luminal area (MLA) <4mm², non-calciﬁed VH-deﬁned thin cap ﬁbroatheroma (n-IVH-CTA).

Results: 3.674mm of VH-IVUS pullback were studied. Stented plaque necrotic core area was higher in ACS patients (25% [18-28] vs. 19% [14-26], p=0.04). None of the higher risk VH-IVUS features (PB ≥70%, MLA <4mm², n-IVH-CTA) were more prevalent in ACS. Whole vessel and whole plaque Stress-P1 was similar between groups. In contrast, Stress-P1 was increased in ACS patients where MLA <4mm² (8.24 [7.06-9.93] vs. 7.72 [6.33-9.34], p=0.03), PB ≥70% (9.18 [7.44-10.88] vs. 7.93 [6.16-9.46], p=0.02) and nc-IVHCTA (9.23 [7.33-11.44] vs. 6.75 [6.45-6.72], p=0.02), and markedly increased for combinations (e.g. MLA<4mm² and PB ≥70% (9.43 [8.23-10.70] vs. 7.74 [6.13-9.01], p<0.009) and MLA<4mm² and nc-IVHCTA (8.73 [7.32-10.91] vs. 6.50 [5.83-7.53], p=0.004). There was a positive correlation between increasing luminal area and Stress-P1 (r=0.20, p<0.02), but not with plaque burden (r=0.03, p=0.11). Stress-P1 increased the discriminatory power of n-IVHCTA to predict ACS (area under the curve 0.558 vs. 0.717, p=0.004).

Conclusions: Higher-risk plaque features deﬁned by VH-IVUS are associated with increased maximum Stress-P1 in ACS patients. Elevated plaque stress may determine whether a high-risk plaque ruptures, and biomechanical modeling may increase the ability of VH-IVUS to predict plaque rupture.

TCT-647
Co-registration of Intravascular Ultrasound and Angiography
Andrew Cassar1, Megha Prasad1, Kenneth A. Fetterly1, Abhiram Prasad1, John Bresnahan1, Amir Lerman1
1Mayo Clinic, Rochester, MN

Background: Intravascular ultrasound (IVUS) provides cross sectional imaging of coronaries but lacks overview of the vascular territory provided by angiography. We studied the feasibility of automated co-registration of angiography and IVUS to facilitate interrogation of the two imaging modalities in a synchronous manner.

Methods: 49 consecutive patients undergoing surveillance for cardiac allograft vasculopathy with angiography and IVUS of the left anterior descending artery (LAD) were enrolled. A pre-IVUS angiogram of the LAD was performed followed by an ECG triggered ﬂuoroscopy (ECGFT) during IVUS pullback (Eagle Eye Platinum + Volcano Corp.) at 0.5mm/s using an automatic pullback device. ECGFT was used to track the IVUS catheter during pullback and establish a spatial relationship to the pre-IVUS angiogram. Anglo-IVUS co-registration was performed with a research prototype (Siemens Healthcare, Germany) and accuracy evaluated by distance mismatch between angiography and IVUS images at vessel bifurcations (Figure A).

Results: The median (IQR) co-registration distance mismatch measured at 108 bifurcations in 42 (85%) patients was 0.35 (0.00-1.16) mm (Figure B). 7 patients were excluded due to inappropriate data acquisition (n=3) and failure of tracking (n=4) e.g. due to overlapping sternal wires. Estimated effective radiation dose for ECGFT was 0.09mSv.

Conclusions: This study demonstrates the feasibility of angiyo-IVUS co-registration which may be used as a clinical tool for localizing IVUS cross sections along an angiographic roadmap.

Supporting File(s): Location: https://www5.aievolution.com/tct2013/files/content/abstracts/abs_1794/pic_for_pdf.jpg

TCT-648
Coronary Atheroma Composition Predicts Endothelial Dysfunction in Non-ST Segment Myocardial Infarction: Novel Insights with Radiofrequency (iMAP) Intravascular Ultrasound (IVUS)
Rishi Par1, Stephen J. Nichols2, Danielle Brennan3, Jordan Andrews3, Gary Liew2, Angelo Carbone2, Barbara Copus1, Adam J. Nelson1, Samir Kapadia1, E. Mural Taza2, John Belbrune3, Stephen G. Worthley2, Matthew Worthley2
1Cleveland Clinic, Cleveland, OH, 2University of Adelaide, Adelaide, SA, Australia, 3Royal Adelaide Hospital, Adelaide, SA, Australia

Background: Coronary atheroma composition and endothelial dysfunction are each known to associate with incident coronary events, yet little is known about their relationship in vivo. We tested the hypothesis that the degree of segmental epicardial vascular stiffness, a marker of tissue composition of underlying atheroma, correlates with endothelial dysfunction.

Methods: In 23 NSTEMI patients referred for coronary angiography, a non-culprit vessel underwent intracoronary stent ballooning (0.30 mcg/min, 5 mins) provocation during automated IVUS pullback. A 40 MHz IVUS catheter delivered radiofrequency signals at 4 constant 67micron intervals via a custom-built IVUS console (iMAP, iLAB, Boston Scientiﬁc). Macrovessel response [change in segmental lumen volume (SLV) at baseline and following stent balloon], percent atheroma volume (PAV) and tissue composition was evaluated in 187 contiguous non-overlapping 5mm coronary segments.

Results: Compared with segments that dilated (Δ in SLV >0), constrictive segments (Δ in SLV <0) showed similar lumen, but greater vessel volumes and PAV at baseline (Table <). The extent of necrotic and lipidic plaque was signiﬁcantly greater in constrictive segments, whereas ﬁbrotic plaque content was signiﬁcantly greater in segments that dilated. plaque content independently associated with segmental vasoconstriction (β=1.2, p=0.023; 95% CI 0.02-2.46, p=0.027).

Conclusions: Following NSTEMI, both lipidic and necrotic plaque content each associate with segmental endothelial dysfunction, providing a mechanistic link between atheroma composition and lumen reactivity, and thus potential vulnerability for a clinical event.

TCT-649
Impact of visit-to-visit variability of blood pressure and coronary atheroma changes by 3-D IVUS and subsequent cardiovascular events
Atsushi Hiraishi3, Eiki Hirose1, Toru Ohe1, Ryo Yoshikai1
1The Sakakibara Heart Institute of Okayama, Okayama, Japan

Background: Visit-to-visit variability in systolic blood pressure (SBP) was reported to be associated with increased cardiovascular risk. Intravascular ultrasound (IVUS) is used as an end point in studies aimed at reducing progression or regression of coronary atherosclerosis. However, the relationship between variability in blood pressure and atheroma volume changes by IVUS, or long-term clinical outcomes has been poorly defined.

Methods: Serial IVUS examinations were performed in 338 stable angina pectoris patients undergoing percutaneous coronary intervention (PCI). After PCI for culprit lesions, intravascular ultrasound (IVUS) was performed in their non-culprit vessels at baseline and 12-16 months, IVUS of the originally examined coronary artery was performed during follow-up angiography. Five-year clinical outcomes, including major adverse cardiovascular and cerebrovascular events (MACCE), and annual progression rate of atherosclerosis by volumetric IVUS, and visit-to-visit variability in SBP for ﬁve-years were evaluated.

Results: Atheroma volume increase by IVUS was 5.7%, and ﬁve-years MACCE rate was 22.6%. Patients with MACCE had larger annual atheroma progression than the rest of the population (20.6% vs. 2.3%, P<0.001). Visit-to-visit variability in SBP was a strong predictor of subsequent increased coronary atheroma volume (eg., top-decile hazard ratio (HR) for SD SBP over ﬁve visits: 4.18, 95% CI 1.95-8.67, p<0.01), independent of mean SBP, but dependent on precision of measurement (top-decile HR for visits: 4.21, 2.58-7.64, p<0.01). Maximum SBP reached was also a strong predictor of MACCE (HR for top-decile over five visits: 8.12, 3.46-10.11, p<0.01, after adjustment for mean SBP). In addition, residual visit-to-visit variability in SBP of SD SBP over 2 visits was also a strong predictor of increased coronary atheroma volume and MACCE (top-decile HR for MACCE: 4.49, 1.92-6.48, p<0.01).

Conclusions: Visit-to-visit variability in SBP and maximum SBP are strong predictors of increased coronary atheroma volume, independent of mean SBP. Increased residual variability in SBP in patients with treated hypertension is associated with a high risk of subsequent cardiovascular events.

TCT-650
The high sensitive C-reactive protein (hs-CRP) level represents the disease burden and the age but not vulnerability of coronary atherosclerosis: a study of volumetric plaque composition by 3-vessel virtual histology-intravascular ultrasound
Se-Jun Park1, So-Yeon Choi2, You Hong Lee2, Yong-Woo Choi2, Jeoung-sook Shin3, Kyung-Woo Seo2, Jin-San Park2, Hyung-Mo Yang2, Hong-Soek Lim1, Byoung-Joo Choi2, Gyo-Seung Hong2, Seung-Jae Tahk2
1Ajou University School of Medicine, Suwon, Korea, Republic of, 2Stanford University Medical Center, Stanford, CA

Background: hs-CRP has been known as a systemic inﬂammatory marker of atherosclerosis and considered as one of the predictors of future cardiac events. Some reports presented hs-CRP level was associated with plaque vulnerability but most studies were performed by assessing focal target plaque but not whole plaques from a coronary tree. Methods: To evaluate the relationship of plasma hs-CRP level and volumetric plaque composition of the coronary arterial tree, we performed ‘whole vessel’ virtual histology-intravascular ultrasound (VH-IVUS) in 189 vessels of 63 patients. The components of atherosclerosis were classiﬁed as ﬁbrous (FI), ﬁbrous-fatty (FF), and fibrous lipidic (FI).