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Abstract In the present study, large amplitude free vibration of beams resting on variable elastic

foundation is investigated. The Euler–Bernoulli hypothesis and the Winkler model have been

applied for beam and elastic foundation, respectively. The beam is axially loaded and is restrained

by immovable boundary conditions, which yields stretching during vibrations. The energy method

and Hamilton’s principle are used to derive equation of motion, where after decomposition an ordi-

nary differential equation with cubic nonlinear term is obtained. The second order homotopy per-

turbation method is applied to solve nonlinear equation of motion. An explicit amplitude-frequency

relation is achieved from solution with relative error less than 0.07% for all amplitudes. This solu-

tion is applied to study effects of variable elastic foundation, amplitude of vibration and axial load

on nonlinear frequency of beams with simply supported and fully clamped boundary conditions.

Proposed formulation is capable to dealing with any arbitrary distribution of elastic foundation.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Beams are fundamental component in engineering and have

wide applications in design and fabrication of structures and
machines such as tall building, huge cranes, bridges, turbine
and compressor blades. They are also used as simple and accu-

rate model for analysis of complex engineering structures.
Natural frequencies and dynamic response of beam-like struc-
ture in small amplitude vibration studied by many researchers
through analytical and numerical methods and different
aspects have been considered. Mathematical model of small

amplitude vibration is in the form of linear differential equa-
tion which is relatively simple for handling. Nowadays, the
demand for light-weight structures and machines is continu-

ously increasing. These light-weight systems are more flexible
due to their high aspect ratio and external excitation such as
wind load causing large amplitude vibration in them. Large

amplitude vibration induced nonlinear terms in differential
equation of motion. In the case of beam with immovable ends,
axial stretching of the beam during vibration with large ampli-
tude is the source of nonlinearity. The nonlinear vibration of

beams due to the large amplitude of vibration has received
considerable attention by many researchers. Bhashyam and
Prathap [1] presented a Galerkin finite element method for
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Figure 1 Schematic of the beam under axial load and resting on

variable elastic foundation.
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studying nonlinear vibration of beams describable in terms of
moderately large bending theory. Ozkaya et al. [2] study the
nonlinear response of a beam-mass system with immovable

ends by applying the method of multiple scales directly to par-
tial differential equation of motion. Gayesh and Balar [3] study
nonlinear parametric vibration and stability of axially moving

viscoelastic Rayleigh beams, and they derived the partial-
differential equation of motion for large amplitude vibration
through geometrical, constitutive, and dynamical relations.

Abdel-Jaber et al. [4] study nonlinear frequencies of an elasti-
cally restrained tapered beam. They used the nonlinear curva-
ture and the axial shortening due to transverse deflection in the
energy formulation of system. Merrimi et al. [5] investigate the

geometrically nonlinear steady state periodic forced response
of a clamped–clamped beam containing an open crack. The
crack has been modeled as a linear spring in which, for a given

depth, the spring constant remains the same for both direc-
tions. Sedighi et al. [6] derive an analytic solution of transver-
sal oscillation of quintic nonlinear beam with homotopy

analysis method. Baghani et al. [7] study large amplitude free
vibrations and post-buckling of unsymmetrically laminated
composite beams on nonlinear elastic foundation. Lai et al.

[8] derive the analytical solutions for large amplitude vibration
of thin functionally graded beams. Sedighi and Shirazi [9]
study effect of deadzone nonlinear boundary condition on
large amplitude vibration of cantilever beam. There are many

other researches exist on buckling, linear and nonlinear vibra-
tions of beams and plates [10–18].

It is obvious that the accurate analysis of structures

required an understanding of soil–structure interaction. The
surrounding soil increases resistance of buried structures and
significantly changes modal parameters of them. Many practi-

cal cases in engineering related to soil–structure interaction can
be modeled by means of a beam on elastic foundation. The
well-known model for elastic foundations is Winkler. The

Winkler model of elastic foundation is the most preliminary
in which the vertical displacement is assumed to be propor-
tional to the contact pressure at an arbitrary point [19], in
another words, the foundation modeled as a series of closely

spaced and mutually independent linear elastic springs. Differ-
ent problems of beams resting on elastic foundation were stud-
ied and reported in the literature [20–25]. Often, researcher

assumed that the foundation has constant value through the
length of the beam and only limited studies exist for dynamic
analysis of beams on variables foundations. Eisenberger and

Clastornik [26] study free vibration and buckling of the
Euler–Bernoulli beams on variable Winkler foundation.
Zhou [27] presents a general solution to vibration of the
Euler–Bernoulli beams on variable elastic foundation. He

assumed the reaction force of the foundation on the beam as
the external force acting on the beam. Pradhan and Murmu
[28] study thermo-mechanical vibration of sandwich beams

resting on variable Winkler foundation using differential
quadrature method. Kacar et al. [29] apply differential
transform method to investigate free vibration of the Euler–

Bernoulli beams on variable Winkler foundation.
According to literature survey, large amplitude free vibra-

tion of beam resting on variable elastic foundation has not

been studied and for the first time has been studied in this
paper. Equation of motion is obtained from energy method
by invoking Hamilton principle, and then homotopy perturba-
tion method [30–33] is applied to solve governing nonlinear
differential equation. Comparisons are made with studies in
the open literature in which special cases of the present prob-
lem have been studied and very good agreement observed.

Finally, some new and more useful results are extracted from
the present formulation.

2. Mathematical formulation

Consider a straight beam under axial load which resting on
variable Winkler foundation as shown in Fig. 1. The beam

has length L, rectangular cross section with the area of S, the
cross-sectional moment of inertia of I and thickness of h. The
beam was made from isotropic material with E as modulus of

elasticity and q as mass per unit volume. Stiffness of Winkler
foundation changes along the beam length and is the function
of spatial coordinate along the beam length (i.e. �x). Using

Euler–Bernoulli beam hypothesis, the strain energy induced
by large displacement amplitude is given by the following:

P ¼ 1

2

Z L

0

EI
@2�yð�x; �tÞ

@�x2

� �2

d�x
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where �u and �y are axial and transverse displacements, respec-
tively. kð�xÞ is the mathematical expression for variable Winkler
foundation. The kinetic energy is given by the following:

T ¼ 1

2

Z L

0

qS
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d�x ð2Þ

The external work done by axial load can be written as

follows:

W ¼ f

2

Z L

0
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@�x

� �2

d�x ð3Þ

Using the Lagrangian of the system and invoking

Hamilton’s principle, we have the following:

d
Z t2

t1

ðT�PþWÞd�t ¼ 0 ð4Þ

Substituting Eqs. (1)–(3) into Eq. (4), performing the neces-

sary algebra and eliminating axial displacement, the following
partial differential equation is obtained for motion:
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Variable Winkler foundation can be considered as follows:

kð�xÞ ¼ kgð�xÞ ð6Þ
where k is a constant and gð�xÞ is function of the spatial coor-
dinate along the beam length. Some dimensionless parameters

are defined to better handling of equation and better represen-
tation of the numerical results, as follows:

x ¼ �x

L
; y ¼ �y

R
; t ¼ �t

ffiffiffiffiffiffiffiffiffiffiffi
EI

qSL4

s
; F ¼ fL2

EI
; K ¼ kL4

EI
ð7Þ

where R ¼
ffiffi
I
S

q
is the radius of gyration of the cross section.

Substituting dimensionless parameters into Eq. (5), yields the

following:
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in order to solve Eq. (8), separation of variables is applied by
assuming yðx; tÞ ¼ /ðxÞTðtÞ where /ðxÞ is the first eigenmode
of the beam that depends on boundary conditions of beam and

for simply support and clamped boundary conditions pre-
sented in Table 1. TðtÞ is an unknown time-dependent func-
tion. Applying the weighted residual Bubnov–Galerkin

method yields the following:Z 1

0
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Finally, the nonlinear equation is obtained in terms of the

time-dependent variable as follows:

€Tþ aTþ bT3 ¼ 0 ð10Þ
where a and b are as follows:

a¼ a1þa2þa3
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dx4

� �
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Table 1 The first eigenmode of beam with various boundary

conditions.[49].

Boundary

conditions

/ðxÞ

Simply

supported

beam

sinðpxÞ

Fully

clamped

beam

ðcosðXxÞ�coshðXxÞÞ� cosðXÞ�coshðXÞ
sinðXÞ�sinhðXÞ ðsinðXxÞ� sinhðXxÞÞ,

X ¼ 4:7300
It is assumed midpoint of beam subjected to an initial
displacement and zero initial velocity, and accordingly, the
nonlinear equation with initial conditions for large amplitude

vibration of Euler–Bernoulli beam becomes the following:

€Tþ aTþ bT3 ¼ 0; Tð0Þ ¼ A; _Tð0Þ ¼ 0 ð12Þ
Note that A is dimensionless initial displacement or dimen-

sionlessmaximum amplitude of oscillation.Differential equation
is obtained in Eq. (12) known as Duffing nonlinear equation.

3. Analytical solution

There are several methods developed by researchers to derive

analytical solution for nonlinear differential equation such as
homotopy perturbationmethod [30–33], energy balancemethod
[34–36], max–min approach [37–40], Hamiltonian approach

[41–43] and so on [44–47]. Possibility of parametric studies is
most important advantage of these analytical methods rather
than numerical methods. The homotopy perturbation method

is utilized to derive analytical amplitude–frequency relationship
for equation ofmotion in Eq. (12). Thismethod does not depend
upon the assumption of small parameter and is capable to solve

ordinary and partial differential equations.
At first, we establish the following homotopy:

€Tþ 0:T ¼ p½�aT� bT3�; p 2 ½0; 1� ð13Þ
where p is homotopy parameter. When p= 0, Eq. (13)
becomes a linear ordinary differential equation and when

p= 1, it becomes the original nonlinear equation. We consider
T and 0 as series of p in the following form:

T ¼ T0 þ pT1 þ p2T2 . . . ; ð14Þ
0 ¼ x2 � pt1 � p2t2 . . . ; ð15Þ
where t1; t2; . . . are to be determined.

Substituting Eqs. (14) and (15) into Eq. (13) and collecting
terms with identical powers of p, we can find three first linear

equations with initial conditions as follows:

p0 : €T0þx2T0 ¼ 0; T0ð0Þ¼A; _Tð0Þ¼ 0 ð16Þ
p1 : €T1þx2T1 ¼ðm1�aÞT0�bT3

0; T1ð0Þ¼ _T1ð0Þ¼ 0 ð17Þ
p2 : €T2þx2T2 ¼ðm1�aÞT1þm2T0�3bT2

0T1; T2ð0Þ¼ _T2ð0Þ¼ 0 ð18Þ
Analytical solution of Eq. (16) is obtained as follows:

T0ðtÞ ¼ A cosxt; ð19Þ
Substituting Eq. (19) into right-hand side of Eq. (17) gives

the following:

€T1 þ x2T1 ¼ ðm1 � aÞðA cosxtÞ � bðA cosxtÞ3; ð20Þ
Avoiding secular terms in T1 requires eliminating contribu-

tions proportional to cosxt on the right-hand side of Eq. (20),
and therefore we haveZ 2p

x

0

ðm1 � aÞðA cosxtÞ � bðA cosxtÞ3
h i

cosxtdt ¼ 0; ð21Þ

From Eq. (21) we obtain the following:

m1 ¼ aþ 3

4
bA2 ð22Þ

First-order approximate frequency-amplitude relationship
can be obtained by substituting Eq. (22) into Eq. (15) and
setting p = 1 as follows:



Table 2 Comparison between different solutions obtained for

frequency of nonlinear equation in Eq. (12) (a ¼ 1).

bA2 Exact FHPM

|Error%|

SHPM

|Error%|

[48]

|Error%|

1 1.3178 1.3228

(0.379%)

1.3178

(�0%)

1.3164

(0.110%)

10 2.8666 2.9155

(1.706%)

2.8678

(0.042%)

2.8536

(0.455%)

100 8.5336 8.7178

(2.158%)

8.5391

(0.064%)

8.4843

(0.579%)

1000 26.8107 27.4044

(2.214%)

26.8289

(0.068%)

26.6519

(0.592%)

5000 59.9157 61.2454

(2.219%)

59.9566

(0.068%)

59.5599

(0.594%)
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x1 ¼ ffiffiffiffi
m1

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 3

4
bA2

r
ð23Þ

The solution of Eq. (17) can be obtained from Eq. (23) as
follows:

T1ðtÞ ¼ bA3

32x2
1

ðcos 3xt� cosxtÞ ð24Þ

Avoiding secular terms in T2 requires the following:Z 2p
x

0

½ðm1 � aÞT1 þ m2T0 � 3bT2
0T1� cosxtdt ¼ 0; ð25Þ

By substituting T0; T1 from Eqs. (19) and (24) into Eq. (25)
and integrating, we obtain the following:

m2 ¼ � 3

32

b2A4

4aþ 3bA2
ð26Þ

Second-order approximate frequency-amplitude relation-
ship can be obtained by substituting Eqs. (22) and (26) into

Eq. (15) and setting p = 1 as follows:

x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 þ m2

p ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128a2 þ 192abA2 þ 69b2A4

8aþ 6bA2

s
ð27Þ
Figure 2 A comparison between the FHPM and SHPM in

conjunction with the fourth-order Runge–Kutta method for

Eq. (12) (a ¼ 1; A ¼ b ¼ 10).
4. Numerical results

In order to analyze nonlinear frequency of beam-foundation
system, it is necessary to investigate accuracy of obtained

solution for nonlinear Duffing oscillator because nonlinear
frequency of system is determined based on this solution.
Therefore, comparison has been made between solutions

obtained from first-order homotopy perturbation method
(FHPM) in Eq. (23), second-order homotopy perturbation
method (SHPM) in Eq. (27), exact integration method and
second-order energy balance method based on Galerkin

method [48] and the results are presented in Table 2. Also,
the comparison between FHPM and SHPM in conjugation
with fourth-order Runge–Kutta numerical solution is pre-

sented in Fig. 2. It is obvious the amplitude–frequency relation
obtained from SHPM yields high accuracy and is suitable for
analysis of practical problems.

Derived formulation for nonlinear frequency yields funda-
mental natural or linear frequency of system by setting the ini-
tial displacement to zero. To validate accuracy of formulation,

the fundamental natural frequency of beams resting on vari-
able elastic foundation with linear and parabolic distribution
studied by Kacar et al. [29] is re-examined and the results
are tabulated in Table 3. The value of nonlinear to linear

frequency of beam without axial load and elastic foundation
is obtained from SHPM compared with other well-known
studies and the results are shown in Table 4. The results of

the present study show very good agreement with other studies
for determination of linear and nonlinear frequencies.

We assume foundation stiffness continuously decreases or

continuously increases along beam length. One time this con-
tinuous variation has linear pattern with mathematical model
as kðxÞ ¼ 100ð1þ kxÞ and another time this has parabolic

pattern with mathematical model as kðxÞ ¼ 100ð1þ kx2Þ. It is
clear, in both cases, foundation stiffness continuously decreases
from left support to right support when�1 6 k < 0 and contin-

uously increases when 0 < k 6 1. Fig. 3 is given to study
influence of k on nonlinear frequency as observed, when foun-
dation stiffness continuously decreases from left support to

right support, parabolic pattern yields higher frequency while
if foundation stiffness continuously increases from left support
to right support, linear pattern yields higher frequency.

As mentioned in introduction, the foundation is modeled as
a series of closely spaced and mutually independent linear
elastic springs in the Winkler foundation theory. On this basis,

we introduce total stiffness of variable Winkler foundation as
follows:

KTotal ¼
Z 1

0

kðxÞdx ¼ K

Z 1

0

gðxÞdx ð28Þ

We consider three different distributions of elastic founda-
tion along length of beam as follows:

Case 1 : gðxÞ ¼ 1þ 2x

Case 2 : gðxÞ ¼ 1þ 3x2

Case 3 : gðxÞ ¼ p sinðpxÞ
ð29Þ

where Case 1 shows linear variation, Case 2 shows parabolic
variation and Case 3 shows sinusoidal variation of elastic

foundation along length of beam, respectively. Total stiffness
of variable foundation is equal for these cases, when value of
K be the same. Fig. 4 is given to study effect of K on nonlinear

frequency. Three different distributions of Eq. (29) are consid-
ered for variable Winkler foundation. It is clear, by increasing



Table 3 Fundamental linear frequency of the Euler–Bernoulli

beam resting on variable Winkler foundation.

B.C. gðxÞ ¼ 1� 0:2x gðxÞ ¼ 1� 0:2x2

K ¼ 10 K ¼ 102 K ¼ 10 K ¼ 102

S–S Present 10.315 13.690 10.336 13.848

[29] 10.315 13.690 10.336 13.848

C–C Present 22.573 24.301 22.583 24.395

[29] 22.573 24.301 22.583 24.395

Table 4 Nonlinear to linear frequency ratio obtained from

different methods for beam without axial load and elastic

foundation.

A Simply supported beam Fully clamped beam

[10] [14] Present [10] [14] Present

1 1.0897 1.0892 1.0892 1.0572 1.0569 1.0550

2 1.3228 1.3178 1.3178 1.2125 1.2098 1.2031

3 1.6393 1.6257 1.6258 1.4344 1.4263 1.4138

4 1.9999 1.9761 1.9764 1.6171 1.6816 1.6629

Figure 3 Effect of linear and parabolic distribution of founda-

tion on nonlinear frequency (K ¼ 100; A ¼ 0:5).

Figure 4 Effect of K on nonlinear frequency for different

distributions of elastic foundation with same total stiffness

(A ¼ 0:5).

Figure 5 Effect of dimensionless amplitude on nonlinear

frequency for different distributions of elastic foundation with

same total stiffness (K ¼ 100).
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K nonlinear frequency increased in all cases. The interesting
point is that, for any value of K, sinusoidal variation yields
higher frequency rather than linear and parabolic variations
of elastic foundation, although the value of KTotal is equal

for three cases. Fig. 5 shows the variation of nonlinear
frequency versus dimensionless amplitude for different distri-
butions according to Eq. (29). Once again, it is observed sinu-

soidal variation yields higher frequency although the value of
KTotal is equal for three cases. Also, it is almost true, if we
say beam with clamp boundary conditions is more sensitive
to variation of initial amplitude rather than beam with simply



Table 5 Effect of axial load, dimensionless amplitude and distribution type of elastic foundation on nonlinear frequency.

Simply supported beam Fully clamped beam

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

A= 0.1 F= 5 15.75575 15.26582 17.745714 25.29042 24.923337 26.858019

F= 10 14.103038 13.55350 16.29608 24.043613 23.65719 25.687413

F= 15 12.228967 11.59092 14.704228 22.728514 22.319335 24.46085

A= 1 F= 5 16.317876 15.84524 18.246923 26.37416 26.022271 27.881258

F= 10 14.727973 14.20247 16.840276 25.180702 24.811868 26.75518

F= 15 12.94396 12.34260 15.304789 23.927703 23.539214 25.579525

A= 5 F= 5 26.312323 26.01669 27.569376 44.911757 44.70195 45.829805

F= 10 25.338942 25.03096 26.644937 44.20747 43.994044 45.140898

F= 15 24.32353 24.00141 25.68505 43.490854 43.273605 44.440517
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boundary conditions. Effect of axial load on nonlinear
frequency for different distributions according to Eq. (29) is
presented in Table 5 and plotted in Fig. 6. It should be noted,
in Fig. 6, anywhere nonlinear frequency becomes zero, the

value of axial load is known as nonlinear post-buckling load.
Similar to the pervious results in Figs. 4 and 5, it is observed

in the presence of axial load sinusoidal distribution yields

higher frequency and higher post-buckling load. Also, it is
noticed frequency slope of variation versus axial load is the
same for three cases of distribution when axial load is not near

to post-buckling load.
It is seen that the sinusoidal distribution of Winkler foun-

dation has greater effect on nonlinear frequency rather than

linear and parabolic distributions while total stiffness of vari-
able Winkler foundation is equal for three cases. It is almost
Figure 6 Effect of axial load on nonlinear frequency for different

distributions of elastic foundation with same total stiffness

(K ¼ 100; A ¼ 1).
true if we say this phenomenon happened because sinusoidal
distribution is more close to fundamental mode shape of sim-

ply support and clamped beams. In better words, for maximiz-
ing nonlinear frequency of beam resting on variable Winkler
foundation, the distribution of foundation must be close to

fundamental mode shape of beam.
5. Conclusion

In this study, large amplitude free vibration of axially loaded
Euler–Bernoulli beams resting on variable elastic foundation
is investigated. The Winkler model is applied to elastic founda-

tion. It is assumed beam has immovable boundary conditions
which lead to mid-plane stretching during vibrations. Simply
support and fully clamp boundary conditions are used as
immovable ends. Energy method and Hamilton’s principle

are used to derive equation of motion and partial differential
equation in time and space obtained which reduced to ordi-
nary differential equation with cubic nonlinear term after

decomposition. Cubic nonlinear term is induced by mid-
plane stretching. The second order homotopy perturbation
method is applied to achieve explicit amplitude-frequency rela-

tion for equation of motion. Derived solution yields high level
of accuracy with relative error less than 0.07% for all ampli-
tude and is suitable for practical problems due to high accu-

racy and convenience for application. After definition
concept of total stiffness of variable Winkler foundation, effect
of distribution of elastic foundation along beam length is ana-
lyzed. Results show when distribution of elastic foundation has

mathematical function near to fundamental eigenmode of
beam, nonlinear frequency and post-buckling load increased.
This problem handled for first time and results are new, and

also, proposed formulation is capable to dealing with any
arbitrary distribution of elastic foundation.
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