Vj are transformed to �j (Xj ) and �j (Vj ),
j = 1, . . . , d. An answer will be provided using the notion of joint hazard rate of (X1, . . . , Xd)

defined as the gradient vector

−∇ log F̄ (x1, . . . , xd) =
(

− �
�x1

, . . . ,− �
�xd

)
log F̄ (x1, . . . , xd).

See Johnson and Kotz [24] for a detailed study of vector multivariate hazard rates.

Theorem 6. Let X and V denote two bivariate random vectors with survival functions F̄X and F̄V.
Let Yj = �j (Xj ) and Wj = �j (Vj ), j = 1, . . . , d, where �j , j = 1, . . . , d, are nonnegative

convex and increasing. If (a) −∇ log F̄X(s1, . . . , sd)�−∇ log F̄V(s1, . . . , sd) for all (s1, . . . , sd)

and (b) H(X;t)�H(V; t), then H(Y; �) �H(W; �), where �j = �−1
j (tj ), j = 1, . . . , d.

Proof. By (3),

H(W; �) − H(Y; �)

= H(V; t) − H(X; t)

+
d∑

j=1

{
E

[
log

d

dVj

�−1
j (Wj )|(W1 > t1, . . . , Wd > td)

]

− E

[
log

d

dXj

�−1
j (Yj )|(X1 > t1, . . . , Xd > td)

]}
.

When condition (a) holds, the conditional distribution of Wj given W1 > s1, . . . , Wd > sd is
stochastically larger than that of Xj given X1 > s1, . . . , Xd > sd . It follows that for non-negative
convex and increasing �j , j = 1, . . . , d, the quantity enclosed by the braces is non-negative. The
theorem then follows from using condition (b). �

5.2. Multivariate Pareto and related distributions

Multivariate Pareto families, in addition to having applications in many fields [3], have a major
role in derivations of entropies and mutual information of some other important multivariate
distributions that can be obtained by coordinate-wise transformations of a random vector of
Pareto variables [10].

Let X have the multivariate Pareto I distribution, PI (0, �, d), with joint density

f (x) =
d∏

j=1

(� + j − 1)

⎛
⎝1 +

d∑
j=1

xj

⎞
⎠

−(�+d)

, xj > 0, � > 0. (37)
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Table 1
Multivariate families related to Pareto I distribution by transformations

Multivariate family Survival function Pareto I transformation

Pareto Type IV F̄Y(y) =
[

d∑
j=1

y
�j

j + 1

]−�

�j (xj ) = x
1/�j

j

Exponential F̄Y(y) =
[

d∑
j=1

eyj − d + 1

]−�

�j (xj ) = log(1 + xj )

Weibull F̄Y(y) =
[

d∑
j=1

exp

(
y
�j

j

)
− d + 1

]−�

�j (xj ) = log(1 + xj )
1/�j

The joint entropy of this distribution is given by

H(X) =
d∑

j=1

h1(� + j − 1) +
d∑

j=1

d − j

� + j − 1
, (38)

where h1(·) is the entropy of univariate Pareto I, PI (0, �, 1), distribution,

h1(�) ≡ H(Xj ) = 1 − log � + 1

�
. (39)

It is easy to see that H(X) is decreasing in � and increasing in d.
The mutual information between two subvectors Xa = (X1, . . . , Xda ) and Xb = (Xda+1,

. . . , Xd) of dimension da and db = d − da is given by

M(Xa, Xb) =
da∑

j=1

h1(� + j − 1) −
d∑

j=db+1

h1(� + j − 1)

+
da∑

j=1

da − j

� + j − 1
+

db∑
j=1

db − j

� + j − 1
−

d∑
j=1

d − j

� + j − 1
. (40)

The entropy and mutual information expressions are given in [10], but not in the forms of recursive
representations (38) and (40).

Multivariate Pareto distributions of Types II–IV can be obtained from (37) by coordinate-wise
transformations (see [3]). Several other distributions, including the multivariate exponential and
multivariate Weibull shown in Table 1 can be obtained from (37) via coordinate-wise transforma-
tions, as well. The entropies of these distributions are related and obtainable from (38). Because
of its invariance property, the mutual information for all distributions shown in Table 1 is (40);
see [10].

The residual information measures for multivariate Pareto I are as follows:

(a)

H(X; t) = H(X) + d log

⎛
⎝1 +

d∑
j=1

tj

⎞
⎠ .
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(b)

H(Xa; t) = H(Xa) + a log

⎛
⎝1 +

d∑
j=1

tj

⎞
⎠ .

(c)

H(Xa|Xb; t) =
d∑

j=db+1

h1(� + j − 1) +
d∑

j=1

d − j

� + j − 1
−

db∑
j=1

db − j

� + j − 1

+da log

⎛
⎝1 +

db∑
j=1

tj

⎞
⎠ .

(d)

M(Xa, Xb; t) = M(Xa, Xb).

The joint residual entropy in (a) is obtained by noting the following relationship between the
residual and the lifetime variables for (37):

xj = �(xj ; tj ) = x∗
j − tj

1 +∑d
j=1 tj

, x∗
j > tj . (41)

If the distribution of X is PI (0, �, d) with density (37), then the distribution of X∗ is PI (
∑d

j=1
tj , �, d) and the result follows from (3). The expression in (b) comes from the fact that the
marginal distribution of any subvector of X is in the form of (37). These entropies are increasing
in tj . Thus, as the components age, the respective distributions become less informative about the
remaining lifetimes. From (a) and (b) we have H(Xj ; tj ) = h1(�) + log(1 + tj ) and H(Xj ; t) =
h1(�) + log

(
1 +∑d

j=1 tj

)
. Hence

H(Xj ; tj ) − H(Xj ; t) = − log

⎛
⎜⎜⎜⎝1 +

d∑
i=1,i �=j

ti

1 + tj

⎞
⎟⎟⎟⎠ ,

which is negative and decreasing in ti .
The conditional residual entropy in (c) is obtained using the decomposition of the joint entropy

and taking the difference between (a) and (b).
Property (d) is due to the one-to-one transformation (41). The residual mutual information

being free from t is an interesting finding because the level of dependency between the residual
lifetimes remains unchanged irrespective of the current ages of the components. This example
also indicates that the BLM property is not necessary for the memoryless dependency. Note that
the rate of increase of the joint residual entropy in tj , j = 1, . . . , d, is exactly d times the rate of
increase of each marginal residual entropy H(Xj ; t).

The information properties of the distributions shown in Table 1 can be obtained from Theorem
3. Pareto distribution (37) is RCSI and the transformations are increasing and concave (�j > 1
for the case of Pareto IV). Also by Theorem 5, the log-transformation to exponentiality satisfies
the conditions of Part (b) and H(Y; t)�H(X; t). The mutual information for all these families
are the same as (40), which is free from t.



348 N. Ebrahimi et al. / Journal of Multivariate Analysis 98 (2007) 328–349

6. Concluding remarks

This paper has introduced joint, marginal, and conditional residual entropies and residual mutual
information between the components. These information measures are functions of the current
ages of all the components, and thus are dynamic. The residual entropies are useful for assessing
if the residual distributions become more/less informative (concentrated) as the components age.
The residual mutual information is useful for assessing expected information about the lifetime
of an individual from the knowledge of the ages of other individuals in the group as they age.

We gave several results for dynamic information measures. The bivariate exponential distri-
bution with independent marginals is characterized in terms of memoryless conditional entropy.
McKay bivariate gamma showed that the BLM is not necessary for bivariate information measures
being memoryless on the diagonal (t, t). We have explored some interplay between monotonicity
of the hazard rate function of marginal residual distributions and time evolution of some dynamic
information functions. The monotonicity (increasing or decreasing) behavior of dynamic entropy
of a system formed by series of independent and identically distributed components inherits the
monotonicity of dynamic entropy of its components. Interestingly, for a system of parallel com-
ponents, the result holds only when the uncertainty (entropy) decreases over time. Some results
on residual entropy under transformations of lifetime variables have been given.

The concepts and results developed in this paper can be extended in several directions. Di
Crescenzo and Longobardi [11,12] have studied the univariate past lifetime entropy. Unlike the
univariate case, where the support of the lifetime distribution decomposes into the past and residual
lifetime, the bivariate support provides four subsets for decomposition of information: a subset
that represents the residual lifetimes of both components, a subset that represents the past lifetimes
of both components, and two other subsets, one for the residual lifetime of one component and the
past lifetime of the other. Dynamic information measures may be derived from the joint distribution
f (x1, x2) for these subsets, which lead to dynamic decompositions of K(f : g), H(X1, X2),
and M(X1, X2).

The stage is now set for developing multivariate maximum dynamic entropy (MDE) modeling.
Multivariate MDE will combine ideas from the maximum entropy characterization of multivariate
distributions [35] and the univariate MDE procedure developed by [5]. The MDE can provide
new characterizations of known models as well as providing new models based on the partial
knowledge about evolutions of various multivariate hazard functions that can be represented in a
system of differential inequalities.

Estimation of entropy and mutual information is an active research area, see, e.g., [9,26].
Developing dynamic statistics based on various entropy estimation procedures and studying their
properties are promising areas of research. Other topics for future research include developing
dynamic versions of Bayesian information measures [28,32,34] and their applications in system
design, experimental design, sampling schemes, and minimal information priors. Ebrahimi et
al. [19] provide some examples of sample and Bayesian dynamic statistics. Extensions of the
present results in terms of various types of multivariate dispersion orderings (see, e.g., [21,31])
and exploring dynamic mutual information in terms of copula are under study by the authors.
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