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Abstract-This paper gives the average distance analysis for the Euclidean tree constructed by a 
simple greedy but efficient algorithm of the on-line Steiner tree problem. The algorithm accepts the 
data one by one following the order of input sequence. When a point arrives, the algorithm adds the 
shortest edge, between the new point and the points arriving already, to the previously constructed 
tree to form a new tree. We first show that, given n points uniformly on a unit disk in the plane, the 

‘th expected Euclidean distance between a point and its 3 (1 5 j 5 n - 1) nearest neighbor is less than 
or equal to (5/3)m h TZ w en n is large. Based upon this result, we show that the expected length of 
the tree constructed by the on-line algorithm is not greater than 4.34 times the expected length of 
the minimum Steiner tree when the number of input points is large. 

Keywords-Analysis of algorithms, On-line algorithms, Average case analysis, On-line Steiner 
tree problems, Euclidean space. 

1. INTRODUCTION 

Given 72 points in the Euclidean plane, the minimum Steiner tree problem is to construct a tree 
which connects the 72 points and whose Euclidean length is the minimum one. One on-line version 
of this problem can be described as follows. Suppose that the n points are revealed one by one. 
When a point is revealed, all the edges between the new point and the old points are also revealed, 
and we must make a decision to add an edge from the new point to one or more of the old points, 
so as to have a network connecting all the points seen so far. No edge can be deleted after it has 
been added and our goal is to minimize the length of the tree we find. We call such a problem 
the on-line Steiner tree problem [1,2]. 

Imase and Waxman [l] proposed a greedy on-line algorithm, Algorithm Greedy, for computing 
a Euclidean tree. The algorithm is presented as follows: 

ALGORITHM Greedy 
INPUT: n(> 3) points WI, . . . , v, on Euclidean space 
OUTPUT: A Euclidean tree T 
Begin 

T = 4; 
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input( 
input(v2); 
Add the edge between vi and 212 to T; 
For k = 3 to n do 

inpt(vk); 

Add the shortest edge between ‘uk and vr , . . . , ‘u&l to T; 
Endfor 
output(T); 

End 
The algorithm accepts the data one by one in their input sequence. While a new point arrives, 

we only add the the shortest edge between the new point and the points arriving already to the 
previous tree to form a new tree. In each examining step, it takes O(m) time, where m is the 
total number of the points accepted so far. 

Here, we are interested in the solutions obtained by on-line algorithms. To analyze the behavior 
of an on-line algorithm is to compare the solution resulting from this on-line algorithm with the 
off-line optimal solution. The competitive analysis first introduced by Sleator and Tarjan [3] 
is widely used to evaluate the performance of an on-line algorithm. A deterministic on-line 
algorithm A is called c-competitive if there is a constant b such that 

CA(o) 5 C. (&,t(o) + b, 

where CA(a) denotes the cost incurred by the algorithm A with input 0, and C&((T) denotes 
the cost incurred by the off-line optimal algorithm with input 0. We call c the competitive ratio. 

Imase and Waxman [l] have shown that the competitive ratio of Algorithm Greedy for the 
on-line Steiner tree problem is [log, nl. Alon and Azar [2] showed that the lower bound of 
competitive ratio of any on-line deterministic algorithm for the on-line Steiner tree problem is 
O(log n/ log log n). In this paper, we focus on the average distance analysis of the tree constructed 
by Algorithm Greedy. In our analysis, we assume that the points are distributed uniformly and 
independently on a unit disk in the plane. It is shown that, given n points uniformly on a unit 
disk in the plane, the expected Euclidean distance between a point and its jth (1 < j 2 n - 1) 
nearest neighbor is less than or equal to (5/3)fi when n is large. The main result of this 
paper is that, under this assumption, the ratio of the expected length of a tree constructed by 
Algorithm Greedy to the expected length of a minimum Steiner tree is not greater than 4.34 
when the number of input points is large. 

The rest of this paper is organized as follows. Section 2 describes how we analyze the average 
length of the tree constructed by Algorithm Greedy and the analysis is provided in Section 3. In 
Section 4, we give the further direction of this research. 

2. A GLIMPSE OF THE ANALYSIS 

In our analysis, we shall assume that the points are uniformly and independently distributed on 
a unit disk, which is the same assumption in [4,5]. Let X be a random point which is uniformly 
distributed on a unit disk. Assume that there is a set V of n points in the plane, which is an 
independent random sample from X. This probabilistic assumption used in the analysis is the 
same as that in [4,5]. We denote the minimum Steiner tree on the set V and the tree constructed 
by Algorithm Greedy on the set V by Ts and TONLI, respectively. Let L(Ts) denote the expected 
length of the minimum Steiner tree Ts, and L(TONLI) denote the expected length of the tree 
TONLI constructed by Algorithm Greedy. The goal of the analysis is to compare L(TONLI) with 
L(Ts) where the number of points n tends to infinity. 

We first discuss a lower bound for L(Ts). Let L(Tp) denote the expected Euclidean length of 
the minimum spanning tree on the set V. Du and Hwang [6] have shown that on the Euclidean 
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plane, the length of minimum Steiner tree on a set of points is larger than or equal to d/2 times 
that of minimum spanning tree on the set of points. Then 

L(Ts) 2 %(T 
2 P ’ ) 

A spanning tree which spans n points has n - 1 edges. Let a and b be two points. Let e(a, b) be 
the edge of a minimum spanning tree linking a and b. Here, the length of e(a, b) must be greater 
than or equal to the distance between a and its nearest neighbor and the distance between b and 
its nearest neighbor. Thus 

WP) 2 (n - 1)E(4n, I)), 

where E(d(n, 1)) d enotes the expected distance of the edge between a point and its nearest 
neighbor in the set V of n points. So we have 

L(Ts) 2 an - l) 
2 E(d(n, I)). (1) 

Now we discuss L(‘_i?~~r,r), the expected length of a tree produced by Algorithm Greedy on the 
set V. There are n! kinds of input sequences for n input points. Let 5’1, SZ, . . . , S,! be the n! 
distinct sequences of n points. Let T(Si) denote the tree produced by Algorithm Greedy when 
the input sequence is Si. If IT( is the length of the tree T(Si), the expected length of a tree 
produced by Algorithm Greedy on the set V is 

qTONLI) = cI2, IT( 
1 . 72. 

It is obvious that we can hardly find all IT(&)1 ‘s and sum them up. Fortunately, we have a 
mechanism to find CyA, IT( through an elegant method. We shall explain our mechanism 
informally by the following example. 

Consider the three points shown in Figure 1. Let e(a, b) be the edge from point a to point b 
and Je(a, b)l the Euclidean distance of e(a, b). Here are six distinct input sequences, and their 
corresponding expected lengths of spanning trees produced by Algorithm Greedy are shown as 
follows. 

Si IT( 
1, 2, 3 je(2,1)1 + le(3,l)I = 3 + 4 = 7 

1, 3, 2 le(3,l)I + le(2,l)I = 4 + 3 = 7 

2, 1, 3 le(l, 2)l + le(3,l)I = 3 + 4 = 7 

2, 3, 1 ]e(3,2)1 + le(l, 2)l = 5 + 3 = 8 

3, 1, 2 le(l,3)1 + le(2,l)I = 4 + 3 = 7 

3, 2, 1 le(2,3)1 + le(l,2)( = 5 + 3 = 8 

The total sum of IT($)\ is, therefore, (7 + 7 + 7 + 8 + 7 + 8) = 44 and the average length of a 
spanning tree produced by Algorithm Greedy in Figure 1 is 44/6. 

We note that le(l,2)), je(2,1)1, and le(3,l)l are the distances between points 1, 2, and 3 
and their nearest neighbors, respectively. Furthermore, le(l,3)1, le(2,3)1, and le(3,2)1 are the 
distances between points 1, 2, and 3 and their second nearest neighbors, respectively. It will be 
proved later in Section 3 that when we compute the sum of IT(S the distance between point i, 
i = 1, 2, and 3, and its nearest neighbor appears three times and the distance between point i, 
i = 1, 2, and 3, and its second nearest neighbor appears once. Thus, the total sum of IT($)1 is 

3 x (WA + l42,1)l + IdWl) + (l41,3)l + IeP, 3)1 -t le(3,2)() 
= 3 x (3 + 3 + 4) + (4 -t 5 + 5) = 44. 
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Figure 1. An example for Algorithm Greedy. 

Let the points in set V be 1,2, . . . , n. Let d,,j denote the distance between point i and its jth 
nearest neighbor. Let Ni,j,, denote the number of times that d,,j appears in CT!_, IT(S Then, 
obviously, 

._. ._ ._ - 

c IT(Si)I = c c 4,jNij,w 
i=l i=l j=l 

Because we can prove that NI,~,~ = Nz,~,~ = . . ’ = N,,j,, for all j in the end of this section, we 
shall have 

2 IT( = 2 Nr,j,n 
i=l j=l 

In the above formula, CyC1 di,j/n denotes the expected distance between an arbitrary point 
and its jth nearest point on the set V, and (nNl,j+) denotes the total number of times that dr,j, 

&,j, * . . and dn,j appear in Cy.!, IT(S In the rest of this paper, we use M,,j and E(d(n, j)) 
to denote Nr,j,n and Cy=“=, di,j/n, respectively. Here we have the following formula: 

The above discussion indicates that our main job is to find the expected distance between 
a point and its jth nearest neighbor and the number of times that their distance appears in 
C& E(T(Si)). Now we show that N~J,, = N~J,~ = . . . = Nn,j,n for all j. 

LEMMA 1. Given points 1,2, . . . , and n in the plane, consider the sequence S, = {7(l), 7(2), . . . , 
T-(TX)}, where r is a permutation on integers {1,2,. . . ,n}. Foreverypointiandk,i#k,letr(i,k) 
denote T(k)!s rank in the nearest neighbors of -r(i). For every point h # 7(i), let Sb = {7’(l), 
T’(2), . . . ) T’(n)} be a sequence, where 7’ is a permutation on integers {1,2,. . . , n} and 7’ # T, 
such that 7’(i) = h and T’(k) is the r(i, k)th nearest neighbor of T’(i). Then, the number of times 
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that c&(~),~ appears in IT( is equal to the number of times that d,,(i),j appears in IT( for 
all j. I 

LEMMA 2. For 1 4 il, i2 5 n and 1 5 j 6 n - 1, Nil,j,n = Niz,j,n. 
PROOF. According to Lemma 1, consider il and i2 where il # iz. Supposing that dil,j appears in 
IT(Sa) 1 x times, then there exists a sequence 5’b such that diz,j also appears in IT(&) 1 2 times, for 
all j. Therefore, for all a! input sequences, the number of times that dil,j appears in CyL, /T(&)I 
is the same as the number of times that di2,3 appears in Cz!, IT(&)]. Thus, Nl,j,, = N2,j,n = 
. . . = Nm,j,n. I 

In order to get an upper bound of the ratio of L(TONLJ) to L(Ts), we have to know a lower 
bound of E(d(n, l):), an upper bound of E(d(n, j)), and the value of Mn,j. Then the analysis 
goes as follows: 

1. We derive a lower bound of E(d(n, 1)) f rom [4] and get a lower bound for L(Ts). 
2. As shown later, we propose a method to estimate an upper bound of E(d(n,j)). 
3. We derive Mm,j from considering all input sequences. 
4. Based upon the results above, we show an upper bound 

when n is large. 

3. THE ANALYSIS 

LEMMA 3. E(d(n, ‘I)) 2 &?/2fi. 
PROOF. Suppose n uniformly and independently distributed 

of the ratio of L(TONLI) to L(Ts) 

points in the d-ball of volume a. 
By Lemma 1 in [4], the expected length of the nearest neighbor of a random point in the region 
is larger than or equal to 

;(#“I$), 

where cd = rd/2/I’(d/2 + 1). Then we know that 

From Lemma 3 and equation (1)) we immediately have a lower bound of L(Ts). 

THEOREM 1. L(Ts) 2 ((n - 1)&)/4&. I 
Let X1,X2,. . . , -X,-1 and Y denote n independent points which are uniformly distributed 

within a unit circle with center (0,O). Assume that Y is located at (O,b), 0 5 b 5 1. Let 
2 denote the distance between Y and one of Xis, 1 5 i < n - 1. Let F(a) and f(z) denote 
the cumulative distribution function and probability density function of 2, respectively. The 
following lemma describes functions F(z) and f(z). 

LEMMA 4. 
( z2, O<zsl-b, 

F(z) = arccos ( l+$;za) + z2 arccos (“;;:-l)-bJ, l-b<.z<l+b, 

z>l+b, 

Olzll-b, 

l- b<all+b, 

zzlfb. 
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PROOF. Let A denote the area of the intersection of the unit circle and a circle with radius z 
and center (O,b), where 0 < b I 1. Then F(z) = Pr(Z 5 z) = A/x, where 

Finally we obtain function f(z) by differentiating F(z) with z. I 
Let L(n, j), 1 I j 5 n - 1, be the expected value of distance between Y and its jth nearest 

neighbor among Xis. Then 

E(d(n, j)) = 1’ FL(n, j) db = J’ 2b ~3(7%.?) db- 
0 

(3) 

Let zi = [Xi - Y 1. Let ~1 be the smallest of these zi, ~2 the next zi in order of magnitude, . . . , 
and &_i the largest zi. If gj(Tj) is the marginal p.d.f. of Zj, then by order statistics [7], 

i 

(n - l)! 
gj(yj) = (j - l)!(n - 1 -J)! 

[F(Zj)]j-‘[l- F(Zj)]n-l-jf(Fj), 0 5 Zj 5 l+b, 

0, else. 

Therefore, we have 

s l+b 

L(n,.d = Zjjsj(Zj) dZj 

0 

(n - l)! 
J 

l+b 

= (j - l)!(n - 1 - j)! 
Zj[F(Zj)]j-l[l- F(Zj)]"-'-jf(Zj)&j 

o 

(n - l)! J l+b = (j-l)!(n-l-j)! o 
z[F(z)]j-‘[l - F(z)]“-‘-jf(z) dz. 

(4 

The theorem below shows an upper bound of E(d(n, j)). 

THEOREM 2. Iim,,, E(d(n,j))I(5/3)Jj’-;i;11<_jn-11. 

PROOF. Let g(i) = Ji’” ~F(.z)~-~-~[l - F(z)lif(z) dz and h(i) = &l’” F(z)~[~ - F(z)]“-~-~ dz. 
Then 

9(O) = 6”” zF(z)“-2f(z) dz 

1 l+b l+b 
= n-i.ZF(z)n-l 

1 
- - 

s 
F(z)“-1 dz 

0 n- 1 0 

= & (1 + b - h(O)), 

s 

l+b 

s(i) = zF(~)‘+~-~[l - F(z)lif(z) dz 
0 

1 l+b 
= n _ 1 _ iz[l - F(z)]iF(z)“-‘-i 

0 

1 

s 

l+b 
- 

n-l-i 0 
[[l - F(z)li - iz[l - J’(z)]‘-‘f(z)] J’(z)‘+‘--~ dz 
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i J 
l+b 

= -~ 
71. - 1 - i 0 

zF(z)“-l-i [l - F(~)]~-‘f(z) dz 

1 
s 

l+b 
- 

n-l-i 0 
F(z)‘+‘-~[~ - F(z)li dz 

= ;+Ji - 1) - n _ ; _ iw), and 

J l+b 
h(i) = F($[l - F(z)]“-l-” dz 

0 
1 

= J x2(1- 4n-1-2 i(F:l(s)) dz, (Let z = F(z)) 
0 

i’ 

1 

2 zi(l - 5)+1-i dz, (because 0 I f(F-l(x)) < 1) 
. 0 
i!(n - 1 - i)! =- 

I . 72. 

So we have the following equations: 

g(O) = & (1 + b - h(O)), 

s(i) = n _ 1 _ p(i - 1) - n _ t _ ih(i)! 

h(i) 2 
i!(n - 1 - i)! 

n! ’ 

Since 

(n - l)! J lfb 

L(n,j) = (jqyn _ j _ l)l .zF(~)j-~[l - F(z)]“-j-‘j(z) dz (by equation (4)) 

(i-l)! . O 
= (j - l)!qn _ j - q+ - 1 - j) 

(n - l)! 
=(j-l)!(n-j-l)! 

:1 
x--x 

n -- 2 &(l+b-h(0)) 

n--l-j 2 ---x n-2-j 
j j+1 x... 

x - x -&h(l) 
n-3 

n-1-j n-2-j 3 ---x 
j j+l 

x ... x - x 
n-4 &h(2) 

n,-l-j 
--- x &h(n-2-j) 

j 

-fh(n- 1 -j) 
> 

(by equations (5),(6)) 

= 1 + b - h(0) - (n - l)h(l) - (n - ‘)2(” - 2, h(2) _ (n - l)(n - 2)(n - 3, h(3) 
3x2x1 

(5) 

(6) 

(7) 

(n - l)! (n - l)! -.. - 
(j + l)!(n _ 2 _ j)! h(n - 2 - j) - j!(n _ 1 - j>! h(n - ’ - j) 
n-1-j 

=l+b- c 
(n - l)! h(i), 

i=. i!(n - 1 - i)! 
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we can rewrite E(d(n, j)) as follows: 

Note that 

E(d(n,j)) = 1’ 2bL(n,j) db (by equation (3)) 
0 

1 n-j-l 
= J ( 2b 

0 
l+b- c 

(n - l)! 

i=. i!(n - 1 -i)! 

5j 5 

J ( 
l- 

n-j 
3 n=3 > n+fi . 

Therefore, 

- E(d(n,j)) = g 
1 

J ( 2b n$l i,(;_-lyi), h(i)) db - 0 n;-& 

23 J 1 5 2b x (by (7)) equation 
0 

3 n-j 
x-- 

n-j =-- 
5 n n+fi 
n-j =- 3&-2&x 

5 > fi(n+fi) ’ 

If 
3,&2&i 

> 0 and E(d(n, j)) 5 
J;i(n+fi) - 

For llj < 4n/9, 

Since lim,_,,(Z - 2fi)/(+(n + fi)) = 0, we have limn+ooE(d(n,i)) I (5/3)Jj’-7;;: when 
1 5 j < 4n/9. Thus, we conclude that 

:$a E(d(n, i)) L f lIj<n-1. 

For 2, y > 0, let P,j’ = y!/z! if y 2 2, 0 otherwise. We give the formula of it,& here. 

LEMMA 5. 

n-j 

Mn,j = (n - 2)! + C (i * Pjz:-l . (n -i - l)!) , l<jln-1. 
i=2 

PROOF. Let point 1 be an arbitrary point of the n points and point i, 2 I i 5 n, be the (i - l)st 
nearest point of point 1. Consider the n! distinct cases. Now we evaluate in how many cases 
that edge e( 1, j + 1) is added to TONLI in the n! input sequences. For all cases that the point 1 is 
the first input point, no edge will be added to T oNLI. If the point 1 is given in the second place, 
there are (n - 2)! cases that the point j + 1 is the first input point and edge e(1, j + 1) will be 
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‘th added to TONLI. If the point 1 is given in the a (3 I i I n) place, edge e(l, j + 1) is added to 
TONLI only if point 1 is not given after the (n - j + l)St input point arrives. Edge e(l, j + 1) will 
be added to TgNLI if and only if the following conditions are satisfied: 

Point j + 1 is one of the first i - 1 input points. 
Point x, 2 <_ x 5 j, is not one of the first i - 1 input points; that is, point x should be 
given after the ith input point arrives. If not, the edge whose distance is smaller than that 
of edge e(l,j + 1) will be added to T&L*. 
Other n - j .- 1 points are present in the remaining n - j - 1 places. 

Conditions (l)-(3) have i - 1, P,“-i and (n - j - l)! cases, respectively. Then, the number of 
times that edge e(l,j f 1) is added to TcNLI while point 1 is the ith (3 < i 5 n - j + 1) input 
point is 

(i - 1) . P,“-i . (n - j - l)!. 

So, for 1 L: j 5 n - 1, we have 

n-j+1 

A& = (n - 2)! + C ((i - 1) . P,“-ii . (n - j - l)!) 
i=3 

n-j 
= (n - 2)! + C (i . Pj”_i”-l . (n - j - l)!) . 

i=2 

Here, we prove two expressions to be used in the main theorem. 

LEMMA 6. 

(2) 

PROOF. 

(1) (n - j - l)! n-’ i(n _ i - I)! 

(n - l)! c i=2 (n - i -j)! 
(by Lemma 5) 

I (n-j-l)!j!+’ i(n-i-l)! 1 _ 
n-l j(n - l)! c i=2 (j - l)!(n - i - j)! 

1 
= n-l + j(“7’) i=2 

‘2 [i(nji;l)] 

We have 

Z[i(‘“,iT’)1 =$I;) +3(7;) +...+(n-j,(:I:) 

=z [(y-l”) + (;-:> +...+ (!I;)] 
+ [(Jr3 + (;I;) +...+ (;:;)I 
+.*a+ [(j:l) + (;I;)] + (;I:) 
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=2n~2(1:+k)+n~3~-:tk) 

+...+gy+k)+g(i-;+k) 

(by g(“:“> = (m+;+l)) 
=2(v2) + (e3) +...+ (7’) + (3 

= (“I”) +ng2(‘;“) 

= (“j”> + (nl;12) 

(by $(“:“) = (mlnn+l)) 

=(ny2)+(;J. 

1 +5&Z_ 
n-l 

1 =- 
n-l 

(“i2) + (Tyt), we obtain 

+&) [(“T”) + (:;:)I 

n-1-j 
+ . 

n-1-j n 

3(n - 1) 
+ . . 

A3 + 1) =j(j* 

(2) n-1 

c 
n 

+ j(j + 1) 
J- ( 

&/?i ;+-&+-$+~+n~JI(;+l) 
n j=5 1 

n-1 

I J;I 

( ) 

1+ C jm312 
j=5 

We now prove the main theorem. 

THEOREM 3. The limit ratio of L(Z’orq~) to L(TMIN) is 4.34. 

PROOF. We derive an upper bound of L(TcJ& as follows: 

lim IQ&I) = 
n-+09 

(by equation (2)) 

n-1 
= dlw C _” 

j=l J(3 + 1) 
-Wd(n, j)) (by Lemma 6 (1)) 
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(by Theorem 2) 

(by Lemma 6 (2)) 

From Theorem 1, we know that lim,,, L(Ts) 2 (fi)/4. Finally, we get 

lim 7X-a 
L(TONLI) 

Ws) 
M 4.34. I 

4. CONCLUDING REMARKS 

In this paper, we discuss the average length of the Euclidean tree constructed by Algorithm 
Greedy when the number of input points tends to infinity. The ratio of the expected length of 
the tree constructed by Algorithm Greedy to the expected length of the minimum Steiner tree is 
not greater than 4.34 when the number of input points is large. Besides, we propose a method 
to derive an upper bound of the expected distance between a point and its jth nearest neighbor, 
which points are distributed uniformly and independently on a unit disk in the plane. The result 
of this paper can be improved if a better upper bound for E(d(n,j)) or a better lower bound for 
L(Ts) is found. The average competitive ratio of Algorithm Greedy for the on-line Steiner tree 
problem has been shown to be a constant, but the exact value of average ratio is still an open 
problem. 
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