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Abstract

In this paper we study the transfer of the property of being a Strong Mori domain. In particular
we give the characterizations of Strong Mori domains in certain types of pullbacks. We show
that if R is a Strong Mori domain which is not a 2eld, then the polynomial ring R[{X�}�∈�] is
also a Strong Mori domain and w-dimR[{X�}�∈�] =w-dimR. We also determine necessary and
su8cient conditions in order that the group ring R[X ;G] or the semigroup ring R[X ; S] should
be a Strong Mori domain with w-dimension ≤ 1. c© 2001 Elsevier Science B.V. All rights
reserved.

MSC: 13A15; 13F05; 13E99; 13B99

1. Introduction

Throughout this paper we shall use R to denote a commutative integral domain with
quotient 2eld K . Let F(R) be the set of nonzero fractional ideals of R. A star operation
on R is a mapping I→ I∗ of F(R) into F(R) such that for all A; B∈F(R) and for all
a∈K \ {0},
(i) (a)∗ = (a) and (aA)∗ = aA∗,
(ii) A⊆A∗ and A⊆B implies A∗ ⊆B∗, and

(iii) (A∗)∗ =A∗.
An ideal A∈F(R) is called a ∗-ideal if A=A∗ and A is called a ∗-ideal of 2nite type
if there exists a 2nitely generated B∈F(R) such that A=B∗. A star operation is said
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to be of 2nite character if A∗ =
⋃ {B∗ |B is a 2nitely generated ideal contained in A}

for each A∈F(R).
For A∈F(R), the operation A→Av = (A−1)−1 is called the v-operation whereas the

operation A→At =
⋃
Bv, where B ranges over 2nitely generated subideals of A, is

called the t-operation. These are well-known examples of star operations and the
t-operation has 2nite character while the v-operation need not have 2nite character.
In many literatures a v-ideal is called a divisorial ideal.

An ideal J of R is called a Glaz–Vasconcelos ideal (GV-ideal), denoted by J ∈GV (R),
if J is 2nitely generated and J−1 =R. For A∈F(R), the operation A→Aw = {x∈K | Jx⊆
A for some J ∈GV (R)} is called the w-operation and it gives another example of a
star operation of 2nite character. In [16] a w-ideal is called a semi-divisorial ideal and
in [18] an F∞-ideal.

In Section 2 we show that the w-operation is a star operation induced by overrings.
Recall that a Mori domain is a domain satisfying ACC on integral v-ideals and a

Strong Mori (SM) domain is a domain satisfying ACC on integral w-ideals [11]. It is
obvious that an SM domain is a Mori domain.

In Section 3 we give necessary and su8cient conditions for certain pullback type con-
structions to be SM domains. Using this characterization we show that the w-analogue
of the converse of Eakin’s Theorem does not hold.

In Section 4 we study the polynomial ring R[{X�}�∈�] and the formal power series
ring R<{X�}�∈�=1, where {X�}�∈� is an arbitrary set of indeterminates over R. If R
is a Noetherian domain, then R[X ] is also a Noetherian domain by the Hilbert Basis
Theorem. But if � is in2nite, then R[{X�}�∈�] is not Noetherian. In Proposition 4.3
we show that R[{X�}�∈�] is a Mori domain. More generally, using the Hilbert Basis
Theorem for SM domains we show that if R is an SM domain then R[{X�}�∈�] is
also an SM domain [Theorem 4.7]. We also show that if R is a Noetherian domain
then R<{X�}�∈�=1 is an SM domain [Proposition 4.9].

In the 2nal section we study the group ring R[X ;G] and the semigroup ring R[X ; S],
where G is a torsion-free abelian group and S is a torsion-free cancellative add-
itive semigroup containing 0. In Theorems 5.8 and 5.9 we determine necessary and
su8cient conditions under which R[X ;G] (resp., R[X ; S]) is an SM domain with
w-dimR[X ;G]≤ 1 (resp., w-dimR[X ; S] ≤ 1). Since every Krull domain is an SM
domain with w-dimension ≤ 1, those are generalizations of [24, Proposition 3.3] and
[3, Proposition 5.11], respectively.

2. The v-, t-, w-operations

Given a star operation ∗ on R, a proper integral ∗-ideal maximal with respect to
being a ∗-ideal is called a maximal ∗-ideal and a maximal ∗-ideal is prime. We denote
the set of all maximal ∗-ideals of R by ∗-max(R).

Suppose that ∗ is of 2nite character. Then any proper ∗-ideal is contained in a
maximal ∗-ideal (so the set ∗-max(R) is always nonempty) and any prime ideal minimal
over a ∗-ideal is a ∗-ideal.
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Recall that the w- and t-operations have 2nite character and for A∈F(R); A⊆Aw ⊆
At ⊆Av.

Lemma 2.1. Let R be an integral domain. Then w-max(R) = t-max(R).

Proof. Let Q be a maximal w-ideal of R. Then Q⊆Qt ⊆R. Since every t-ideal is
a w-ideal, Q=Qt or Qt =R. Suppose Qt =R. Then there exists a 2nitely generated
ideal J of R such that J ⊆Q and Jv =R. Thus since J ∈GV (R) and J ⊆Q; Qw =R.
A contradiction! Therefore Q=Qt , i.e., Q is a prime t-ideal of R. Since every t-ideal
is a w-ideal and Q is a maximal w-ideal, Q is a maximal t-ideal.

Conversely let Q be a maximal t-ideal of R. Then Q is a w-ideal. Let M be a
maximal w-ideal of R containing Q. Then by the above argument M is a t-ideal.
Therefore by maximality of Q; Q=M , i.e., Q is a maximal w-ideal of R.

Proposition 2.2. The ∗-operation induced by the mapping A→A∗ =
⋂ {ARP |P ∈

t-max(R)} is just the w-operation.

Proof. Since the w-operation has 2nite character, Aw =
⋂ {AwRP |P ∈w-max(R)} for

all A∈F(R) [17, Proposition 4]. Let x∈AwRP . Then there is an s∈R \ P such that
sx∈Aw. So for some J ∈GV (R); Jsx⊆A. Now since P is a w-ideal, J*P, and hence
sx∈AP , i.e., x∈AP . Thus since AwRP =ARP and w-max(R) = t-max(R); Aw =A∗.

The reader may consult [2] for the star operations induced by overrings. By Proposi-
tion 2.2, we can say that the equivalent conditions in [2, Theorem 5] (resp., [2, Theorem
6]) are just the necessary and su8cient conditions for w= t in a Mori domain (resp.,
an integrally closed domain).

Theorem 2.3 (Anderson [2, Theorem 5]). Let R be a Mori domain. Then the follow-
ing statements are equivalent:
(1) At =

⋂ {ARP |P ∈ t-max(R)} for each A∈F(R).
(2) (A ∩ B)t =At ∩ Bt for all A; B∈F(R).
(3) (A∩B)t =At ∩Bt for all nonzero :nitely generated integral ideals A and B of R.
(4) (A :R B)t = (At :R Bt) for all A∈F(R) and for all nonzero :nitely generated frac-

tional ideals B of R.
(5) (A :R B)t = (At :R Bt) for all nonzero :nitely generated integral ideals A and B

of R.
(6) For each maximal t-ideal P of R; RP is a one-dimensional Gorenstein domain.
(7) For each height one prime ideal P of R; RP is Gorenstein and R=

⋂ {RP |ht P=1}.
(8) At =

⋂ {ARP | ht P= 1} for each A∈F(R).

Theorem 2.4 (Anderson [2, Theorem 6]). Let R be an integrally closed domain. Then
the following statements are equivalent:
(1) R is a Pr?ufer v-multiplication domain.
(2) (A ∩ B)t =At ∩ Bt for all A; B∈F(R).
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(3) (A∩B)t =At ∩Bt for all nonzero :nitely generated integral ideals A and B of R.
(4) (A :R B)t = (At :R Bt) for all A∈F(R) and for all nonzero :nitely generated frac-

tional ideals B of R.
(5) (A :R B)t = (At :R Bt) for all nonzero :nitely generated integral ideals A and B of

R.
(6) At =

⋂ {ARP |P ∈ t-max(R)} for all A∈F(R).

Corollary 2.5. In a Krull domain; w= t= v.

A fractional ideal A of R is said to be ∗-invertible if there exists a fractional ideal B
with (AB)∗ =R and in this case we can take B=A−1. An integral domain R is said to
be a PrLufer v-multiplication domain (PVMD) if each nonzero 2nitely generated ideal is
t-invertible, or equivalently, if RP is a valuation domain for all P ∈ t-max(R). In [12],
a w-multiplication domain is de2ned to be a domain in which each nonzero 2nitely
generated ideal is w-invertible. It is clear that a w-multiplication domain is a PVMD.
In fact since a PVMD is integrally closed, Theorem 2.4 implies w= t in a PVMD. So
they are the same concepts, which also follows from the next lemma.

Lemma 2.6. Let A∈F(R). Then A is w-invertible if and only if A is t-invertible.

Proof. It follows from Lemma 2.1. Indeed, A is w-invertible ⇔ AA−1 is contained in
no maximal w-ideal ⇔ AA−1 is contained in no maximal t-ideal ⇔ A is t-invertible.

Therefore we can replace “t-invertibility” by “w-invertibility” in all statements con-
cerning t-invertibility. For results on t-invertibility, see [23,21,4].

Corollary 2.7. A PVMD is the same as a w-multiplication domain.

3. Pullbacks and SM domains

In [11,12] Fanggui and McCasland introduced an SM domain, which is a domain
satisfying ACC on integral w-ideals, and they proved w-operation analogues of several
theorems holding in a Noetherian domain. In this section we characterize SM domains
in certain types of pullback constructions.

Recall 2rst some terminology. Let M be a torsion-free R module. M is called a
w-module if J ∈GV (R); x∈M ⊗ K , and Jx⊆M imply x∈M . M is a w-ideal if M
is an ideal of R and is also a w-module. The w-envelope of M is the set given by
Mw = {x∈M ⊗ K | Jx⊆M for some J ∈GV (R)}. Let T be an overdomain of R. If T
is a w-module (as an R-module) then we say that T is a w-overdomain of R. It is
clear that for any overdomain T of R, Tw is a w-overdomain of R. A w-module M is
called a Strong Mori module (SM module) if M satis2es ACC on w-submodules.
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R is an SM domain if R is an SM module. The w-dimension of R (denoted by
w-dim(R)) is de2ned by sup{ht P |P ∈w-max(R)}.

Below, we list for easy reference several facts which we shall need in the sequel.

Theorem 3.1 (Fanggui and McCasland [11,12]). Let R be an integral domain.

(1) R is an SM domain if and only if Rp is Noetherian for every P ∈w-max(R)
and each nonzero element of R lies in only :nitely many maximal w-ideals.
Furthermore; if R is an SM domain; then R=

⋂ {Rp |P ∈w-max(R)}.
(2) (The Hilbert Basis Theorem for SM domains) Let R be an SM domain; then

R[X ] is likewise an SM domain.
(3) (The Cohen Theorem for SM domains) R is an SM domain if and only if each

prime w-ideal of R is of :nite type.
(4) (Generalized PIT for SM domains) Let R be an SM domain and let I = (a1; : : : ;

an)w be a w-ideal of R. If P is a prime ideal of R minimal over I; then htP ≤ n.
(5) R is an SM domain if and only if every :nite type torsion-free w-module over

R is an SM module.

Corollary 3.2. Let R be an SM domain and let T be a :nite type w-overdomain of
R. Then T is an SM domain.

Proof. Let Q be a prime w-ideal of T . Then by [12, Lemma 3:1] Q is a w-module
over R. Since T is an SM module (Theorem 3.1(5)), Q is a 2nite type w-module over
R, that is, there exists a 2nitely generated R-module A such that Q=Aw = {x∈A ⊗
K | Jx⊆A for some J ∈GV (R)}. We claim that Q= (AT )w = {x∈ qf(T ) | Jx⊆AT for
some J ∈GV (T )}. If x∈Q, then Jx⊆A for some J ∈GV (R), which implies JTx⊆AT .
Since by [12, Lemma 3:1] JT ∈GV (T ); x∈ (AT )w, and hence Q⊆ (AT )w. Since Q is
a w-ideal of T , the opposite inclusion is clear. Thus each prime w-ideal of T is of
2nite type, so that T is an SM domain (Theorem 3.1(3)).

It is well known that if R⊂T are rings with T Noetherian and T a 2nitely generated
R-module, then R is Noetherian. But its w-analogue, i.e., the converse of Corollary 3.2
does not hold. We will construct a counter example by using the next proposition.

Proposition 3.3. Let T be a quasi-local domain with maximal ideal M �= (0); let
k(T ) =T=M be the residue :eld; let & : T→ k(T ) be the natural projection; and let
D be a proper subring of k(T ). Let R=&−1(D) be the domain arising from the
following pullback diagram of canonical homomorphisms:

R −−−−−→ D�
�

T
&−−−−−→ k(T )
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Then the following statements are equivalent:
(1) R is an SM domain.
(2) R is Noetherian.
(3) T is Noetherian; D is a :eld; and [k(T ) : D]¡∞.

Proof. Assume that R is an SM domain. Then since R is a Mori domain, D is a 2eld
[5, Proposition 3:4] and so M is the unique maximal ideal of R. Moreover M = (R : T )
is a divisorial ideal of R, so that M is the unique maximal w-ideal of R. Therefore by
Theorem 3.1(1), R=RM is Noetherian. The equivalence of (2) and (3) follows from
[13, Theorem 2.3].

Example 3.4. Consider the following pullback diagram:

R=R+M −−−−−−−−−→R�
�

T =C[{Xi}∞i= 1]({Xi}∞
i = 1)−−−−−→C; where M = ({Xi}∞i= 1)C[{Xi}∞i= 1]({Xi}∞

i = 1):

Since T ⊆M−1 = (R : M) = (M : M)⊆R′′( = the complete integral closure of R) =T;
T =M−1 is a divisorial ideal of R, and hence it is a w-module over R. Since [C :
R] = 2¡∞; T is a 2nitely generated R-module, so T is a 2nite-type w-overdomain of
R. Since T is a UFD, T is clearly an SM domain. But T is not Noetherian, and hence
Proposition 3.3 says that R is not an SM domain.

We will extend Proposition 3.3 to the general case.

Lemma 3.5 (Gabelli and Houston [14, Theorem 4:18]). Let T be a domain with a
nonzero maximal ideal M; let k =T=M be the residue :eld; let & : T→ k be the
natural projection; and let D be a proper subring of k. Let R=&−1(D) be the domain
arising from the following pullback of canonical homomorphisms:

R −−−−−→ D�
�

T
&−−−−−→ k

Then R is a Mori domain if and only if T is a Mori domain and D is a :eld.

It is well known that if {Ri}i∈ I is a de2ning family of overrings of R of 2nite
character and each Ri is Mori, then so is R [28, Corollary 4]. But we do not know
whether a similar result holds for SM domains. However we can say at least the
following holds.

Lemma 3.6. Let {Si}i∈ I be a family of multiplicative subsets of R such that R=
⋂
RSi

has the :nite character and RSi is an SM domain for all i∈ I . Then R is also an SM
domain.
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Proof. Since RSi is a Mori domain for all i∈ I , so is R=
⋂
RSi by Zafrullah [28,

Corollary 4]. Let P ∈w-max(R) = t-max(R). Since in a Mori domain, t= v; P is divi-
sorial. By [19, Proposition 1:1], PRSi is divisorial in RSi for all i∈ I . Since for each
x∈ q:f(R) such that P⊆ xR; ⋂PRSi ⊆

⋂
xRSi = xR, we have

⋂
PRSi ⊆Pv =P. There-

fore PRSi is proper for some i∈ I . Assume that PRSi0 is proper. Put S = Si0 . We
claim that PRS ∈w-max(RS). Let N be a maximal w-ideal of RS containing PRS .
Put M =N ∩ R. Then since N is a divisorial ideal of RS; M is also divisorial in
R (see the proof of [19, Proposition 1:1(v)]). Since a divisorial ideal is a w-ideal,
by maximality of P; P=M , and so N =MRS =PRS . Since RS is an SM domain,
RP = (RS)PRS is Noetherian (Theorem 3.1(1)). From the above argument, we can see
that w-max(R)⊆{P ∈Spec(R) |PRSi ∈w-max(RSi) for some i∈ I}. Therefore it follows
from the 2nite characterness of R=

⋂
RSi and RSi =

⋂ {(RSi)PRSi |PRSi ∈w-max(RSi)} for
each i∈ I that R=

⋂ {RP |P ∈w-max(R)} has the 2nite character. Thus by Theorem
3.1(1), R is an SM domain.

Proposition 3.7. With the notation of Lemma 3:5; R is an SM domain if and only
if T is an SM domain; TM is Noetherian; D is a :eld; and [k : D]¡∞.

Proof. (⇒) Assume that R is an SM domain. Then since R is a Mori domain, T is a
Mori domain and D is a 2eld, so M is a maximal ideal of R. Moreover M = (R : T ) is
a divisorial ideal of R, so that M ∈w-max(R). By Theorem 3.1(1), RM is Noetherian.
Since the following diagram of canonical homomorphisms

RM −−−−−→ D�
�

TM
&−−−−−→ k

is a pullback, TM is Noetherian and [k : D]¡∞.
Now let Q be a maximal w-ideal of T which is not contained in M and let P=Q∩R.

Then since M*Q; TQ =RP . Since w-max(T ) = t-max(T ) and T is a Mori domain, Q
is divisorial in T , and so QTQ is divisorial in TQ, i.e., PRP is divisorial in RP . By [19,
Proposition 1:1], P=PRP ∩R is divisorial in R, and hence P is a w-ideal of R. Let P′

be a maximal w-ideal of R containing P. Suppose that P′ =M . Choose x∈Q\M . Then
since M+xT =T; m+xt= 1 for some m∈M; t ∈T . So xt= 1−m∈Q∩R=P⊆P′ =M ,
whence 1 =m + xt ∈M . This contradiction implies that M*P′. Therefore, there is
a unique prime ideal Q′ of T such that Q′ ∩ R=P′ and TQ′ =RP′ . By the same
argument as above, we can show that Q′ is a w-ideal of T . But since Q⊆Q′ and
Q∈w-max(T ); Q=Q′, which implies P=P′, i.e., P ∈w-max(R).

Now since R is an SM domain, RP is Noetherian and R=
⋂
P ∈w-max(R) RP has

the 2nite character. It follows that TQ is Noetherian and
⋂ {TQ |Q∈w-max(T ) and

Q*M} has the 2nite character. Since T =
⋂
Q∈w-max(T ) TQ = (

⋂ {TQ |Q∈w-max(T )
and Q⊆M}) ∩ (

⋂ {TQ |Q∈w-max(T ) and Q*M}) =TM ∩ (
⋂ {TQ |Q∈w-max(T )
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and Q*M}) and the last expression has the 2nite character, T is an SM domain by
Lemma 3.6.

(⇐) By Proposition 3.3 and Lemma 3.5, R is a Mori domain and RM is Noetherian.
Now let P(�= M)∈w-max(R). Since M*P, there is a unique prime ideal Q of T
such that Q ∩ R=P and RP =TQ. Again by the same argument as above, we can
show that Q∈w-max(T ). It follows from the assumption T is an SM domain that RP
is Noetherian and R=

⋂
P ∈w-max(R) RP has the 2nite character. Therefore by Theorem

3.1(1), R is an SM domain.

Proposition 3.8. Let M1; : : : ; Mr be :nitely many maximal ideals of a domain T; let
D be a domain contained in T=Mi; i= 1; : : : ; r; and let & :T→T=I be the natural
projection; where I =

⋂r
i= 1Mi. Let R=&−1(D) be the domain arising from the fol-

lowing pullback of canonical homomorphisms:

R −−−−−→ D�
�

T
&−−−−−→ T=I ∼= T=M1 ⊕ · · · ⊕ T=Mr

Then R is an SM domain if and only if T is an SM domain; TMi is Noetherian for
all i= 1; : : : ; r; D is a :eld; and T=I is a :nite D-module.

Proof. (⇒) Assume that R is an SM domain. Let F be the quotient 2eld of D. Then
since F ⊆T=Mi for all i= 1; : : : ; r; F ⊆T=I . Let S =&−1(F). Then the diagram

R −−−−−→ D�
�

S −−−−−→ F ∼= S=I

is a pullback. Therefore by Proposition 3.7, D is a 2eld, so that I ∈w-max(R). Since
the diagram

RI −−−−−−−→ D�
�

TR\I −−−−−→ TR\I =ITR\I ∼= T=I

(∗)

is a pullback and RI is Noetherian, TR\I is Noetherian and T=I is a 2nite D-module.
Clearly TMi = (TR\I )MiTR\I is Noetherian for all i= 1; : : : ; r.

Now let Q be a maximal w-ideal of T which is not contained in any Mi; i= 1; : : : ; r.
Then since I*Q; TQ =RP where P=Q ∩ R. Thus since

⋂ {TQ |Q∈w-max(T ) and
Q*Mi for all i= 1; : : : ; r} is a generalized quotient ring of a Mori domain R, it
is a Mori domain by [25, Section 2, Theorem 2]. Therefore T =

⋂
Q∈w-max(T ) TQ =
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(
⋂ {TQ |Q∈w-max(T ) and Q⊆Mi for some i= 1; : : : ; r})∩(

⋂ {TQ |Q∈w-max(T ) and
Q*Mi for all i= 1; : : : ; r}) = (

⋂r
i= 1 TMi)∩ (

⋂ {TQ |Q∈w-max(T ) and Q*Mi for all
i= 1; : : : ; r}) is a Mori domain by [28, Corollary 4].

We claim that P=Q ∩ R* I . Suppose not. Choose x∈Q \ (
⋃r
i= 1Mi). Then since

I + xT =T; a + xt= 1 for some a∈ I; t ∈T . So xt= 1 − a∈Q ∩ R=P⊆ I , whence
1 = a+ xt ∈ I . This contradiction implies that P* I . So as in the proof of Proposition
3.7, we can show that P ∈w-max(R).

Since R is an SM domain, RP is Noetherian and R=
⋂
P ∈w-max(R) RP has the 2nite

character. It follows that TQ is Noetherian and
⋂ {TQ |Q∈w-max(T ) and Q*Mi for

all i= 1; : : : ; r} has the 2nite character. Therefore since T = (
⋂r
i= 1 TMi)∩ (

⋂ {TQ |Q∈
w-max(T ) and Q*Mi for all i= 1; : : : ; r}) has the 2nite character, T is an SM domain
by Lemma 3.6.

(⇐) Since TMi is Noetherian for all i= 1; : : : ; r and TR\I =
⋂r
i= 1 TMi ; TR\I is Noethe-

rian [22, Section 2–3, Exercise 10]. Since the diagram (∗) is a pullback and T=I is a
2nite D-module, RI is Noetherian.

Now let P(�= I)∈w-max(R). Then since I*P, there is a unique prime ideal Q of
T such that Q∩R=P and RP =TQ. Thus since

⋂ {RP |P ∈w-max(R) and P �= I} is a
generalized quotient ring of a Mori domain T , it is a Mori domain. So as in the proof
of Proposition 3.7, we can show that Q∈w-max(T ).

Now since T is an SM domain, RP =TQ is Noetherian and
⋂ {RP |P ∈w-max(R) and

P �= I} has the 2nite character. Therefore R=
⋂
P∈w-max(R) =RI ∩ (

⋂ {RP |P∈w-max(R)
and P �= I}) is an SM domain by Theorem 3.1(1) or Lemma 3.6.

4. Polynomial rings and formal power series rings

Let {X�}�∈� be an arbitrary set of indeterminates over R.

Lemma 4.1. If ∗ denotes either the v-; the t-; or the w-operations; then (IR[{X�}�∈�])∗

= I∗R[{X�}�∈�] for each I ∈F(R).

Proof. This result is stated in [18, Proposition 4.3] for a single indeterminate, and the
proofs for the multi-variable case are identical to those for the single-variable case.

In [16] Glaz and Vasconcelos introduce the concept of an H -domain: a domain R
in which every ideal A with A−1 =R has a 2nitely generated subideal J such that
J−1 =A−1. They then prove that if R is an H -domain, then R[X ] is an H -domain [16,
(3.2c)].

Proposition 4.2. If R is an H-domain; then so is R[{X�}�∈�].

Proof. Let Q be a maximal t-ideal of R[{X�}]. By [20, Proposition 2.4], it su8ces to
show that Q is divisorial. Since Q �= {0}, there exists a 2nite subset {�1; : : : ; �n} of
� such that Q ∩ R[X�1 ; : : : ; X�n ] �= {0}. Since R[X�1 ; : : : ; X�n ] is an H -domain, we may
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assume that Q ∩ R �= {0}. Suppose that Q is not divisorial. Then since every diviso-
rial ideal is a t-ideal and Q is a maximal t-ideal, Qv =R[{X�}]. Let A=

∑
f∈Q Af;

where Af is the ideal of R generated by the coe8cients of f. Then Q⊆A[{X�}].
Therefore Qv⊆(A[{X�}])v =Av[{X�}], so Av =R. Since R is an H -domain, there ex-
ists a 2nitely generated ideal J of R such that J ⊆A and Jv =R. Therefore there
exists an element f∈Q such that (Af)v =R. Choose a∈Q ∩ R \ {0}. We claim
that (a; f)−1 =R[{X�}]. Let g∈ (a; f)−1 ⊆K[{X�}]. Then gf∈R[{X�}]. By Dedekind–
Mertens theorem, there exists a positive integer m such that AgAmf =AgfAm−1

f . There-

fore R⊇(AgfAm−1
f )v = (AgAmf)v = (Ag(Af)mv )v = (Ag)v; which implies g∈R[{X�}], thus

(a; f)−1 =R[{X�}], i.e., (a; f)v =R[{X�}]. But since Q is a t-ideal and (a; f)⊆Q;
R[{X�}] = (a; f)v⊆Qt =Q, a contradiction.

In [27] Roitman showed that there exists a Mori domain R such that R[X ] is not Mori
using the following equivalent conditions: R is a Mori domain if and only if for any
a∈R \ {0}, the ring R=Ra has CC⊥ [26, Theorem 2.2]. We will also use this theorem
in proving that if R is a Noetherian domain, then R[{X�}�∈�] and R<{X�}�∈�=1 are
Mori domains. Recall the condition CC⊥ means the descending chain condition on
annihilators, or equivalently, the ascending chain condition on annihilators. It is well
known and easy that the CC⊥ property is hereditary, i.e., subrings of CC⊥-rings are
also CC⊥-rings (cf. [8,9]).

Proposition 4.3. Let R be a Noetherian domain. Then R[{X�}�∈�] is a Mori domain.

Proof. By [26, Theorem 2:2], it su8ces to show that for any f∈R[{X�}] \ {0}, the
ring R[{X�}]=fR[{X�}] has CC⊥. Let f∈R[{X�}]\{0}. Then there exists a 2nite sub-
set {�1; : : : ; �n} of � such that f∈R[X�1 ; : : : ; X�n ]. Since R[X�1 ; : : : ; X�n ] is Noetherian,
fR[X�1 ; : : : ; X�n ] has a reduced primary decomposition fR[X�1 ; : : : ; X�n ] =Q1 ∩ · · · ∩Qk .
Let Pi =

√
Qi. Then fR[{X�}] =Q1R[{X�}] ∩ · · · ∩ QkR[{X�}] and QiR[{X�}] is a

PiR[{X�}]-primary ideal. It is clear that R[{X�}]=fR[{X�}]⊆R[{X�}]=Q1R[{X�}] ⊕
· · ·⊕R[{X�}]=QkR[{X�}]⊆T (R[{X�}]=Q1R[{X�}])⊕· · ·⊕T (R[{X�}]=QkR[{X�}]), where
T (R[{X�}]=QiR[{X�}]) is the total quotient ring of R[{X�}]=QiR[{X�}]. Since
T (R[{X�}]=QiR[{X�}]) ∼= (R[{X�}]=QiR[{X�}])PiR[{X�}]=QiR[{X�}]

∼= (R[{X�}]PiR[{X�}])=
(QiR[{X�}]PiR[{X�}]) is a 0-dimensional quasi-local ring and its unique prime ideal
PiT (R[{X�}]=QiR[{X�}]) is 2nitely generated, T (R[{X�}]=QiR[{X�}]) is Noetherian.
Therefore obviously it has CC⊥. Now since R[{X�}]=fR[{X�}] is a subring of the
CC⊥-ring T (R[{X�}]=Q1R[{X�}])⊕· · ·⊕T (R[{X�}]=QkR[{X�}]); R[{X�}]=fR[{X�}] has
also CC⊥.

Corollary 4.4. Let R be a Noetherian domain. Then every integral divisorial ideal of
R[{X�}�∈�] is :nitely generated and it has a primary decomposition.

Proof. Let A be an integral divisorial ideal of R[{X�}]. Then A= Iv for some 2nitely
generated ideal I of R[{X�}]. There exist a 2nite subset {�1; : : : ; �n} of � and a 2nitely
generated ideal J of R[X�1 ; : : : ; X�n ] such that I=JR[{X�}]. Therefore A= Iv=JvR[{X�}].
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Since Jv is an ideal of a Noetherian ring R[X�1 ; : : : ; X�n ], it is 2nitely generated and
has a primary decomposition. Therefore A is also 2nitely generated and has a primary
decomposition.

Proposition 4.5. Let R be a Noetherian domain. Then R<{X�}�∈�=1 is a Mori domain.

Proof. The proof is essentially the same as that for Proposition 4.3. All we have to
check is that if Q is a P-primary ideal in R, then QR<{X�}=1 is a PR<{X�}=1-primary
ideal. Since R is Noetherian, QR<{X�}=1 =Q<{X�}=1 and PR<{X�}=1 =P<{X�}=1. If k is a
positive integer such that Pk ⊆Q, then (P<{X�}=1)k ⊆Q<{X�}=1. Let f; g∈R<{X�}=1 with
fg∈Q<{X�}=1. Assume that f =∈Q<{X�}=1. Then there exists a 2nite subset {�1; : : : ; �n}
of � such that f; g∈R<X�1 ; : : : ; X�n =. So fg∈Q<X�1 ; : : : ; X�n = and f =∈Q<X�1 ; : : : ; X�n =.
Since by [6, Theorem 8], Q<X�1 ; : : : ; X�n = is a P<X�1 ; : : : ; X�n =-primary ideal, g∈P<X�1 ; : : : ;
X�n =, and hence g∈P<{X�}=1.

Corollary 4.6. Let R be a Noetherian domain. Then every integral divisorial ideal of
R<{X�}�∈�=1 is :nitely generated and it has a primary decomposition.

Proof. Let A be an integral divisorial ideal of R<{X�}=1. Then A= Iv for some 2nitely
generated ideal I of R<{X�}=1. There exist a 2nite subset {�1; : : : ; �n} of � and a 2nitely
generated ideal J of R<X�1 ; : : : ; X�n = such that I = JR<{X�}�∈�\{�1 ;:::;�n}=1 =
J <{X�}�∈�\{�1 ;:::;�n}=1. Therefore A= Iv=(J <{X�}�∈�\{�1 ;:::;�n}=1)v=Jv<{X�}�∈�\{�1 ;:::;�n}=1
by [10, Proposition 2:1] (due to Anderson and Kang). Since Jv is an ideal of Noethe-
rian ring R<X�1 ; : : : ; X�n =, it is 2nitely generated, and so is A= Jv<{X�}�∈�\{�1 ;:::;�n}=1 =
JvR<{X�}�∈�\{�1 ;:::;�n}=1. Let Jv =Q1 ∩ · · · ∩ Qm be a primary decomposition. Then as
we said in the proof of Proposition 4.5, each QiR<{X�}=1 is a primary ideal, hence A
has a primary decomposition A= JvR<{X�}=1 =Q1R<{X�}=1 ∩ · · · ∩ QmR<{X�}=1.

Theorem 4.7. Let R be an SM domain. Then R[{X�}�∈�] is also an SM domain.

Proof. Let Q be a prime w-ideal of R[{X�}]. Then there exists a maximal w-ideal
M of R[{X�}] containing Q. By Lemma 2.1, M is a maximal t-ideal of R[{X�}].
Since M �= {0}, there exists a 2nite subset �0 of � such that M ∩ R[{X�}�∈�0 ] �=
{0}. Since R[{X�}�∈�0 ] is an SM domain by Theorem 3.1(2), we may assume that
M ∩R �= {0}. Since R is a Mori domain, M is divisorial by Proposition 4.2, and hence
M = (M ∩ R)R[{X�}] by [26, Theorem 3:6]. Since R is an SM domain and M ∩ R is
a w-ideal of R (Lemma 4.1), there exists a 2nite subset {a1; : : : ; am} of M ∩ R such
that M ∩ R= (a1; : : : ; am)w. So for each 2nite subset �1 of �, (M ∩ R)R[{X�}�∈�1 ] =
(a1; : : : ; am)wR[{X�}�∈�1 ] = ((a1; : : : ; am)R[{X�}�∈�1 ])w, and hence ht(M ∩ R)
R[{X�}�∈�1 ]≤m by Theorem 3.1(4). Therefore ht M ≤m¡∞. Let ht Q= k¡∞. Then
there exists a chain of prime ideals (0) ( Q1 ( Q2 ( · · · ( Qk =Q. For each
i= 1; : : : ; k, choose fi ∈Qi \ Qi−1. Then there exists a 2nite subset {�1; : : : ; �n} of
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� such that fi ∈R[X�1 ; : : : ; X�n ] for all i= 1; : : : ; k. Let Pi =Qi ∩ R[X�1 ; : : : ; X�n ]. Then
PiR[{X�}�∈�]∈Spec(R{X�}�∈�]) and (0) ( P1R[{X�}] ( · · · ( PkR[{X�}]⊆Q. Since
ht Q=k; Q=PkR[{X�}]. Since Pk is a w-ideal of an SM domain R[X�1 ; : : : ; X�n ]; Pk = Iw
for some 2nitely generated ideal I of R[X�1 ; : : : ; X�n ]. Therefore by Lemma 4.1, Q=
(IR[{X�}])w. Thus every prime w-ideal of R[{X�}] is of 2nite type, so that R[{X�}] is
an SM domain (Theorem 3.1(3)).

Theorem 4.8. Let R be an SM domain and Q a maximal w-ideal of R[{X�}�∈�].
Then

ht Q=

{
ht(Q ∩ R) if Q ∩ R �= {0};
1 otherwise:

Therefore

w-dimR[{X�}�∈�] =

{
w-dimR if R is not a :eld ;

1 if R is a :eld and � is nonempty:

Proof. Let Q be a maximal w-ideal of R[{X�}]. Since R[{X�}] is an SM domain, it
is an H -domain, and hence Q is a divisorial ideal of R[{X�}].

Case I: Q ∩ R= {0}. Since R[{X�}] is a Mori domain, QR\{0} is a divisorial ideal
of R[{X�}]R\{0} =K[{X�}]. Since K[{X�}] is a UFD, ht QR\{0} = 1, so ht Q= 1.
Case II: Q ∩ R �= {0}. Since R is a Mori domain, Q= (Q ∩ R)R[{X�}] and so

ht Q≥ ht(Q∩R). Since R is an SM domain and Q∩R is a prime w-ideal of R (Lemma
4.1), RQ∩R is Noetherian. Therefore ht(Q ∩ R)RQ∩R¡∞. Let ht(Q ∩ R)RQ∩R = n¡∞.
Then by [22, Theorem 153], there exist elements a1; : : : ; an in R such that (Q∩R)RQ∩R
is minimal over (a1; : : : ; an)RQ∩R. It is clear that Q= (Q ∩ R)R[{X�}] is minimal
over (a1; : : : ; an)wR[{X�}] = ((a1; : : : ; an)R[{X�}])w. Since R[{X�}] is an SM domain,
ht Q≤ n by Theorem 3.1(4). Thus ht Q= ht(Q ∩ R)(¡∞). The last statement follows
directly.

Proposition 4.9. Let R be a Noetherian domain. Then every prime w-ideal of
R<{X�}�∈�=1 is :nitely generated; and so R<{X�}�∈�=1 is an SM domain.

Proof. Let Q be a prime w-ideal of R<{X�}=1 and M a maximal w-ideal containing Q.
Then M is a maximal t-ideal of R<{X�}=1. As in Theorem 4.7, we may assume that
M ∩ R �= {0}. Since R<{X�}=1 is a Mori domain (Proposition 4.5), M is divisorial,
and hence M = (M ∩ R)<{X�}=1 by [26, Theorem 3:7]. It is easy to check that ht M =
ht(M ∩ R)¡∞. Let ht Q= k¡∞. Then there exists a chain of prime ideals (0) (
Q1 ( Q2 ( · · · ( Qk =Q. For each i= 1; : : : ; k, choose fi ∈Qi \Qi−1. Then there exists
a 2nite subset {�1; : : : ; �n} of � such that fi ∈R<X�1 ; : : : ; X�n = for all i= 1; : : : ; k. Let Pi =
Qi ∩ R<X�1 ; : : : ; X�n =. Then PiR<{X�}�∈�\{�1 ;:::;�n}=1 =Pi<{X�}�∈�\{�1 ;:::;�n}=1 ∈Spec
(R<{X�}�∈�=1) and (0) ( P1R<{X�}=1 ( · · · ( PkR<{X�}=1 ⊆Q. Since ht Q= k,
Q=PkR<{X�}=1 and it is 2nitely generated. Thus every prime w-ideal of R<{X�}=1
is 2nitely generated, so that R<{X�}=1 is an SM domain (Theorem 3.1(3)).
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Remark 4.10. (1) Since a Noetherian domain is an SM domain and an SM domain is
a Mori domain, Proposition 4.3 follows from Theorem 4.7.

(2) Let R be a nonintegrally closed Noetherian domain. Then for any in2nite set
�; R[{X�}�∈�] (or R<{X�}�∈�=1) is an example of a nonKrull, nonNoetherian, SM
domain.

(3) Question: If R is an SM domain, is R<X = an SM domain?

5. Group rings and semigroup rings

We now consider group rings and semigroup rings over SM domains. We begin
with a generalization of Lemma 4.1.

Lemma 5.1. Let R be an integral domain; and let S be a torsion-free cancellative
additive semigroup. Let I be a nonzero fractional ideal of R. Then
(1) (IR[X ; S])−1 = I−1R[X ; S];
(2) (IR[X ; S])v = IvR[X ; S];
(3) (IR[X ; S])t = ItR[X ; S]; and
(4) (IR[X ; S])w = IwR[X ; S].

Proof. (1) Let a∈ I−1. Then aI ⊆R, so aIR[X ; S]⊆R[X ; S]. Thus a∈ (IR[X ; S])−1,
i.e., I−1R[X ; S]⊆(IR[X ; S])−1. Conversely let f∈ (IR[X ; S])−1. Then fIR[X ; S]⊆
R[X ; S]. Note that f∈K[X ; S], where K = q · f(R). Let Af be the ideal of R gen-
erated by the coe8cients of f. Then AfI ⊆R, i.e., Af ⊆ I−1. Thus f∈ I−1R[X ; S],
i.e., (IR[X ; S])−1 ⊆ I−1R[X ; S].

(2) (IR[X ; S])v = ((IR[X ; S])−1)−1 = (I−1R[X ; S])−1 = IvR[X ; S].
(3) Let J be a 2nitely generated ideal of R contained in I . Then JR[X ; S] is a 2nitely

generated ideal of R[X ; S] contained in IR[X ; S]. Therefore Jv⊆(JR[X ; S])v⊆(IR[X ; S])t .
Hence ItR[X ; S]⊆(IR[X ; S])t . Conversely let J ′ be a 2nitely generated ideal of R[X ; S]
contained in IR[X ; S]. Then there exists a 2nitely generated ideal J of R contained
in I such that J ′ ⊆ JR[X ; S]. Since J ′v ⊆(JR[X ; S])v = JvR[X ; S]⊆ ItR[X ; S], we have
(IR[X ; S])t ⊆ ItR[X ; S].

(4) Assume that I is an integral ideal of R. Let a∈ Iw. Then Ja⊆ I for some
J ∈GV (R). Since JR[X ; S]a⊆ IR[X ; S] and JR[X ; S]∈GV (R[X ; S]) by (2), a∈
(IR[X ; S])w. Thus IwR[X ; S]⊆(IR[X ; S])w. For the opposite inclusion, it su8ces to
show that IwR[X ; S] is a w-ideal of R[X ; S]. Suppose u(f1; : : : ; fn)⊆ IwR[X ; S], u∈ q ·
f(R[X ; S]) and (f1; : : : ; fn)∈GV (R[X ; S]). Then uR[X ; S] = u(f1; : : : ; fn)v⊆
(IwR[X ; S])v⊆R[X ; S], so u∈R[X ; S]. Since (f1; : : : ; fn)⊆(Af1 + · · · + Afn)R[X ; S];
(f1; : : : ; fn)v⊆(Af1 +· · ·+Afn)vR[X ; S]⊆R[X ; S], thus (Af1 +· · ·+Afn)v =R. By [16, The-
orem 4:3], there is a positive integer m such that AuAmfi =AufiA

m−1
fi for all i= 1; : : : ; n.

Since ufi ∈ IwR[X ; S]; Aufi ⊆ Iw. Therefore Au(Amf1 + · · · + Amfn)⊆ Iw. Since (Af1 + · · · +
Afn)v =R; (Amf1 +· · ·+Amfn)v =R, i.e., (Amf1 +· · ·+Amfn)∈GV (R). Therefore Au⊆(Iw)w = Iw,
i.e., u∈ IwR[X ; S]. Hence IwR[X ; S] is a w-ideal. The proof for the case when I is a
fractional ideal follows easily.
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Proposition 5.2. Let T be an integral extension domain of R with T a free R-module.
Then w-dimT =w-dimR.

Proof. Note that since T is faithfully Sat and integral over R, GD, GU, LO and INC
hold between T and R.

Let P be a maximal w-ideal of R. We claim that (PT )w �= T . Suppose not. Then there
exists an ideal J = (b1; : : : ; bm)∈GV (T ) such that J ⊆PT . Let {e0} be an R-basis for
T . Then we can write 1 = c1e01 +· · ·+cne0n ; ci ∈R and bi = ai1e01 +· · ·+aine0n ; aij ∈P;
i= 1; : : : ; m. Put I = ({aij}). We claim that I−1 =R. Let x= a=b; a(�= 0); b∈R such
that xI ⊆R. Then xIT ⊆T . Since J ⊆ IT; xJ ⊆T , i.e., x∈ J−1 =T . Write x= r1e01 +
· · · + rne0n ; ri ∈R. Then ac1e01 + · · · + acne0n = a= bx= br1e01 + · · · + brne0n . Since
e01 ; : : : ; e0n are linearly independent over R, aci = bri; i= 1; : : : ; n. Meanwhile, since T is
integral over R and (c1; : : : ; cn)T=T; (c1; : : : ; cn)=R. Therefore there exist d1; : : : ; dn∈R
such that 1 = c1d1 + · · · + cndn. Thus a= a(c1d1 + · · · + cndn) = b(r1d1 + · · · + rndn),
and hence x= a=b= r1d1 + · · ·+rndn ∈R, i.e., I−1 =R. Therefore I ∈GV (R). But since
I ⊆P and P is a w-ideal, we reach a contradiction. So (PT )w �= T . Let Q be a maximal
w-ideal of T containing PT . Then since ht Q≥ ht P; w-dimT ≥w-dimR.

Conversely let Q be a maximal w-ideal of T . Suppose Pw =R, where P=Q ∩ R.
Then there exists an ideal I ∈GV (R) such that I ⊆P. Since I is 2nitely generated and
T is Sat over R; (T : IT ) = (R : I)T =T . Thus IT ∈GV (T ). But since IT ⊆PT ⊆Q and
Q is a w-ideal, a contradiction. Therefore Pw �= R, so by [12, Proposition 1:1], P is a
w-ideal of R. Since ht Q= ht P≤w-dimR, w-dimT ≤w-dimR.

Corollary 5.3. Let R be an SM domain which is not a :eld; and let G be a torsion-free
abelian group. Then w-dimR=w-dimR[X ;G].

Proof. Let F be a free subgroup of G such that G=F is torsion. Then by [7, Lemma
1], R[X ;G] is an integral extension domain of R[X ;F] and a free R[X ;F]-module.
Note that R[X ;F] ∼= R[{X�; X−1

� }]. Put Y� =X� + X−1
� . Then R[X ;F] is an inte-

gral extension of R[{Y�}] and a free R[{Y�}]-module. Therefore, R[X ;G] is an in-
tegral extension domain of R[{Y�}] and a free R[{Y�}]-module. So by Proposition 5.2,
w-dimR[X ;G] =w-dimR[{Y�}]. Since in case R is an SM domain, w-dimR[{Y�}] =
w-dimR by Theorem 4.8, we get w-dimR[X ;G] =w-dimR.

Remark 5.4. In the proof of Corollary 5.3, if G=F is 2nitely generated (which holds
if G is 2nitely generated), then G=F is a 2nite abelian group, and so R[X ;G] is a
2nite type w-module over R[X ;F]. Since R[X ;F] ∼= R[{X�; X−1

� }] =R[{X�}]T , where
T is the multiplicative subset of R[{X�}] generated by {X�}, and R[{X�}]T is an SM
domain [11, Proposition 4:7], R[X ;G] is an SM domain by Corollary 3.2.

Proposition 5.5. Let R be an SM domain; and let G be a torsion-free abelian group
such that each element of G is of type (0; 0; 0; : : :). Then R[X ;G] is an H-domain.

Proof. Let F be a free subgroup of G such that G=F is torsion. Then R[X ;F] ∼=
R[{X�; X−1

� }]. Set Y� =X� + X−1
� . Then the ring extension R[{Y�}]⊆R[X ;G] is
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integral with R[X ;G] a free R[{Y�}]-module. Note that R[{Y�}] is an SM domain by
Theorem 4.7. Let Q be a maximal w-ideal of R[X ;G]. Set P=Q∩R[{Y�}]. Then as we
can see from the proof of Proposition 5.2, P is a w-ideal of R[{Y�}]. Let P′ be a max-
imal w-ideal of R[{Y�}] containing P. Then since w-max(R[{Y�}]) = t-max(R[{Y�}])
(Lemma 2.1) and R[{Y�}] is an H -domain, P′ is divisorial. Moreover since R[{Y�}] is
a Mori domain, P′ = Iv and (R[{Y�}] : I) = Jv for some 2nitely generated ideals I and J
of R[{Y�}]. Then P′R[X ;G] = IvR[X ;G] = (R[{Y�}] : (R[{Y�}] : I))R[X ;G] = (R[{Y�}]:
Jv)R[X ;G] = (R[{Y�}] : J )R[X ;G] = (R[X ;G] : JR[X ;G]). Thus P′R[X ;G] is a divi-
sorial ideal of R[X ;G]. By GU, there exists a prime ideal Q′ of R[X ;G] such that
Q⊆Q′ and Q′∩R[{Y�}] =P′. By INC, Q′ is minimal over P′R[X ;G]. Since P′R[X ;G]
is a w-ideal, Q′ is also a w-ideal. So by maximality of Q; Q=Q′. Thus P=P′, i.e.,
P is a maximal w-ideal of R[{Y�}] and a divisorial ideal of R[{Y�}]. Now we claim
that Q is a divisorial ideal of R[X ;G].
Case I: Q ∩ R= {0}. Since R[{Y�}] is a Mori domain, PR\{0} is a divisorial ideal

of K[{Y�}]. Since K[{Y�}] is a Krull domain, ht PR\{0} = 1. Therefore ht Q= ht P= 1.
Since K[X ;G] is a UFD by [15, Theorem 7:12], QR\{0} is principal. Let QR\{0} =
fK[X ;G]; f∈Q. Then Q=fK[X ;G] ∩ R[X ;G]. Set A=

∑
g∈Q Ag. Since Q (

AR[X ;G] and Q∈w-max(R[X; G]); AwR[X ;G]=(AR[X ;G])w=R[X ;G] (Lemma 5.1),
whence Aw =R. Since the operation w has the 2nite character, there exists a 2nite subset
{g1; : : : ; gm} of Q such that (Ag1 + · · ·+Agm)w =R. Recall that since G is a torsion-free
abelian group, it admits a total order ¡ compatible with the group structure. (See the
proof of [15, Lemma 4.1].) So there exists an element g∈ (g1; : : : ; gm)⊆Q such that
(Ag)w =R.

Let h∈Q. Then there is an element a∈R \ {0} such that ah∈ (f). We claim that
(a; g)v =R[X ;G]. Let h′ ∈ (a; g)−1. Then h′ ∈K[X ;G]. By [15, Lemma 4:3], there exists
a positive integer k such that AkgAh′ =Ak−1

g Agh′ . Then since (Ag)v = ((Ag)w)v =R and
gh′ ∈R[X ;G]; (Ah′)v = (AkgAh′)v = (Ak−1

g Agh′)v⊆R, hence h′ ∈R[X ;G]. Thus (a; g)−1 =
R[X ;G]. Since h(a; g)⊆(f; g). h(a; g)v⊆(f; g)v, so h∈ (f; g)v. Meanwhile, since
w-max(R[X ;G]) = t-max(R[X ;G]), Q is a t-ideal, so (f; g)v⊆Q. Thus Q= (f; g)v is
divisorial.
Case II: Q ∩ R �= {0}. Note that Q⊆AR[X ;G]. Suppose that Q ( AR[X ;G] or

AR[X ;G] is not divisorial. Then Av =R. Since R is an H -domain, there exists a 2-
nite subset {g1; : : : ; gm}⊆Q such that (Ag1 + · · · + Agm)v =R. By the same reason
as above, there exists an element g∈ (g1; : : : ; gm)⊆Q such that (Ag)v =R. Choose
a∈Q ∩R \ {0}. Then (a; g)v =R[X ;G]. But since Q is a t-ideal, (a; g)v⊆Q, a contra-
diction. Therefore Q=AR[X ;G] = (Q ∩ R)R[X ;G] is divisorial. (Since R is a Mori
domain, Q ∩ R= Iv for some 2nitely generated ideal I of R. Therefore Q= (Q ∩
R)R[X ;G] = IvR[X ;G] = (IR[X ;G])v. Thus Q is a divisorial ideal of 2nite
type.)

Corollary 5.6. Let R be an SM domain; and let G be a torsion-free abelian group
such that each element of G is of type (0; 0; 0; : : :). Then every maximal w-ideal of
R[X ;G] is of :nite type.
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Proof. We will use the same notation as in the proof of Proposition 5.5.
Case I: Q ∩ R= {0}. Let h∈Q. Then there is an element a∈R \ {0} such that

ah∈ (f). So h(a; g)⊆(f; g) and then h(a; g)w ⊆(f; g)w. Since (a; g)v =R[X ;G], 1∈
(a; g)w, i.e., (a; g)w =R[X ;G]. Therefore h∈ (f; g)w, thus Q⊆(f; g)w. Since the oppo-
site inclusion is clear, we have Q= (f; g)w.
Case II: Q ∩ R �= {0}. Then Q= (Q ∩ R)R[X ;G]. Since Q ∩ R is a w-ideal of

the SM domain R; Q ∩ R= Iw for some 2nitely generated ideal I of R. Therefore
Q= (Q ∩ R)R[X ;G] = IwR[X ;G] = (IR[X ;G])w is of 2nite type.

Corollary 5.7. Let R be an SM domain with w-dimR≤ 1; and let G be a torsion-free
abelian group such that each element of G is of type (0; 0; 0; : : :). Then R[X ;G] is an
SM domain with w-dimR[X ;G]≤ 1.

Proof. If w-dimR= 0, then R is a 2eld. By [15, Theorem 7:12], R[X ;G] is a UFD.
Since an Krull domain is an SM domain and its w-dimension is at most 1, the conclu-
sion follows. Now assume that w-dimR= 1. Then since w-dimR[X ;G] =w-dimR= 1
by Corollary 5.3 and every maximal w-ideal of R[X ;G] is of 2nite type by Corollary
5.6, every prime w-ideal of R[X ;G] is of 2nite type. Therefore by Theorem 3.1(3),
R[X ;G] is an SM domain.

The following theorem generalizes [24, Proposition 3.3]: R[X ;G] is a Krull do-
main if and only if R is a Krull domain and each element of G is of type
(0; 0; 0; : : :).

Theorem 5.8. Let R be an integral domain; and let G be a torsion-free abelian group.
Then R[X ;G] is an SM domain with w-dimR[X ;G]≤ 1 if and only if R is an SM
domain with w-dimR≤ 1 and each element of G is of type (0; 0; 0; : : :).

Proof. (⇐) See Corollary 5.7.
(⇒) Let I be a w-ideal of R. Since R[X ;G] is an SM domain, there exists a

2nitely generated ideal J of R such that J ⊆ I and (IR[X ;G])w = (JR[X ;G])w. Since
(IR[X ;G])w = IwR[X ;G] = IR[X ;G] and (JR[X ;G])w = JwR[X ;G]; I = Jw. Thus every
w-ideal of R is of 2nite type, and hence R is an SM domain. Therefore by Corollary 5.3,
R is a 2eld or w-dimR=w-dimR[X ;G], thus w-dimR≤ 1. Finally, since R[X ;G] is an
SM domain, it is a Mori domain and so it satis2es the ascending chain condition for
principal ideals (a.c.c.p.). Therefore, by [15, Lemma 7:8, Theorem 7:9], each element
of G is of type (0; 0; 0; : : :).

Now we generalize [3, Proposition 5.11]: Let R be an integral domain with quotient
:eld K, and let S be a torsion-free cancellative additive semigroup containing 0 with
quotient group G. Then the semigroup ring R[X ; S] is a Krull domain if and only if
R and K[X ; S] are Krull domains.
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Theorem 5.9. Let R be an integral domain with quotient :eld K; and let S be a
torsion-free cancellative additive semigroup containing 0 with quotient group G. Then
R[X ; S] is an SM domain with w-dimR[X ; S]≤ 1 if and only if R and K[X ; S] are
SM domains with w-dimension ≤ 1.

Proof. (⇒) Since R[X ;G] =R[X ; S]T , where T = {X s | s∈ S}, is an SM domain with
w-dimR[X ;G]≤w-dimR[X ; S]≤ 1 by [11, Propositions 4:7 and 2:5], R is an SM do-
main with w-dimR≤ 1 by Theorem 5.8. Similarly since K[X ; S] =R[X ; S]R\{0}; K[X ; S]
is an SM domain with w-dimK[X ; S]≤w-dimR[X ; S]≤ 1.

(⇐) Note that R[X ; S] =R[X ;G] ∩ K[X ; S]. Since R[X ;G] =R[X ; S]T , where T =
{X s | s∈ S}, is an SM domain by Theorem 5.8 and K[X ; S] =R[X ; S]R\{0} is an SM do-
main by assumption, R[X ; S] =R[X ; S]T∩R[X ; S]R\{0} is also an SM domain by Lemma
3.6. As we can see from the proof of Lemma 3.6, w-dimR[X ; S] ≤max(w-dimR[X ; S]T ,
w-dimR[X ; S]R\{0}) = max(w-maxR[X ;G], w-dimK[X ; S])≤ 1 by Theorem 5.8 and
our assumption.

Remark 5.10. Recall that K[X ; S] is a Krull domain if and only if each element of
G= 〈S〉 is of type (0; 0; 0; : : :) and S is a Krull semigroup, i.e., S satis2es the ascending
chain condition on v-ideals and satis2es the following property: g∈ S; h∈G, and g+
nh∈ S for all n≥ 1 implies h∈ S [3, Proposition 5.11].

It is natural to ask whether a similar characterization holds regarding SM domains.
But we are unable to answer this question.

We close with one more observation which gives other examples of SM domains.

Proposition 5.11. Let R be an SM domain which is not a :eld; and let S be a nonzero
subsemigroup of Z containing 0. Then R[X ; S] is an SM domain with w-dimR[X ; S] =
w-dimR.

Proof. If S is a group, then S =dZ ∼= Z (d∈Z), so the conclusion follows from
Corollary 5.3 and Remark 5.4. Assume that S is not a group. Choose d∈ S \ {0}.
Then by [1, Lemma 2:4], R[X ; S] is integral over R[X ;dZ∩ S] and dZ∩ S =dN ∼= N.
Since S=(dZ ∩ S)⊆Z=dZ; R[X ; S] is a free R[X ;dZ ∩ S]-module of 2nite rank. Thus
R[X ; S] is a 2nite type w-module over R[X ;dZ∩ S]. Since R[X ;dZ∩ S] ∼= R[X ;N] ∼=
R[X ] is an SM domain with w-dimR[X ] =w-dimR; R[X ; S] is also an SM domain and
w-dimR[X ; S] =w-dimR[X ;dZ ∩ S] =w-dimR by Proposition 5.2.
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