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Although boron and uranium to calcium ratios (B/Ca, U/Ca) in planktonic foraminifera have recently 
received much attention as potential proxies for ocean carbonate chemistry, the extent of a carbonate 
chemistry control on these ratios remains contentious. Here, we use bi-weekly sediment trap samples 
collected from the subtropical North Atlantic in combination with measured oceanographic data from the 
same location to evaluate the dominant oceanographic controls on B/Ca and U/Ca in three depth-stratified 
species of planktonic foraminifera. We also test the control of biological, growth-related, processes 
on planktonic foraminiferal B and U incorporation by using foraminifer test area density (μg/μm2)

(a monitor of test thickness) and test size from the same samples. B/Ca and U/Ca show little or no 
significant correlation with carbonate system parameters both within this study and in comparison with 
other published works. We provide the first evidence for a strong positive relationship between area 
density (test thickness) and B/Ca, and reveal that this is consistent in all species studied, suggesting 
a likely role for calcification in controlling boron partitioning into foraminiferal calcite. This finding is 
consistent with previous observations of less efficient discrimination against trace element ‘impurities’ 
(such as B), at higher calcification rates. We observe little or no dependency of B/Ca on test size. In 
marked contrast, we find that U/Ca displays a strong species-specific dependency on test size in all 
species, but no relationship with test thickness, implicating some other biological control (possibly related 
to growth), rather than a calcification control, on U incorporation into foraminiferal calcite. Our results 
caution against the use of B/Ca and U/Ca in planktonic foraminifera as reliable proxies for the ocean 
carbonate system and recommend that future work should concentrate on improving the mechanistic 
understanding of how planktonic foraminifer calcification and growth rates regulate boron and uranium 
incorporation into the test.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

B/Ca and U/Ca of planktonic foraminiferal calcite have previ-
ously been suggested to reflect the carbonate chemistry of sea-
water (Russell et al., 2004; Allen et al., 2011, 2012) and could 
potentially be used to reconstruct past ocean carbonate chemistry 
changes (Yu et al., 2007; Foster, 2008). Documenting past seawater 
carbonate chemistry changes is important in defining the processes 
that drive Earth’s climate system and carbon cycle, and how these 
will respond to future anthropogenic climate change. Theoretically, 
boron exists in seawater as two species, boric acid [B(OH3)] and 
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borate ion [B(OH)−4 ], the proportions of which are pH dependent, 
(see equilibrium equation (1) below).

B(OH3) + H2O ←→ B(OH)−4 + H+ (1)

Because B(OH)−4 is a charged ion, it is thought that this is the 
only species which substitutes for CO2−

3 in calcite (Hemming and 
Hanson, 1992; Sanyal et al., 2000), and this has been supported by 
recent studies (Rae et al., 2011; Branson et al., 2015). Increasing pH 
therefore leads to greater incorporation of B in the CaCO3 lattice 
due to increasing abundance of aqueous borate, (see equilibrium 
equation (2) below).

CaCO3 solid + B(OH)−4 aqueous

→ Ca(HBO3)solid + HCO−
3 aqueous + H2O (2)
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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This leads to an exchange distribution coefficient (KD ) (Yu et al., 
2007), (see equilibrium equation (3) below).

KD = [B/Ca]solid/
[
B(OH)−4 /HCO−

3

]
seawater (3)

However, a variety of evidence also exists arguing against a pri-
mary carbonate control on B/Ca ratios including: (1) The lack of 
correlation of B/Ca and pH-dependent boron isotope composition 
(Foster, 2008) and measured carbonate system parameters (Babila 
et al., 2014), (2) Higher B/Ca in upwelling regions despite lower 
pH conditions (Naik and Naidu, 2014), (3) Species-specific sensi-
tivities of B/Ca to carbonate chemistry (Allen and Hönisch, 2012), 
(4) Size-dependent B incorporation into foraminiferal calcite (Yu et 
al., 2007; Babila et al., 2014; Henehan et al., 2015), (5) Discrep-
ancies between culture and open-ocean studies of the sensitivity 
of B/Ca to [CO2−

3 ] (Yu et al., 2007; Allen and Hönisch, 2012). Ad-
ditionally, a number of other environmental variables have been 
reported to influence B concentrations in foraminiferal calcite in-
cluding, temperature (Hathorne et al., 2009; Naik and Naidu, 2014), 
salinity (Allen et al., 2011, 2012; Henehan et al., 2015), light inten-
sity (Babila et al., 2014), and [PO3−

4 ] (Henehan et al., 2015).
As with boron, uranium incorporation into planktonic foramin-

ifera is also theoretically controlled by [CO2−
3 ] because it exists 

in seawater as a series of carbonate complexes and is likely in-
corporated into calcite as either UO2(CO3)

2−
2 and/or UO2(CO3)

4−
3

(Yu et al., 2008 and references therein). Therefore, the decreas-
ing abundance of UO2(CO3)

2−
2 with greater [CO2−

3 ] should also be 
reflected by decreasing foraminiferal U/Ca (Russell et al., 2004). 
Yet, like boron, a number of other variables in addition to the 
carbonate system have been suggested to also influence U incor-
poration, including calcification temperature (Russell et al., 1996;
Yu et al., 2008), growth rate (Ni et al., 2007), and species-specific 
differences (Yu et al., 2008).

Here, we utilise bi-weekly samples from a sediment trap time 
series from the subtropical North Atlantic (Salmon et al., 2015)
to address the unresolved and potentially conflicting issues with 
these proxies. Sediment trap time series provide a unique op-
portunity to evaluate controls on the geochemical composition of 
planktonic foraminifera within their natural habitat where multiple 
variables influence their calcification simultaneously. This contrasts 
with laboratory methods, which although have been instrumental 
in ground-truthing relationships between geochemical proxies and 
environmental variables, typically isolate only single variables to 
determine their influence on foraminiferal calcite. The bi-weekly 
sampling resolution provided by the sediment traps is also ad-
vantageous because it captures the lifecycles of most planktonic 
foraminiferal species, which typically follow the monthly lunar cy-
cle (Jonkers and Kučera, 2015), with evidence of an annual cycle 
for encrusted Globorotalia truncatulinoides (Hemleben et al., 1985;
McKenna and Prell, 2004). We measured B/Ca and U/Ca ratios, 
test calcification (thickness) and growth parameters (size) of three 
planktonic foraminifer species from bi-weekly sediment trap sam-
ples spanning four years (1998–2000 and 2008–2010), from the 
Sargasso Sea (Fig. 1a). These data were coupled with in-situ 
oceanographic data (temperature, salinity, chlorophyll and carbon-
ate system parameters) from the Bermuda Atlantic Time Series 
(BATS) in the same locality to evaluate the controls on uranium 
and boron incorporation into planktonic foraminifera (Fig. 1b–c).

2. Materials and methods

We use bi-weekly sediment trap samples selected from the 
Ocean Flux Programme time series in the Sargasso Sea (31◦50′N, 
64◦10′W) together with the concurrent oceanographic data from 
the nearby BATS site (31◦40′N, 64◦10′W). We utilise samples 
collected from two equivalent 2.5-yr intervals (1998–2000 and 
2008–2010) at 1500 m water depth to capture seasonal varia-
tions in the test parameters and geochemical composition of three 
species of foraminifera (Globigerinoides ruber (pink), Orbulina uni-
versa and Globorotalia truncatulinoides, non-encrusted (nc) and en-
crusted (c)), each living at different depths in the water column. 
Test weights and sizes were measured individually in order to 
calculate test area density (μg/μm2) of each sample (details in sec-
tion 2.3).

Tests used for geochemical analysis ranged in size (shown in 
Table 2), but on average were G. ruber (p) = 366 μm, O. universa =
720 μm, G. truncatulinoides (nc) = 492 μm, G. truncatulinoides (c) =
709 μm. G. truncatulinoides reproduce in the surface waters, as evi-
denced from plankton tows (Hemleben et al., 1985) before sinking 
to depth and adding a secondary calcite crust which approximately 
doubles the weight of the test (McKenna and Prell, 2004). Fig-
ure A.1 provides guidance for conversion of digitally measured test 
size to traditional sieve sizes. We used the right-coiling variety 
of G. truncatulinoides in this study which all belong to the same 
genetic group (Type II) (Ujiié et al., 2010), as this is the domi-
nant genotype present at our Sargasso Sea study site. Likewise, we 
analyse the more abundant thinner shelled Sargasso genotype of 
O. universa, which is morphologically distinct under high magni-
fication, from the thicker-walled Caribbean genotype (Morard et 
al., 2009). By selecting species from a wide range of water depth 
habitats (approximately 0–400 m), we are able to compare oceano-
graphic data with species’ geochemical compositions across larger 
environmental gradients; e.g. from 0–400 m at this site, tempera-
ture ranges up to ∼10 ◦C (Fig. 1b) and [CO2−

3 ] by ∼50–60 μmol/kg
(Fig. 1c), with a minimal change in salinity (∼0.2).

After being measured, planktonic foraminifera tests were gen-
tly cracked to open and subjected to chemical cleaning involving 
an extended oxidation step to remove any excess organic mat-
ter present in sediment trap material (50% H2O2 in 0.2M NaOH) 
(Anand et al., 2003), followed by a weak acid leach, prior to fi-
nal dissolution (Barker et al., 2003). B/Ca and U/Ca analyses were 
carried out on a Thermo® Element XR Inductively-Coupled Plasma 
Mass Spectrometer (HR-ICP-MS), at the Godwin Laboratory at Cam-
bridge University. Long-term precision on standard runs of B/Ca 
(and Mg/Ca used for calcification temperatures calculations) is 
<1.0% (2σ ). External precision is <4.0% (2σ ) for B/Ca and U/Ca, 
and <1.0% (2σ ) for Mg/Ca using Cambridge consistency standards 
(Misra et al., 2014). B, Mg blank levels were <2% and U was <5% 
of typical [B], [Mg] and [U] in foraminifera samples. An in-house 
standard was used to correct for drift over the run.

2.1. Calcification temperature and depth calculations

Calcification temperatures were determined from analysing the 
δ18Ocalcite in the same aliquot of sample used for trace element 
analyses. Stable isotope analyses were performed on a Finnigan 
GasBench and Deltaplus Advantage stable isotope mass spectrom-
eter at the Open University (long term standard reproducibility 
is ±0.084� for δ18O and ±0.061� for δ13C) and are reported 
relative to Vienna Pee Dee Belemnite (V-PDB). Temperature and 
salinity data from different depth habitats were taken from the 
Bermuda Atlantic Time Series (BATS) to calculate the δ18O of cal-
cite in equilibrium with seawater (δ18Osw). The δ18Osw at Bermuda 
was calculated using the 0–50 m δ18Osw-salinity relationship for 
the tropical–subtropical Atlantic available through the NASA sea-
water database (Arbuszewski et al., 2010; Schmidt et al., 1999). 
Calcification temperatures were then calculated using δ18Ocalcite
and calculated δ18Osw where available. For G. ruber (p) and G. trun-
catulinoides, we use the rearrangement of the palaeotemperature 
equation of O’Neil et al. (1969) and Shackleton (1974) and for 
O. universa, we used the low-light palaeotemperature equation of 
Bemis et al. (1998). For samples where no stable isotope data 
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Fig. 1. a. Map to show the location of the Oceanic Flux Program (OFP) sediment traps and the Bermuda Atlantic Time Series (BATS) oceanographic data station in relation 
to Bermuda Island. b. Annual cycles of temperature, c. [CO2−

3 ] from BATS hydrographic station, averaged over the same time period as the sediment trap deployments 
(1998–2000 and 2008–2010). Numbers on the plots are water depths in metres.
were available, we use species-specific Mg/Ca-temperature cali-
bration equations to calculate the calcification temperatures and 
associated depth habitats (Anand et al., 2003). In order to estimate 
depth habitats, we then matched these calcification temperatures 
for individual samples to BATS oceanographic temperatures mea-
sured in the previous month to account for foraminifer lifecycle 
and settling time (see section 2.2 for more details). The depth 
at which the oceanographic temperature most closely matches 
the calcification temperature is then used to denote the approx-
imate depth habitat, similar to previous a study (Marshall et al., 
2013).

Spero et al. (1997) previously observed a [CO2−
3 ] influence 

on δ18Oc of O. universa in culture. In order to test for this, we 
used the �δ18O–[CO2−

3 ] model developed by King and Howard
(2005) where �δ18O represents the difference between measured 
δ18Ocalcite, and predicted δ18Ocalcite calculated from instrumental 
temperatures collected at BATS. We find no correlation between 
�δ18O and [CO2−

3 ] (Figure A.2), so no correction was applied 
here.
2.2. Carbonate parameter calculations

In-situ seawater carbonate system parameters were calcu-
lated using monthly oceanographic data obtained from the BATS 
database (http :/ /bats .bios .edu /bats _methods .html). Assuming an 
average 3–4 week lifespan of G. ruber (p) and O. universa (Jonkers 
and Kučera, 2015) and a 5-day settling period to reach the 1500 m 
trap (∼300 m/day, Takahashi and Bé, 1984; Marshall et al., 2013), 
we selected oceanographic data approximately 1 month before 
the mid-date of the sediment trap opening period to account for 
the typical lifespan of a foraminifer. Encrusted G. truncatulinoides
likely reproduces on an annual cycle (McKenna and Prell, 2004)
but numerous non-encrusted specimens are found in the surface 
waters during the winter months after adult specimens reproduce 
(Hemleben et al., 1985; Spear et al., 2011), so we also used oceano-
graphic data from ∼1 month before the trap opening for non-
encrusted G. truncatulinoides. We then selected an oceanographic 
temperature that best matched the calcification temperature for 
that species in that sample. All of the oceanographic data asso-

http://bats.bios.edu/bats_methods.html
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ciated with this temperature (including all of the carbonate data, 
salinity, and productivity parameters) were then used in accor-
dance with these shell measurement and geochemical data. The 
temperature, salinity, and two carbonate parameters (dissolved in-
organic carbon, total alkalinity data) were then inputted into the 
CO2Sys_v2.1.xls program (Pelletier et al., 2007) in order to calcu-
late the remaining carbonate system parameters. We applied the 
carbonic acid dissociation constant of Mehrbach et al. (1973), re-
fit by Dickson and Millero (1987) and the dissociation constant for 
HSO−

4 (Dickson, 1990).

2.3. Calcification and test size data

Previous studies have shown that size-normalised weights 
(SNWs) or area density (a proxy for shell thickness) of planktonic 
foraminifera may reflect variations in foraminiferal calcification, 
mainly related to changes in seawater [CO2−

3 ] (Barker and Elder-
field, 2002; Marshall et al., 2013 and references therein). SNWs 
are calculated by weighing batches of shells in narrow sieve-size 
‘windows’ (Beer et al., 2010), but this method has largely been 
superseded by a more precise measurement termed area density 
(μg/μm2). Area density measurements are calculated using indi-
vidual, digitally measured test areas normalised to individual test 
weights (μg/μm2). We use the average area density of a number 
of individually measured tests (n = 6–30) to represent the area 
density for each sample (Table B.2). This technique allows for a 
more accurate estimation of relative changes in shell wall thick-
ness (Marshall et al., 2013).

Although changes in planktonic foraminiferal shell thicknesses 
represent a complex physiological process and are not directly 
comparable to the controls on inorganic calcite precipitation rates, 
previous observations of a positive relationship between SNW or 
area density and [CO2−

3 ] (Marshall et al., 2013 and references 
therein), are consistent with observations of increasing calcite 
precipitation ‘rates’ in higher pH seawater (Ruiz-Agudo et al., 
2012). However, since foraminifera calcify intermittently during 
their growth, their calcification rates will inherently vary through-
out their lifecycles. Because the lifecycles of both G. ruber (p) and 
O. universa are externally controlled by the lunar cycle (Jonkers and 
Kučera, 2015), both species likely calcified over comparable time 
periods (3–4 weeks). Likewise, non-encrusted G. truncatulinoides
do not incorporate any secondary calcite so most likely calcified 
in the surface waters for a few weeks before the sinking to the 
trap (Spear et al., 2011). Therefore, the area densities of all three 
species used in this study (excluding encrusted G. truncatulinoides) 
represent the intermittent precipitation of calcite over comparable 
intervals of time. In the context of this study, we use foraminifera 
test area density to document the average of these intermittent 
calcification rates over the lifespan of a foraminifer, where greater 
area densities represent thicker gross test walls and thus faster 
calcification rates averaged across these intermittent windows of 
calcification. Area densities thus reflect biologically mediated cal-
cification and are not directly synonymous with inorganic calcite 
precipitation rates.

Individual foraminifera tests were weighed on a XS Mettler 
Toledo microbalance and photographed in the same orientation, 
under a stereomicroscope for size analysis. We calibrated ImageJ 
analysis software using a microscale image taken at the same mag-
nification as foraminifera tests and adjusted the image threshold 
to determine 2D silhouette areas of individual tests. Errors on area 
density measurements were defined as AD ±(1/n) (Marshall et al., 
2013). Individual test size data of shells within each sample were 
used to evaluate biological control of B and U incorporation in 
planktonic foraminifera (Salmon K., unpublished PhD Thesis, 2015). 
In line with previous work, we interpret higher area densities as 
representing thicker shells and hence a greater gross rate of calci-
fication over the lifetime of the foraminifer (Marshall et al., 2013).

2.4. Multiple linear regression

We performed multiple linear regression analyses using the 
function ‘lm’ in R (http :/ /www.r-project .org) to test which of the 
independent environmental (e.g. carbonate chemistry, temperature, 
salinity, chlorophyll) and ecological parameters (e.g. test size/area 
density) explain the variance in the dependent variables i.e. B/Ca 
and U/Ca. The selections of these independent variables are based 
on previous observations of temperature (Yu et al., 2008), salinity 
(Allen et al., 2011; Henehan et al., 2015), carbonate chemistry (Yu 
et al., 2007, 2013; Allen et al., 2011, 2012), secondary crust for-
mation (Hathorne et al., 2009) and size fractionation (Elderfield et 
al., 2002; Ni et al., 2007; Friedrich et al., 2012) related to calcifi-
cation/growth rate (we use area density/test size as a proxy) (Ni 
et al., 2007; Naik and Naidu, 2014) affecting the incorporation of 
B and U into the foraminiferal test. We use chlorophyll concentra-
tion to test how changes in productivity could affect trace element 
ratios in samples where these data are available (Table B.2). It is 
important to note that area densities and test sizes of G. truncatuli-
noides are positively correlated because tests grow simultaneously 
larger and thicker, so these shell parameters cannot be decoupled 
in this species. Our subtropical gyre has negligible dissolved phos-
phate present in surface waters (Steinberg et al., 2001) meaning 
we were unable to explicitly test a recently observed B/Ca rela-
tionship with [PO3−

4 ] in planktonic foraminifera (Henehan et al., 
2015). For each analysis, non-contributing factors were removed 
according to their contribution to Akaike Information Criterion 
(AIC) (Akaike, 1974). AIC provides a statistical framework in which 
to select a model with the least number of parameters required in 
order to achieve the best fit. Lower values of the index indicate the 
model with the fewest parameters that still provides an adequate 
fit to the data.

The more sensitive the dependent variable is to changes in the 
independent variable, the greater the value of the slope coefficient 
in the regression. We have repeated the analyses using a multi-
species model, and species-specific models for O. universa and G. 
truncatulinoides (non-encrusted and encrusted). We were too lim-
ited by sample sizes to produce reliable species-specific models 
for G. ruber (p) and non-encrusted G. truncatulinoides. We have 
intentionally excluded encrusted G. truncatulinoides from the multi-
species model because the presence of secondary crust in this 
species may bias our results. Confidence in the species-specific O. 
universa model is reduced compared to the other models owing to 
the small sample size relative to the number of independent vari-
ables.

3. Results

3.1. Seasonality in B/Ca, U/Ca and calcification temperatures

The seasonal range in calcification temperatures (calculated 
from a combination of δ18O and Mg/Ca), varies from 15–30 ◦C for 
all three species over both the sediment trap deployment peri-
ods. This is on average within the range of estimated calcification 
depths for each species ∼16 m for G. ruber (p) and ∼68 m for 
O. universa (Fig. 2a) (see Table B.2). Generally, most of the non-
encrusted G. truncatulinoides appear to calcify in the surface waters 
during winter corresponding to an average calcification depth of 
∼44 m, but a cold-core cyclonic eddy in February–March 2010 
caused anomalously low surface water temperatures as indicated 
by low calcification temperatures in Fig. 2a. Encrusted G. truncatuli-
noides predominantly reside at depths of ∼300–400 m throughout 

http://www.r-project.org
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Fig. 2. a) Seasonal changes in calcification temperatures (inferred from δ18O isotopes 
and Mg/Ca) of G. ruber (p) (pink), O. universa (blue), G. truncatulinoides encrusted 
(black) and non-encrusted (green) with interannual variability represented as dif-
ferent symbols. b) seasonal B/Ca and c) seasonal U/Ca. Depth horizons as well as 
seasonal changes in 0–25 m temperature (red, dotted lines) and [CO2−

3 ] (blue, dot-
ted lines) are added for reference and represent average monthly data combined 
for years 1998–2000 and 2008–2010 to give an approximate visualisation of depth 
habitat. Please see Table B.2 for more accurate depth estimates. The errors on cal-
cification temperatures are detailed in Table B.2. The errors on internal standard 
measurements (σ ) are B/Ca = ±1.84%, U/Ca = ±1.79%, in Cambridge consistency 
standards containing <20, ∼85 and ∼200 μmol/mol B/Ca and ∼45–65 nmol/mol 
U/Ca stated in Misra et al. (2014).

the winter, and some non-encrusted individuals calcify at 0 m 
(Fig. 2a).

Generally, the higher B/Ca of G. ruber (pink) coincides with 
warmer summer temperatures and greater [CO2−

3 ] compared to 
O. universa. However, within species, the B/Ca of G. ruber (p) 
and O. universa do not appear to change with temperature or 
[CO2−

3 ] (Fig. 2b). The range of B/Ca in G. truncatulinoides alone 
is equal to the combined range of G. ruber (p) and O. universa
(∼110 μmol/mol), despite this species living in a more lim-
ited range of winter temperatures and [CO2−

3 ] (Fig. 1b–c). Non-
encrusted G. truncatulinoides contain greater U/Ca than encrusted 
individuals but this is not so for B/Ca. Like B/Ca, the U/Ca of 
G. ruber (p) is greater than U/Ca in O. universa and ranges from 
∼5 nmol/mol in O. universa to 15 nmol/mol in G. ruber (p). G. trun-
catulinoides has the largest range in U/Ca (∼13 nmol/mol) and is 
also positively offset from G. ruber (p) and O. universa (Fig. 2c).

3.2. Controls on trace element incorporation

Table 1 displays the multiple linear regression (MLR) results. 
Contrary to previous observations in culture, we see no significant 
[CO2−

3 ] effect on B/Ca and only a small proportion of the variance 
in U/Ca of G. ruber (p), O. universa and non-encrusted G. truncatuli-
noides is explained by both area density and [CO2−

3 ] (r2 = 0.24). 
Replacing [CO2−

3 ] with other carbonate system drivers such as 
[B(OH)−4 /HCO−

3 ]seawater or pH in the model also yields no signif-
icant relationship with B/Ca. Instead, area density/test thickness 
appears to explain the majority of the variance in B/Ca of G. ru-
ber (p), O. universa, and non-encrusted G. truncatulinoides (Table 1). 
Although calcification temperature appears to explain some vari-
ance in B/Ca of all species, this could be an artefact of combining 
species over a large depth range, because it is not significant in 
explaining species-specific B/Ca variations in O. universa or G. trun-
catulinoides individually (Table 1). The small range in salinity at 
this site does not appear to control any variance in B/Ca or U/Ca. 
Likewise, chlorophyll concentrations, used as an indicator of pro-
ductivity, do not exert any significant control over B/Ca or U/Ca in 
any of the species tested (although chlorophyll could not be tested 
in encrusted G. truncatulinoides, below the euphotic zone). None 
of our tested parameters exert any significant control on B/Ca in 
encrusted and non-encrusted G. truncatulinoides only, but area den-
sity/test thickness and test size explain most of the variation in 
U/Ca in this species (r2 = 0.90) (Table 1).

We aimed to keep our measurements within as narrow test size 
ranges as possible but G. truncatulinoides has a larger variance in 
size due to growth and addition of crust (Table 2). We find a cor-
relation between test size and intra-species variations in U/Ca and 
B/Ca in most species (Table 2). Higher B/Ca values significantly cor-
relate with larger tests but only in G. ruber (p) and the relationship 
is weak (r2 = 0.43) compared to higher U/Ca strongly associated 
with larger tests in all species (r2 = 0.52–0.81), except encrusted 
G. truncatulinoides (Table 2).

4. Discussion

4.1. Oceanographic controls on foraminifera B/Ca and U/Ca

4.1.1. Carbonate chemistry
U/Ca and B/Ca have been previously suggested as proxies for 

the ocean carbonate system based on laboratory culturing experi-
ments (Sanyal et al., 1997; Allen et al., 2011, 2012). However, our 
field study in context with others shows that overall, regardless of 
which carbonate parameter is used to represent carbonate chem-
istry, there is no significant influence on B incorporation (Fig. 3a). 
Likewise, along with area density, carbonate chemistry only ex-
plains 24% of the variations in the U/Ca of G. ruber (p), O. universa, 
and non-encrusted G. truncatulinoides (Table 1). Hypothetically, the 
seasonal range of 30 μmol/kg [CO2−

3 ] in O. universa at this site 
should be equivalent to a 0.7 nmol/mol change in U/Ca, according 
to laboratory culturing work on the same species (Russell et al., 
2004). Yet this predicted 0.7 nmol/mol range in O. universa U/Ca is 
much smaller than the ∼6 nmol/mol change we actually observe 
(Fig. 2c). Instead, much of the U/Ca variability can be explained 
through test size fractionation in individual species (Table 1–2).

The 60–75 μmol/mol range in B/Ca in G. ruber (p) and O. uni-
versa observed in this study only corresponds to a range in [CO2−

3 ] 
of 18–30 μmol/kg in respectively (Fig. 2b). However, according 
to laboratory culturing calibrations on the same species, this 
60–75 μmol/mol range in B/Ca should equate to a range in [CO2−] 
3
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Table 1
Shows the multiple linear regressions for all species (excluding encrusted G. truncatulinoides), O. universa only, and both encrusted and non-encrusted G. truncatulinoides. 
G. ruber (p) was not tested individually due to the low sample number in relation to the number of variables tested. Coefficients indicate the slope value or ‘sensitivity’ of 
the relationship between the variable and trace element ratio. Substituting in [B(OH)−4 /HCO−

3 ] or pH in for [CO2−
3 ] makes no difference to the outcome of the multi-species 

B/Ca regression. Test size was not applied in the multi-species regression because it is species-specific. Samples with missing data for specific variables were not included in 
any regressions. Coefficients shown in bold refer to variables that were included in a second regression after selection according to the lowest AIC values (see section 2.4 for 
more details). The r2 values reflect the outcome of the modelled variables highlighted in bold. Adjusted r2 accounts for sample size and number of independent variables. 
Variables which contribute significantly to the model are starred as follows: ∗ p < 0.05, ∗∗ p < 0.01, ∗ ∗ ∗ p < 0.001.

Variable All species O. universa only G. truncatulinoides only

B/Ca U/Ca B/Ca U/Ca B/Ca U/Ca

Area density 90.95∗∗∗ 8.900∗ 99.93∗∗ 3.100 −1.407 −7.377∗∗∗
Test size – – −0.054 0.066∗∗∗ 0.031 0.0016∗∗
Calcification temperature 3.619∗ −0.745 3.324 −0.155 0.854 0.035
[CO2−

3 ] 0.596 0.283∗ −0.152 −0.0235 −0.339 0.0059
Salinity 15.55 2.787 24.11 4.573 144.68 0.671
Chlorophyll −0.029 0.0047 −0.056 −0.0074 – –
Multiple r2 0.76 0.32 0.75 0.58 0.31 0.92
Adjusted r2 0.74 0.24 0.67 0.55 0.24 0.90

Table 2
Coefficients of determination (r2) of trace element-test size regressions of selected planktonic foraminifera species. Size ranges indicate minimum to maximum sizes of tests 
used in geochemical analysis. Values in bold indicate significant correlations ∗ p < 0.05, ∗∗ p < 0.01, ∗ ∗ ∗ p < 0.001.

Intra-species size effect

Trace element G. ruber (p) O. universa G. truncatulinoides (non-encrusted) G. truncatulinoides (encrusted)
(size range = 311–431 μm) (size range = 657–792 μm) (size range = 347–720 μm) (size range = 509–796 μm)

B/Ca 0.44∗ −0.18 0.32 0.23
U/Ca 0.53∗∗ 0.58∗∗∗ 0.81∗∗∗ 0.28
that is over an order of magnitude greater (∼300–>600 μmol/kg) 
(Allen et al., 2011, 2012). Indeed, the full range of all species’ B/Ca 
recorded in this study (∼110 μmol/mol) should be equivalent to 
a pH range of ∼0.6 according to culture calibration (Allen et al., 
2012) but we only see a ∼0.1 unit change in pH over the depth 
habitats of all species. Comparison of our results with other core-
top and sediment-trap based studies shows that our sediment-trap 
data yield the largest range in B/Ca with one of the smallest ranges 
in [CO2−

3 ] (Fig. 3a). The lack of a distinct relationship between B/Ca 
and [CO2−

3 ] in this study, and other studies and species clearly in-
dicates the existence of additional competing controls on boron 
incorporation in the natural environment.

One primary control on B/Ca could be [B(OH)−4 /HCO−
3 ]seawater

(equation (3)), which is a function of temperature and pH (Allen 
et al., 2012). However, we find no correlation between either 
[B(OH)−4 /HCO−

3 ]seawater or pH and foraminiferal B/Ca. As previously 
shown at this site in G. ruber (white), seasonal temperature and 
pH variance only cause negligible variations in [B(OH)−4 /HCO−

3 ]sw
(Babila et al., 2014), equivalent to a 3–5 μmol/mol change in B/Ca 
according to the calibration from Allen et al. (2012), just a fraction 
of the total ∼110 μmol/mol B/Ca range observed here (Fig. 3b).

4.1.2. Calcification temperature
In general, there is too much scatter to conclude there is any 

significant relationship between temperature and B/Ca (Fig. 3c). 
The lack of intra-species correlations of B/Ca and temperature, sug-
gests that significant correlations highlighted in Table 1 could be 
an artefact of comparing multiple species. Yu et al. (2008) sug-
gested that uranium incorporation into planktonic foraminifer cal-
cite was strongly influenced by calcification temperature, based on 
core-top sediments. However, our sediment trap data reveal no sig-
nificant relationship between uranium and temperature in any of 
the species that we examined (Table 1).

4.2. Biological controls on B/Ca and U/Ca

4.2.1. Calcification rate and test size
We find that B/Ca displays a strong positive correlation with 

area density, pointing to a calcification control on boron incor-
poration in G. ruber (p), O. universa and non-encrusted G. trun-
catulinoides (Fig. 4a). Although area density reflects the complex 
physiological process of biological calcification, and is not a di-
rect measure of the rate of inorganic calcite precipitation, the 
inter-species correlation between area density and B/Ca is con-
sistent with recent inorganic precipitation experiments which ob-
served a dependency of boron incorporation on calcite precipi-
tation rate (Ruiz-Agudo et al., 2012; Gabitov et al., 2014). If we 
assume that higher area densities represent faster calcification 
rates, as suggested by previous investigations (Spero et al., 1997;
Marshall et al., 2013 — references therein), our results suggest that 
calcite growth rates, even when biologically mediated, could affect 
boron partitioning. This mechanism may explain why thicker tests 
with higher area densities contain more boron.

G. ruber (p) is the only species where B/Ca has a (weak) cor-
relation with test size (r2 = 0.43) (Fig. 4b), whereas U/Ca has 
a strong positive correlation with test size in all species (r2 =
0.52–0.81) (Table 2) (Fig. 4d). This is consistent with previous ob-
servations of greater B/Ca in larger tests of G. ruber (white and 
pink) (Ni et al., 2007; Babila et al., 2014; Naik and Naidu, 2014;
Henehan et al., 2015) and U/Ca in larger G. ruber (white and 
pink) and G. sacculifer tests (Ni et al., 2007). Most studies have at-
tributed this test size fractionation to faster foraminiferal growth 
(where growth is represented by increases in chamber forma-
tion, not crystallographic precipitation) and calcification rates in 
larger individuals (Ni et al., 2007; Babila et al., 2014; Naik and 
Naidu, 2014). A faster calcification rate may be less effective at 
discriminating against incorporation of trace elements causing the 
organism to incorporate higher concentrations into its calcite lat-
tice (Rickaby et al., 2002; Russell et al., 2004; Ni et al., 2007;
Schmidt et al., 2008). However, if this were the case in all of 
our species, we would also expect to see a stronger positive re-
lationship between U/Ca and area density (Fig. 4c), and also a 
positive relationship between B/Ca and test size in O. universa and 
non-encrusted G. truncatulinoides (Fig. 4b), but we do not. Whilst 
assuming larger tests grow faster and hence have faster calcifica-
tion rates appears to be a deduction inconsistent with the majority 
of our data, it may be true for at least some species, such as 
G. ruber (white and pink). For instance, Babila et al. (2014) ob-
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Fig. 3. Potential controls on boron incorporation: B/Ca from this study and other planktonic species varying with a) [CO2−
3 ] and b) [B(OH)−4 /HCO−

3 seawater c) Temperature. 
Data from Babila et al. (2014) is an average of 20–40 m. Figures show open-ocean data only.
served a 15–20 μmol/kg offset in B/Ca between the 200–300 and 
300–400 μm size fractions of G. ruber (white). Although they at-
tribute this offset between size fractions to increased light inten-
sity governing greater boron incorporation in larger tests due to 
a greater density of symbionts, we suggest that it could equally 
arise from increased growth/calcification rates in larger tests. We 
find that area densities in larger G. ruber (p) tests from this study 
are on average higher, when compared to area densities from 
smaller tests; 311–363 μm (equivalent sieve size = 250–300 μm, 
Figure A.1) = area density of 1.23 × 10−4 μg/μm, compared to 
371–431 μm (equivalent sieve size = 300–355 μm, Figure A.1) =
area density of 1.34 × 10−4 μg/μm. We find this offset in area 
densities between larger and smaller tests of G. ruber (p) is equiv-
alent to a ∼22 μmol/kg offset in B/Ca, almost the same discrep-
ancy observed between sieve-size fractions by Babila et al. (2014). 
Yet Babila et al. (2014) discounted a calcification rate control on 
B/Ca because they do not see a similar offset between size frac-
tions for Sr/Ca and Mg/Ca. However, a calcification rate control 
would not necessarily have to be reflected in both Mg/Ca and 
Sr/Ca to be plausible in B/Ca. Ni et al. (2007) concluded there 
was no calcification control on Mg/Ca in G. sacculifer and G. ru-
ber even though there was in B/Ca, Li/Ca and U/Ca. Additionally, 
we discount a light intensity control on B incorporation in this 
study based on three observations. First, we find no correlation 
between test size or B/Ca and δ13C in symbiont-bearing G. ruber
(p) or O. universa (which would be enhanced in larger tests with 
more symbiont activity due to greater carbon fixation, Spero and 
Parker, 1985) (see Figure A.3a–b). Second, we also see no effect 
of test size on boron incorporation in symbiont-bearing O. universa
(Fig. 4b). Third, non-encrusted symbiont-barren G. truncatulinoides
possess a greater B/Ca concentration than O. universa, and compa-
rable B/Ca to G. ruber (p) (Fig. 4a), which should not be the case if 
its incorporation were primarily controlled by symbionts enhanc-
ing microenvironment pH (Figure A.3a–b).
Recently, an observed correlation between [PO3−
4 ] and B/Ca 

ratios in Globigerinoides ruber led to the suggestion that [PO3−
4 ] 

may be a control on foraminiferal B/Ca (Henehan et al., 2015). 
These authors proposed that this may arise from chemical inter-
actions involving P at the mineral–water interface, either through 
paired substitution, increased disorder in the crystal lattice, or per-
haps by stabilisation of an amorphous calcium carbonate precur-
sor phase. However, [PO3−

4 ] at our subtropical gyre site is neg-
ligible in the surface waters and only reaches 0.26 μmol/kg at 
∼400 m (Steinberg et al., 2001), which according to the approxi-
mate B/Ca–[PO3−

4 ] relationship described by Henehan et al. (2015), 
should be equivalent to ∼30 μmol/mol change in B/Ca, just a 
quarter of our observed 110 μmol/mol range. In addition, we ob-
serve higher foraminiferal B/Ca at our site (G. ruber (p) and non-
encrusted G. truncatulinoides) than Henehan et al. (2015) does in 
G. ruber (w), even in our relatively [PO3−

4 ]-depleted surface wa-
ters, which further argues against a dominant [PO3−

4 ] control. Al-
though our data do not allow us to explicitly test the hypothesis of 
crystallographic interaction between foraminiferal B/Ca and [PO3−

4 ] 
(Henehan et al., 2015), we suggest that the positive correlation be-
tween B/Ca in G. ruber (w) and [PO3−

4 ] could be caused by higher 
growth and calcification rates, which coincide with areas of higher 
productivity. This is consistent with other studies that have ob-
served greater B/Ca in larger (and hence faster growing) G. ruber
(w) tests during upwelling periods (Naik and Naidu, 2014) and 
also in cultured foraminifera fed every day, compared to lower 
B/Ca in open-ocean foraminifera from a comparable pH (Henehan 
et al., 2015). We do not observe a significant relationship between 
chlorophyll and foraminifera B/Ca variations, suggesting that pro-
ductivity is not the dominant control on foraminiferal calcification 
and hence boron incorporation at this site.

In contrast to B/Ca, we observe greater U/Ca in non-encrusted 
G. truncatulinoides compared to the symbiont-bearing species, G. ru-
ber (p) and O. universa, which is consistent with a higher microen-



K.H. Salmon et al. / Earth and Planetary Science Letters 449 (2016) 372–381 379
Fig. 4. Linear regressions of a) B/Ca and area density of G. ruber (p), O. universa, G. truncatulinoides non-encrusted. Encrusted G. truncatulinoides are shown in black but are 
not included in the regression. b) B/Ca with test size for all species. The only significant regression is in G. ruber (p) c) U/Ca and area density for all species with only 
G. truncatulinoides non-encrusted/encrusted included in the regression. d) Individual species’ shell size regressions with U/Ca of G. ruber (p), O. universa, G. truncatulinoides
non-encrusted/encrusted. Errors on area density measurements are AD ± (1/n), and B/Ca = ±1.84%, U/Ca = 1.79% (±σ ).
vironment pH in symbiont-bearing species (Fig. 4d). However, if 
U/Ca were predominantly controlled by the microenvironment pH, 
we would expect U/Ca to decrease with increasing test size, due to 
a higher pH in larger tests of symbiont-bearing species (Henehan 
et al., 2013). Yet our observations indicate the reverse, displaying 
a strong species-specific increase in U/Ca with larger test sizes in 
all species (excluding encrusted G. truncatulinoides) but for B/Ca, 
only in G. ruber (p) (Fig. 4d). Additionally, the symbiont-bearing 
species tend to experience a proportionally greater increase in 
U/Ca with larger test size, than non-encrusted G. truncatulinoides
do (Fig. 4d). This indicates a stronger species-specific growth con-
trol on U compared to B incorporation. A calcification control is 
unlikely to explain U/Ca variability in symbiont-bearing species 
because it does not share a significant relationship with area den-
sity (Table 1 — O. universa only, Fig. 4c). Furthermore, unlike B/Ca, 
U/Ca is inversely related to [CO2−

3 ] (Russell et al., 2004); because 
tests calcify thicker shells (potentially at faster rates) in higher 
[CO2−

3 ] conditions (Marshall et al., 2013), it would be counter-
intuitive for an increase in U/Ca to be attributed to faster calci-
fication rates as suggested by Ni et al. (2007). Our results suggest 
that the incorporation of B is distinctly different from U, because 
the size-dependent, species-specific relationships are more appar-
ent in foraminiferal U/Ca, compared to B/Ca (Fig. 4d). Based on 
larger shells representing faster growth (Schmidt et al., 2008), rate-
dependent discrimination can act against the biological pumping 
of larger ions by the cell (Rickaby et al., 2002; Ni et al., 2007), 
which may explain greater U incorporation in larger foraminifera 
tests. However, it is still unclear why this mechanism would selec-
tively favour U over B incorporation in larger tests. Future studies 
should therefore concentrate on determining which cellular pro-
cesses contribute to variations in foraminifera test size and area 
density and how these relate to different incorporation strategies 
for B and U.

Overall, our results suggest more research is needed to quan-
tify the impacts of calcification and biological fractionation on the 
incorporation of B and U before they can be used effectively as 
carbonate system proxies.

4.2.2. Crust and size control in G. truncatulinoides
Mature individuals of G. truncatulinoides form a secondary crust 

as they descend deeper in the water column, the composition 
of which can be chemically distinct from the primary calcite for 
some trace elements (Spear et al., 2011). Yet, we find similar range 
of B/Ca in both non-encrusted and encrusted G. truncatulinoides, 
whilst U is depleted in encrusted individuals (Fig. 4a, c). If U in-
corporation was controlled by [CO2−

3 ], we would expect encrusted 
individuals to contain higher U/Ca but this is not the case. Our 
results indicate that the addition of secondary crust does not sig-
nificantly affect the bulk test B/Ca, but does affect U concentration, 
further supporting different controls on B and U incorporation. 
For instance, the B/Ca of encrusted individuals could conceivably 
reflect the original area density from the non-encrusted stage, 
with the addition of the secondary crust tripling the area den-
sity without increasing the boron concentration (Fig. 4a). Unlike 
their non-encrusted equivalents, encrusted G. truncatulinoides have 
a large range of B/Ca; the 100 μmol/mol range of B/Ca in en-
crusted individuals almost encompasses the entire 110 μmol/mol 
range of B/Ca in non-encrusted, O. universa and G. ruber (pink) 
combined (Fig. 4a). Other encrusted globorotaliid species, such 
as G. inflata and G. scitula have also shown large intratest B/Ca 
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variability (Hathorne et al., 2009; Allen et al., 2011), even when 
grown under identical conditions (Allen et al., 2011), suggesting 
this heterogeneity could reflect biological changes in the micro-
environment, rather than an external environmental control. The 
depletion in U in encrusted G. truncatulinoides could be explained 
by dilution of [U] when the secondary crust is added. Further re-
search using laser ablation is needed to determine if there are 
lower concentrations of U in the secondary, compared to the pri-
mary calcite.

5. Conclusions

Here we aimed to resolve conflicting interpretations of the con-
trols on B/Ca and U/Ca in three species of planktonic foraminifera 
G. ruber (p), O. universa, G. truncatulinoides (non-encrusted and en-
crusted), and evaluate their use as proxies for ocean carbonate 
chemistry.

We find that species-specific B/Ca is not related to in-situ car-
bonate chemistry variations during the calcification of planktonic 
foraminifer tests in this study or collectively when other studies 
(such as those from core-top sediments) are taken into account. 
Instead, we suggest that boron incorporation is likely to be con-
trolled by calcification rate owing to a strong positive correlation 
with test area density (thickness). We find little dependence of 
B/Ca on test size, except in G. ruber (pink).

We find significant increases of U/Ca with test size in all species 
(r2 = 0.52–0.81), indicating some other biological control (per-
haps related to growth) on incorporation of U compared to B. Our 
study is the first to show that both area density (proxy for test 
thickness) and test size may affect the incorporation of trace el-
ements differently whereas previously, only changes in test size 
have been thought to affect trace element composition of plank-
tonic foraminifera.

We recommend that future work should utilise planktonic 
foraminifera from narrow test thickness and size windows in order 
to isolate the dominant environmental controls on B and U incor-
poration in planktonic foraminifera. Our findings caution against 
the use of fossil planktonic foraminifera B/Ca and U/Ca as reli-
able proxies for the carbonate system until we have an improved 
mechanistic understanding of how calcification and growth rates 
regulate boron and uranium incorporation into the foraminifer 
test.
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