$L U$ factorization of the Vandermonde matrix and its applications

Halil Oruç
Department of Mathematics, Dokuz Eylül University, Fen Edebiyat Fakültesi, Tinaztepe Kampüsï̈ 35160 Buca İzmir, Turkey

Received 1 September 2005; accepted 16 October 2006

Abstract

A scaled version of the lower and the upper triangular factors of the inverse of the Vandermonde matrix is given. Two applications of the q-Pascal matrix resulting from the factorization of the Vandermonde matrix at the q-integer nodes are introduced. (C) 2007 Elsevier Ltd. All rights reserved.

Keywords: Vandermonde matrix; Symmetric functions; Triangular and bidiagonal factorization; q-Pascal matrix; q-difference equation

1. Introduction

A Vandermonde matrix is defined in terms of scalars $x_{0}, x_{1}, \ldots, x_{n}$ by

$$
V=V\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{cccc}
1 & x_{0} & \ldots & x_{0}^{n} \\
1 & x_{1} & \ldots & x_{1}^{n} \\
\vdots & \vdots & & \vdots \\
1 & x_{n} & \ldots & x_{n}^{n}
\end{array}\right] .
$$

Vandermonde matrices play an important role in approximation problems such as interpolation, least squares and moment problems. The special structure of V makes it possible to investigate not only explicit formulas for $L U$ factors of V and V^{-1} but also fast solutions of a Vandermonde system $V \mathbf{x}=\mathbf{b}$. See [9] and the references therein. Interestingly, complete symmetric functions and elementary symmetric functions appear in the $L U$ factorization of the Vandermonde matrix V and its inverse V^{-1} respectively [8,9]. Taking $L U$ factors into account, [8] deduced onebanded (bidiagonal) factorization of V and hence achieved a well known result that V is totally positive matrix if $0<x_{0}<x_{1}<\cdots<x_{n}$. Note that a matrix is totally positive if the determinant of every square submatrix is positive. The paper [9] investigates the $L U$ factors of V and V^{-1} at $x_{0}=0, x_{i}=1+q+\cdots+q^{i-1}, i=1,2, \ldots, n$, in which q-Pascal and q-Stirling matrices are introduced. Recently, based on [8], the work [12] has scaled the elements of $L U$ of V to give a simpler formulation. There also follows a simpler one-banded factorization of V.

In this work, using [9,12] we simplify the formula [9, Theorem 3.2] for the $L U$ factors of V^{-1} in Section 2, and in turn a shorter proof of one-banded factorization of the upper triangular U is obtained. In Section 3, two applications of the q-Pascal matrix, the subdivision formula for q-Bernstein Bézier curves and the solution of a system of first-order q-difference equations, are presented.

[^0]
2. $L \boldsymbol{U}$ factors of $\boldsymbol{V}^{\boldsymbol{- 1}}$

When $V=L U$ where L is a lower triangular matrix with ones on the main diagonal and U is an upper triangular matrix (Doolittle method), the explicit formulas for the elements of the matrices L and U are given in [8]. However if we let U have ones on the main diagonal (Crout method), namely scaling the elements of upper triangular matrix in the Doolittle method, then we obtain the formulas [12, Theorem 2] and [11, (1.61), (1.62)]. Considering the Crout method on V^{-1}, that is multiplying the matrices \widehat{D}^{-1} and \widehat{L}^{-1} in [9, Theorem 3.2], we obtain the following simplification:

Theorem 2.1. Let $V^{-1}=U^{-1} L^{-1}$. Then Crout's factorization of V^{-1} satisfies

$$
\begin{align*}
& \left(U^{-1}\right)_{i, j}=(-1)^{i+j} \sigma_{j-i}\left(x_{0}, \ldots, x_{j-1}\right), \quad 0 \leqslant i \leqslant j \leqslant n, \tag{2.1}\\
& \left(L^{-1}\right)_{i, j}=\frac{1}{\prod_{\substack{k=0 \\
k \neq j}}^{i}\left(x_{j}-x_{k}\right)}, \quad 0 \leqslant j \leqslant i \leqslant n, \tag{2.2}
\end{align*}
$$

where σ_{k} denotes the k th elementary symmetric function.
Note that a generating function for the elementary symmetric functions is

$$
\left(1-x_{1} x\right)\left(1-x_{2} x\right) \ldots\left(1-x_{n} x\right)=\sum_{k=0}^{n}(-1)^{k} \sigma_{k}\left(x_{1}, \ldots, x_{n}\right) x^{k}
$$

and its recurrence relation is

$$
\begin{equation*}
\sigma_{k}\left(x_{1}, \ldots, x_{n}\right)=\sigma_{k}\left(x_{1}, \ldots, x_{n-1}\right)+x_{n} \sigma_{k-1}\left(x_{1}, \ldots, x_{n-1}\right) \tag{2.3}
\end{equation*}
$$

See [9]. Although the above factorization Theorem 2.1 and the factorization in [12] reduce computational work slightly, they do not reveal a nice structure on the factors L and U at the q-integer nodes, q-Pascal and q-Stirling matrices respectively.

Now let us observe that the sum of the i th row of L^{-1} in (2.2) vanishes for $i=1,2, \ldots, n$ since $L L^{-1}=I$ and L has leading column consisting of ones. Alternatively, one may show that

$$
\begin{equation*}
\left.\sum_{j=0}^{i} \frac{1}{\substack{k=0 \\ i \\ k \neq j}} \right\rvert\,\left(x_{j}-x_{k}\right) \quad=0 \tag{2.4}
\end{equation*}
$$

using the interpolating polynomial $p_{n}(x)$ for a function $f(x)$ at distinct points $x_{0}, x_{1}, \ldots, x_{n}$ in Newton form:

$$
p_{n}(x)=f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+\cdots+f\left[x_{0}, x_{1}, \ldots, x_{n}\right]\left(x-x_{0}\right) \ldots\left(x-x_{n-1}\right),
$$

where the divided difference $f\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is expressed as the symmetric sum

$$
\begin{equation*}
f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\sum_{j=0}^{n} \frac{f\left(x_{j}\right)}{\prod_{\substack{k=0 \\ k \neq j}}^{n}\left(x_{j}-x_{k}\right)} \tag{2.5}
\end{equation*}
$$

Since the interpolating polynomial p_{n} reproduces a polynomial of degree at most n, see [11], it follows from $f(x)=1$ that

$$
f\left[x_{0}, x_{1}, \ldots, x_{i}\right]=0, \quad i=1,2, \ldots, n .
$$

Then Eq. (2.5) reduces to (2.4).

Another important fact is that the entries of V^{-1} can be obtained explicitly from Theorem 2.1 as

$$
\begin{equation*}
\left(V^{-1}\right)_{i j}=(-1)^{n-i} \frac{\sigma_{n-i}\left(x_{0}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n-1}\right)}{\prod_{\substack{k=0 \\ k \neq j}}^{n}\left(x_{j}-x_{k}\right)} \tag{2.6}
\end{equation*}
$$

The last formula is well known; see [5,6]. The study [5] finds the formulas for $L D U$ factors of the matrices V and V^{-1} without using properties of elementary or complete symmetric functions. The benefit of the use of symmetric functions is in computing the entries of $L U$ factors of V and V^{-1} recursively; see [9]. The paper [7] analyzes the factorization of the inverse of a Cauchy-Vandermonde matrix as a product of bidiagonal matrices to develop fast algorithms for interpolation.

We end this section by giving a shorter proof expressing U^{-1} as a product of one-banded matrices in [9]. First, for $k=1,2, \ldots, n$ define $(n+1) \times(n+1)$ matrices E_{k} by

$$
\left(E_{k}\right)_{i j}= \begin{cases}1, & i=j \\ -x_{k-1}, & i=j-1 \text { and } j \geqslant k .\end{cases}
$$

It is proved in [9] that $U^{-1}=E_{1} E_{2} \ldots E_{n}$. Now using the recurrence relation (2.3) observe that $U^{-1}=E_{1} \bar{U}_{n-1}$ where

$$
\bar{U}_{n-1}=\left[\begin{array}{cc}
1 & \mathbf{0} \\
\mathbf{0} & U_{n-1}
\end{array}\right]
$$

and $\mathbf{0}$ denotes an appropriate zero matrix, and $n \times n$ matrix U_{n-1} is defined by

$$
\left(U_{n-1}\right)_{i j}=(-1)^{i+j} \sigma_{j-i}\left(x_{1}, \ldots, x_{n-1}\right), \quad 0 \leqslant i \leqslant j \leqslant n-1 .
$$

Applying the same process once more we have $\bar{U}_{n-1}=E_{2} \bar{U}_{n-2}$ where

$$
\bar{U}_{n-2}=\left[\begin{array}{cc}
I_{2} & \mathbf{0} \\
\mathbf{0} & U_{n-2}
\end{array}\right]
$$

and I_{2} is the 2×2 identity matrix, and

$$
\left(U_{n-2}\right)_{i j}=(-1)^{i+j} \sigma_{j-i}\left(x_{2}, \ldots, x_{n-1}\right), \quad 0 \leqslant i \leqslant j \leqslant n-2 .
$$

Thus repeating the above procedure $n-3$ times more, it yields the required bidiagonal product $E_{1} E_{2} \ldots E_{n}=U^{-1}$.

3. Applications of the \boldsymbol{q}-Pascal matrix

The Bernstein-Bézier representations are most important tools for computer aided design purposes; see [4]. A parametric Bézier curve P defined by

$$
\begin{equation*}
\mathrm{P}(t)=\sum_{i=0}^{n} \mathrm{~b}_{i}\binom{n}{i} t^{i}(1-t)^{n-i} \quad 0 \leqslant t \leqslant 1 \tag{3.1}
\end{equation*}
$$

where $\mathrm{b}_{i}, i=0,1, \ldots, n \in \mathbb{R}^{2}$ or \mathbb{R}^{3}, are given control points, mimics the shape of the control polygon. In the work [10], the representation (3.1) is generalized by using a one-parameter family of Bernstein-Bézier polynomials, so called q-Bernstein Bézier curves. They were defined as follows:

$$
\mathrm{P}(t)=\sum_{i=0}^{n} \mathrm{~b}_{i}\left[\begin{array}{c}
n \tag{3.2}\\
i
\end{array}\right] t^{i} \prod_{j=0}^{n-i-1}\left(1-q^{j} t\right)
$$

where an empty product denotes 1 , the parameter q is a positive real number and $[r]$ denotes a q-integer, defined by

$$
[r]= \begin{cases}\left(1-q^{r}\right) /(1-q), & q \neq 1, \\ r, & q=1\end{cases}
$$

The q-binomial coefficient $\left[\begin{array}{c}n \\ r\end{array}\right]$ which is the generating function for restricted partitions, see [2], is defined by

$$
\left[\begin{array}{l}
n \\
r
\end{array}\right]=\frac{[n][n-1] \ldots[n-r+1]}{[r][r-1] \ldots[1]}
$$

for $n \geqslant r \geqslant 1$, and has the value 1 when $r=0$ and the value zero otherwise. Note that this reduces to the usual binomial coefficient when we set $q=1$ and (3.2) reduces to (3.1). We now generalize the well known subdivision formula, see [4], of the Bernstein Bézier curves which may be used to subdivide the curve P in (3.2).

Theorem 3.1. Let $B_{i}^{n}(t)=\left[\begin{array}{c}n \\ i\end{array}\right] t^{i} \prod_{j=0}^{n-i-1}\left(1-q^{j} t\right)$ be the q-Bernstein Bézier polynomial and let $c \in(0,1)$ be a fixed real. Then

$$
\begin{equation*}
B_{i}^{n}(c t)=\sum_{j=0}^{n} B_{i}^{j}(c) B_{j}^{n}(t) \tag{3.3}
\end{equation*}
$$

Proof. Let M be an $(n+1) \times(n+1)$ matrix with the elements $M_{i j}=B_{j}^{i}(c t)$, that is

$$
M_{i j}= \begin{cases}{\left[\begin{array}{l}
i \\
j
\end{array}\right] c^{j} t^{j} \prod_{k=0}^{i-j-1}\left(1-q^{k} c t\right),} & 0 \leqslant j<i \leqslant n, \\
c^{i} t^{i}, & \\
0, & \\
0, j= \\
& \text { otherwise } .\end{cases}
$$

Since the eigenvalues of the matrix M are distinct it can be written as $M=P D P^{-1}$ where D is a diagonal matrix whose elements $D_{i i}=c^{i} t^{i}$ are the eigenvalues of M. It is computed from the product that the elements $P_{i j}$ of P are the entries of the q-Pascal matrix $P_{i j}=\left[\begin{array}{c}i \\ j\end{array}\right]$, and the elements of the matrix P^{-1} are $\left(P^{-1}\right)_{i j}=$ $(-1)^{i-j} q^{(i-j)(i-j-1) / 2}\left[\begin{array}{l}i \\ j\end{array}\right]$. Now we can write $M=P D_{1} D_{2} P^{-1}$, where D_{1} and D_{2} are diagonal matrices with elements $\left(D_{1}\right)_{i i}=t^{i}$ and $\left(D_{2}\right)_{i i}=c^{i}, i=0,1, \ldots, n$. Then it follows from

$$
M=P D_{1} P^{-1} P D_{2} P^{-1}=R S
$$

that the matrices R and S have the entries $R_{i j}=B_{j}^{i}(t)$ and $S_{i j}=B_{j}^{i}(c)$ respectively. Thus, M has the elements

$$
M_{n i}=B_{i}^{n}(c t)=\sum_{j=0}^{n} R_{n j} S_{j i}=\sum_{j=0}^{n} B_{j}^{n}(t) B_{i}^{j}(c), \quad 0 \leqslant i \leqslant n .
$$

which completes the proof.
We note that using the symmetric functions, q-Pascal matrices P and P^{-1} are obtained in the $L U$ factorization of the Vandermonde matrix and in the inverse of the Vandermonde matrix at the q-integer nodes respectively, see [9].

In what follows, we relate the q-Pascal matrix P to an $(n+1) \times(n+1)$ nilpotent matrix H of index $n+1$ defined by

$$
H_{i j}= \begin{cases}{[i],} & \text { if } i=j+1,0 \leqslant i, j \leqslant n \\ 0, & \text { otherwise. }\end{cases}
$$

We first define, see [3, p. 490], the q-analogue of the exponential series

$$
\begin{equation*}
E_{q}(x)=\sum_{k=0}^{\infty} \frac{x^{k}}{[k]!} . \tag{3.4}
\end{equation*}
$$

This series is absolutely convergent only in $|x|<(1-q)^{-1}$ when $|q|<1$. However, another q-series

$$
\begin{equation*}
\mathrm{E}_{q}(x)=\sum_{k=0}^{\infty} q^{k(k-1) / 2} \frac{x^{k}}{[k]!} \tag{3.5}
\end{equation*}
$$

is convergent for all x and $|q|<1$.

Theorem 3.2. The q-Pascal matrix P is given by

$$
\begin{equation*}
P=\sum_{k=0}^{\infty} \frac{H^{k}}{[k]!} . \tag{3.6}
\end{equation*}
$$

Proof. First we see that the above series (3.6) is indeed finite since $H^{k}=\mathbf{0}$ for all $k \geqslant n+1$. Then it can be calculated from the definition of H that

$$
H^{j} e_{i}=[i+j] \ldots[i+1] e_{i+j},
$$

where $e_{i}=0,1, \ldots, n$ denote the unit vectors in \mathbb{R}^{n+1}. Now, a generic element on the right of (3.6) is

$$
E_{q}(H)_{i j}=e_{i}^{T} E_{q}(H) e_{j}=\sum_{k=0}^{n} e_{i}^{T} \frac{H^{k}}{[k]!} e_{j} .
$$

Thus we obtain

$$
E_{q}(H)_{i j}=\sum_{k=0}^{n} e_{i}^{T} \frac{[j+k] \ldots[j+1]}{[k]!} e_{k+j}=\sum_{k=0}^{n} \frac{[j+k] \ldots[j+1]}{[k]!} \delta_{i, j+k},
$$

where δ denotes the Kronecker delta function. Shifting the index of the summation gives

$$
\frac{[i] \ldots[i-j+1]}{[i-j]!}=\left[\begin{array}{l}
i \\
j
\end{array}\right]=P_{i j}
$$

and this completes the proof.
It is well known, see [1], that the initial value problem in \mathbb{R}^{n+1},

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{y}(t)=H_{1} \mathbf{y}(t), \quad \mathbf{y}(0)=\mathbf{y}_{0}
$$

where H_{1} denotes the matrix H with $q=1$, has the solution $\mathbf{y}(t)=e^{H_{1} t} \mathbf{y}(0)$. Next we demonstrate that the q-Pascal matrix appears as the solution of the first-order q-difference equation in \mathbb{R}^{n+1}. As in [3], we define the q-difference operator \mathcal{D}_{q} by

$$
\mathcal{D}_{q} f(x)=\frac{f(q x)-f(x)}{q x-x}, \quad x \neq 0 .
$$

Provided that $f^{\prime}(x)$ exists,

$$
\lim _{q \rightarrow 1} \mathcal{D}_{q} f(x)=f^{\prime}(x)
$$

It can be readily verified that for integers $r \geqslant 1, \mathcal{D}_{q}\left(x^{r}\right)=[r] x^{r-1}$. Then the solution \mathbf{y} of the q-difference equation

$$
\mathcal{D}_{q} \mathbf{y}(t)=H \mathbf{y}(t), \quad \mathbf{y}(0)=\mathbf{y}_{0}
$$

is $\mathbf{y}(t)=E_{q}(H t) \mathbf{y}_{0}$. It follows from (3.6) that the matrix $E_{q}(H t)$ has entries of the q-Pascal matrix

$$
E_{q}(H t)_{i j}=t^{i-j}\left[\begin{array}{l}
i \\
j
\end{array}\right], \quad i \geqslant j \geqslant 0 .
$$

It is worth noting that the polynomial p defined by

$$
p(t)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] t^{k},
$$

the sum of the nth row of $E_{q}(H t)$, is known as the Rogers-Szegö polynomial [2].

References

[1] L. Aceto, D. Trigante, The matrices of Pascal and other greats, Amer. Math. Monthly 108 (2001) 232-244.
[2] G.E. Andrews, The Theory of Partitions, Cambridge University Press, Cambridge, 1998.
[3] G.E. Andrews, R. Askey, R. Roy, Special functions, in: Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1999.
[4] G. Farin, Curves and Surfaces for CAGD, A Practical Guide, 5th ed., Academic Press, San Diego, 2002.
[5] I. Gohberg, I. Koltracht, Triangular factors of Cauchy and Vandermonde matrices, Integral Equations Operator Theory 26 (1996) 46-59.
[6] N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, 2002.
[7] J.J. Martínez, J.M. Peña, Factorization of Cauchy-Vandermonde matrices, Linear Algebra Appl. 284 (1998) 229-237.
[8] H. Oruç, G.M. Phillips, Explicit factorization of the Vandermonde matrix, Linear Algebra Appl. 315 (2000) 113-123.
[9] H. Oruç, H.K. Akmaz, Symmetric functions and the Vandermonde matrix, J. Comput. Appl. Math. 172 (2004) 49-64.
[10] H. Oruç, G.M. Phillips, q-Bernstein polynomials and Bézier curves, J. Comput. Appl. Math. 151 (2003) 1-12.
[11] G.M. Phillips, Interpolation and Approximation by Polynomials, Springer-Verlag, New York, 2003.
[12] S.L. Yang, On the $L U$ factorization of the Vandermonde matrix, Discrete Appl. Math. 146 (2005) 102-105.

[^0]: E-mail address: halil.oruc @ deu.edu.tr.

