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It has been shown that the progress in the determination of membrane protein
structure grows exponentially, with approximately the same growth rate as that of
the water-soluble proteins. In order to investigate the effect of this, on the perfor-
mance of prediction algorithms for both α-helical and β-barrel membrane proteins,
we conducted a prospective study based on historical records. We trained separate
hidden Markov models with different sized training sets and evaluated their per-
formance on topology prediction for the two classes of transmembrane proteins.
We show that the existing top-scoring algorithms for predicting the transmem-
brane segments of α-helical membrane proteins perform slightly better than that
of β-barrel outer membrane proteins in all measures of accuracy. With the same
rationale, a meta-analysis of the performance of the secondary structure predic-
tion algorithms indicates that existing algorithmic techniques cannot be further
improved by just adding more non-homologous sequences to the training sets. The
upper limit for secondary structure prediction is estimated to be no more than
70% and 80% of correctly predicted residues for single sequence based methods
and multiple sequence based ones, respectively. Therefore, we should concentrate
our efforts on utilizing new techniques for the development of even better scoring
predictors.

Key words: membrane protein, secondary structure prediction, alpha-helical, beta-barrel, 3D
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Introduction

The three-dimensional (3D) structure of a protein is
determined by its amino acid sequence in a given envi-
ronment and, consequently, determines its exact bio-
logical function (1 ). However, experimental methods
for determining the structure of a given protein such
as X-ray crystallography and nuclear magnetic res-
onance are expensive, time-consuming and in many
cases (i.e., concerning membrane proteins) not easy
for a number of reasons. Thus, from the early days of
computational biology, several attempts were made in
order to develop algorithms that can predict the sec-
ondary structure of a protein using only information
encoded in its primary sequence. Later on, similar
algorithms were developed for predicting more spe-
cialized secondary structure features such as trans-
membrane helices and β-strands of transmembrane
(TM) proteins. In a typical case, a limited number of
non-homologous sequences with known 3D structure

are used for training the algorithm and the method
is supposedly able to predict the secondary structure
of newly discovered and unrelated proteins. Thus, we
expect that as newly solved 3D structures are accumu-
lated, the prediction methods would become better.

It has been shown that the progress of protein
structure determination is approximately the same
for membrane proteins and water-soluble ones, tak-
ing into consideration the year of the first published
structure (2 ). However, membrane proteins have a
delay in the appearance of the first published struc-
ture of about 25 years compared to the water-soluble
proteins. Moreover, for training a predictor, usually
a non-redundant dataset is used. From the early
years of the structure prediction algorithms, it was
anticipated that an increase in the number of non-
homologous sequences with known structure would
enhance the prediction accuracy. However, later it
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became evident that after a particular point, the pre-
diction accuracy could not be further improved just
by increasing the size of the training set. In this work,
we try to empirically answer the question regarding
the relationship between the size of the training set
and the prediction accuracy.

We address separately the general problem of pre-
dicting the secondary structure of proteins, and that
of predicting the TM segments of membrane proteins
(α-helical and β-barrels). The methods used for sec-
ondary structure prediction of water-soluble proteins
appeared much earlier in the progress of biological
research and continue to grow, taking advantage of
the increasing number of available unique structures
determined year by year. However, even using the
most advanced computational techniques devoted to
this task (neural networks, support vector machines,
etc.) and including as input evolutionary informa-
tion in the form of multiple alignments, it is currently
acceptable that their prediction performance cannot
exceed an upper limit, no matter what the increase of
the training set would be. In order to quantify this
common belief, we performed a meta-analysis of pub-
lished results using data from the existing literature.

Concerning membrane proteins, we have con-
ducted a historical prospective study in order to il-
lustrate the potential impact of newly determined 3D
structures in the topology prediction by state-of-the-
art machine learning computational methods. Along
these lines, we have used the hidden Markov model
(HMM)-based computational methods recently pro-
posed by our group, namely PRED-TMBB (3 , 4 ) and
HMM-TM (5 ), as platforms to get an estimate of the
improvement of computational predictive methods, as
more (unique) structures become available for both α-
helical and β-barrel TM proteins.

Results and Discussion

The literature search for secondary structure predic-
tion algorithms identified 59 studies that fulfilled
our criteria (Table 1). The methods are classified
into two classes according to the input they use,
those using single sequence information (23 meth-
ods) and those using evolutionary information in the
form of multiple alignments (36 methods). The meth-
ods are highly heterogeneous according to the algo-
rithmic technique they utilize; we encountered feed-
forward neural networks with various fixed topologies
(FFNNs), cascaded correlation neural networks (CC-

Table 1 Studies included in the meta-analysis for

the accuracy of the secondary structure

prediction algorithms

Year Reference Training set Q3 Evolutionary

(No. of proteins) information

1978 32 29 53 NO

1978 33 25 57 NO

1986 34 61 62.2 NO

1987 35 59 61.3 NO

1987 36 68 63 NO

1987 37 25 66 YES

1988 38 62 58.7 NO

1988 39 106 64.3 NO

1989 40 48 63 NO

1990 41 62 64 NO

1992 42 107 66.4 NO

1993 43 91 64.5 NO

1993 44 126 72 YES

1993 45 110 68 NO

1996 46 318 72.9 YES

1996 46 318 67 NO

1996 47 267 64.4 NO

1996 48 126 71.3 YES

1996 48 126 66.3 NO

1997 49 556 75 YES

1997 50 402 67.5 NO

1997 51 512 68 NO

1997 51 512 72.4 YES

1997 52 90 73.5 YES

1997 53 304 72 YES

1997 53 473 67 NO

1999 54 1,180 76.6 YES

1999 55 681 76.6 YES

1999 56 396 72.9 YES

1999 57 187 76.5 YES

2000 58 480 76.4 YES

2000 59 496 76.7 YES

2000 60 1,032 80.6 YES

2000 61 452 68.8 NO

2001 62 513 73.5 YES

2001 63 396 73.7 YES

2001 63 396 68.8 NO

2001 16 126 75.1 YES

2002 64 513 73.5 YES

2002 64 513 67.5 NO

2002 65 1,180 78.13 YES

2003 66 480 78.5 YES

2003 67 126 72.8 YES

2003 68 1,460 77.07 YES

2004 69 513 75.2 YES
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Table 1 Continued

Year Reference Training set Q3 Evolutionary

(No. of proteins) information

2004 70 1,612 70.2 NO

2004 71 513 77 YES

2004 72 513 78.44 YES

2004 73 513 76.5 YES

2005 74 3,553 77.1 YES

2005 75 860 78.4 YES

2005 76 396 76.3 YES

2005 77 2,171 79 YES

2005 78 513 79.4 YES

2005 79 513 69 NO

2005 79 513 76.4 YES

2005 80 374 76 YES

2005 7 3,925 81.8 YES

2005 81 297 70 YES

NNs), recurrent neural networks (RNNs), partially re-
current neural networks (PRNNs), bidirectional re-
current neural networks (BRNNs), hybrid methods
such as hidden neural networks (HNNs), linear re-
gression classifiers, support vector machines (SVMs),
nearest neighbor methods, Bayesian networks (BNs)
and various propensity based statistical methods.
The training set used in each method also varied dra-
matically among methods, from 27 sequences in the
earlier works (6 ) to 3,925 sequences in the most re-
cent work (7 ). The datasets used for the historical
prospective study (for both α-helical and β-barrel TM
proteins) are listed in the supplementary material at
http://bioinformatics.biol.uoa.gr/historical/.

In Table 2, we list the detailed results of fitting
the linear and non-linear curves on the measures of
performance (Q, C and SOV) for α-helical and β-
barrel TM proteins, as well as on the Q3 statistic for
secondary structure prediction algorithms (see Ma-
terials and Methods). From the root mean squared
error (RMSE) statistics, it is clear that in the case of
β-barrel TM proteins and secondary structure (both
with and without the use of multiple alignments), the
non-linear model fits better to the data. For α-helical
TM proteins, the RMSEs are nearly equivalent in all
three cases. However, the growth rate represented by
the β1 coefficients is very small, a fact indicated also
in their large standard errors (resulting in marginally
statistical significant slopes for Q and C, and in an in-
significant one for SOV). Concerning secondary struc-
ture predictions, the estimates correspond to an upper
limit for the performance of the single sequence meth-

ods at around 70%, whereas at the same time for mul-
tiple sequence methods this limit is somewhere around
80% (Figure 1). The differences between single se-
quence based methods and those using multiple align-
ments are reflected in the estimated β1 coefficient of
the model for each class (0.022 vs 0.002). This pa-
rameter expresses the shape of the fitted line. For
instance, larger values correspond to a rapid initial
growth and faster saturation, as opposed to smaller
values that correspond to a more smooth increase.
Even though one has to have in mind that we are com-
paring entirely different methods, it seems that there
are differences between the two distributions. Thus,
the linear phase for the growth of performance for
single sequence based methods is estimated to be for
datasets <200, whereas the same for multiple align-
ment based methods (mostly using NNs and SVMs)
is for datasets <1000. It seems that methods depend-
ing on multiple alignments are more dependent on the
size of the training set, perhaps as a consequence of
the fact that they utilize many more trainable param-
eters.

Comparing α-helical TM proteins with β-barrels
(Figures 2 and 3), we can also observe that the
former can achieve a borderline better performance
in any measure studied. This is something expected
since it is well known that predicting the TM regions
in α-helical membrane proteins is a much easier task
compared to the β-barrels. Furthermore, β-barrels
need less 3D structures in order to train a predictor.
This has to be interpreted taking into account the
smaller number of parameters used in the models as
well as the existence of fewer structural folds of TM
β-barrels. Comparing the prediction of TM proteins
(α-helical ones and β-barrels) to secondary structure
prediction, we have to also note the superior perfor-
mance of algorithms for TM protein topology predic-
tion. Once again, this is something that we expected
since TM protein topology prediction can be seen as
a very specialized case of secondary structure predic-
tion. The limitations imposed by the lipid bilayer
restrict the possible conformations of a polypeptide
chain, making the prediction a relatively easier task.
On the contrary, trying to predict the secondary struc-
ture is harder since the prediction algorithm has to be
able to predict all the available conformations deriv-
ing from the large number of structural folds. Re-
cent studies (8 , 9 ) suggest that the possible “folds”
of membrane proteins are limited (in a same way that
the number of soluble proteins’ folds is limited). Thus,
we expect that the findings reported in this work

130 Genomics Proteomics Bioinformatics Vol. 7 No. 3 September 2009



Bagos et al.

Table 2 Results obtained from the linear and non-linear regression for secondary structure, α-helical

membrane and β-barrel membrane proteins

β0 (SE) β1 (SE) β2 (SE) RMSE

Non-linear β-barrel TM proteins

Qβ 0.869 (0.010) 0.153 (0.034) −7.876 (2.579) 0.0070

Cβ 0.734 (0.0217) 0.153 (0.036) −2.183 (1.516) 0.0149

SOV 0.874 (0.0121) 0.216 (0.041) −1.398 (1.184) 0.0132

α-helical TM proteins

Qα 0.884 (0.018) 0.019 (0.020) −140.0415 (145.267) 0.0093

Cα 0.776 (0.098) 0.012 (0.018) −139.895 (183.753) 0.0213

SOV 0.904 (0.013) 1.984 (–) 14.583 (0.366) 0.0376

Secondary structure

Q3 (single) 0.679 (0.006) 0.022 (0.004) −50.405 (17.613) 0.0182

Q3 (multiple) 0.790 (0.011) 0.002 (7.4×10−4) −976.918 (351.151) 0.0219

Linear β-barrel TM proteins

Qβ 0.735 (0.014) 0.007 (9.7×10−4) – 0.0157

Cβ 0.462 (0.028) 0.013 (0.002) – 0.0322

SOV 0.646 (0.034) 0.012 (0.002) – 0.0389

α-helical TM proteins

Qα 0.843 (0.006) 3.3×10−4 (8.6×10−5) – 0.0093

Cα 0.655 (0.013) 7.9×10−4 (1.9×10−4) – 0.0206

SOV 0.879 (0.025) 3.3×10−4 (3.7×10−4) – 0.0398

Secondary structure

Q3 (single) 0.627 (0.009) 7.1×10−5 (2.2×10−5) – 0.0349

Q3 (multiple) 0.740 (0.007) 2.0×10−5 (7.0×10−6) – 0.0269

Figure 1 The prediction accuracy (Q3) of secondary structure prediction algorithms in relation to the size of the

training set. Single sequence methods are depicted with squares and multiple alignment-based ones are depicted with

triangles. The non-linear regression curves for single sequence and multiple alignment ones are depicted with solid and

dotted lines respectively.
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Figure 2 The prediction accuracy (Qα) of prediction algorithms for α-helical membrane proteins in relation to the

size of the training set. The non-linear and linear regression curves are depicted with solid and dotted lines respectively.

Figure 3 The prediction accuracy (Qβ) of prediction algorithms for β-barrel membrane proteins in relation to the size

of the training set. The non-linear and linear regression curves are depicted with solid and dotted lines respectively.

could be extrapolated to the future provided that a
fold, which is completely different compared to what
we already have seen, will not appear. Given that the
basic principles governing membrane protein folding
(such as hydrophobicity) have already been taken into
account when designing these algorithms, we have no
reason to expect a dramatical change in the future.

In our historical prospective study, we used solely
methods with single sequence information. In the
case of α-helical TM proteins, HMM-TM has been
shown to outperform the high-scoring methods cur-

rently available such as TMHMM and HMMTOP that
use single sequences, and compares favorably against
the newly developed methods that use multiple align-
ments. In case we used multiple alignments in our
method, perhaps a higher plateau could be reached
and maybe we had a slightly different shape of the
growth curve; however, the general conclusions would
remain unaffected. In the case of β-barrels, PRED-
TMBB has been shown to be one of the most success-
ful prediction algorithms outperforming even meth-
ods that use evolutionary information. Furthermore,
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it has been shown that HMM methods outperform
other methods based on NNs and SVMs in both pre-
diction of α-helical (10 ) and β-barrel TM proteins
(11 ). Thus, the results of this study are not likely
to be inflated by the type of the prediction method
used.

The type of the algorithmic technique used for sec-
ondary structure prediction has a direct impact on the
performance, and the accumulated experience over
the years has provided researchers with useful heuris-
tic rules that increase the performance. Furthermore,
for algorithms using evolutionary information derived
from multiple alignments, the choice of a particular
algorithm such as BLAST or PSI-BLAST (12 ), HM-
MER (13 ), or CLUSTAL (14 ) in order to perform the
database search and the alignment may influence the
results. In addition, the size of the database on which
the search is performed has been shown to influence
the results greatly, thus favoring the more recently
published methods (15 , 16 ). However, the results re-
ported here clearly indicate that, using existing al-
gorithmic techniques, the performance of secondary
structure prediction algorithms cannot be further im-
proved by increasing the size of the training set.

In the case of membrane proteins, the study that
we conducted eliminates all the possible sources of
variation (different methods for training, different se-
lection criteria for the dataset, etc.), thus it is ex-
pected to produce unbiased estimates for the depen-
dence on the size of the training set. The total num-
ber of freely estimated parameters in the model used
for β-barrel membrane proteins is 175, whereas the re-
spective number for the model used for α-helical mem-
brane proteins is 304. These numbers are adequate
for training a prediction method using some dozens of
proteins (i.e., thousands of amino acids as the obser-
vations) and in any case are significantly smaller com-
pared to the number of freely estimated parameters
(weights) needed by an NN method. Perhaps if we
used an NN method, different estimates would have
been produced. However, HMMs have been proved
to be not only the most parsimonious among the ma-
chine learning algorithms, but also the most efficient
for predicting the topology of TM proteins. Further-
more, the particular HMM methods used here have
been found to be among the top-scoring ones in the
literature (5 , 11 ).

The major finding of this work is the identification
of an upper limit for the performance of the prediction
algorithms. We have shown that using the existing al-
gorithmic techniques, the prediction performance can-

not be further improved by simply adding sequences
to the training set. Thus, we need to develop new al-
gorithmic techniques entirely different from the ones
used up to now. Such methods definitively need to be
able to exploit long-range interactions (correlations)
along the sequence (17 ). All currently available tech-
niques are based (one way or the other) on the use
of the statistical properties of neighboring amino acid
residues along the sequence. Thus, they all use lo-
cal information and ignore long-range dependencies,
which are highly important for the stability of the
secondary structure elements and in some cases such
as the β-sheet, are responsible for their formation. A
few methods have been used already for incorporat-
ing long-range interactions along a protein sequence in
the secondary structure prediction problem using neu-
ral networks (18 ) or variations of the stochastic con-
text free grammars (19 , 20 ), whereas other methods
mainly based on neural networks are devoted solely
to predict the long-range interactions (21–24 ). Such
techniques are computationally more demanding, but
given that computational power continues to grow,
their use should be exploited further in the context of
structure prediction algorithms in the near future.

Materials and Methods

Performing a literature search in PubMed
(www.pubmed.gov), we identified studies describing
an algorithm for secondary structure prediction that
reported: (1) explicitly the use of a non-redundant
training set, and (2) the prediction performance using
the percentage of correctly predicted residues (Q3) in
a three-state mode (H-helix, E-extended, C-coil) in a
test set having no significant similarity with the set
used for training. For the latter, we accepted either
the test on an independent set or the results of a cross
validation or a jackknife test. We further classified
the algorithms into two classes, those that depend
on single sequence information, and those that use
evolutionary information derived from multiple align-
ments. If a certain prediction method reports both
the results using single sequences and multiple align-
ments, these results are counted separately. Finally,
if a method reports the performance on two or more
large independent sets, we kept only the one with the
highest accuracy.

For the analysis regarding TM proteins, in order
to eliminate the inherent variability of the different
methods applied on different datasets, we decided
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to conduct a prospective study based on historical
records (a so-called “historical prospective study”).
We used PDB TM (25 , 26 ) in order to collect all the
available high-resolution structures of α-helical and
β-barrel TM proteins deposited in the Protein Data
Bank (27 ). Consequently, we ranked these structures
according to the year of publication. Thus, we were
able to create datasets corresponding to the structures
available for each year in the range 1995–2005. Since
there was a slight delay between the elucidation of
the first structure of an α-helical membrane protein
(1986) and that of the first structure of a porin (1992),
we decided to subtract the offset of 6 years, and thus
obtain datasets for each year following the first pub-
lished structure. For each dataset, we performed a
redundancy check, using algorithm 2 from Hobohm et
al (28 ). Non-redundant datasets were created by re-
moving all chains for which a putative homologous en-
try was already in the set, with the threshold defined
as <30% pairwise sequence similarity (in a length of
more than 80 residues) in a BLAST alignment (12 ).
For sequences shorter than 80 residues, which are fre-
quent among single-spanning membrane proteins, we
used the similarity of less than 50% as threshold in a
length of more than 30 residues.

For each such set, we trained separately a different
HMM in order to predict the TM segments. The
model used for the β-barrels was identical to the
one introduced with the PRED-TMBB method (3 ),
whereas the model for α-helical membrane proteins
was the same as that used in HMM-TM (5 ). Con-
cerning β-barrels, we evaluated the performance on
the jackknife test (i.e., removing a protein from the
training set, training the model with the remaining
proteins and performing the test on the protein re-
moved). In the case of α-helical TM proteins, where
the training sets were larger, we used a seven-fold
cross-validation procedure. Since the sequences do
not show any significant similarity (no more than
30% identities in a BLAST comparison), the results
of the study were approximately to what would have
been observed if such an algorithm was applied at
that particular time. We used the Matthews correla-
tion coefficient (Cα and Cβ for α-helical and β-barrel
TM proteins respectively) and the percentage of cor-
rectly predicted residues (Qα and Qβ for α-helical and
β-barrel TM proteins respectively) (29 ), as well as
the segment overlap measure (SOV) (30 ) against the
structures used for training each HMM. In both cases
(α-helical and β-barrel TM proteins), the observed
structures, against which the comparisons were per-

formed, were obtained by visual inspection of the 3D
structures. Especially for α-helical TM proteins, as
explained in detail in the respective paper (5 ), a pro-
cedure for the refinement of the boundaries of the
TM segments was performed prior to train the final
model.

The relationship between the sizes of the training
set with the performance of the prediction algorithms
was assessed using linear and non-linear models. We
fitted a simple linear regression line on each of the pa-
rameters (C, Q and SOV denoted here as y) against
the number of proteins in the training set (x):

y = β0 + β1x

Here of interest is the coefficient β1, which denotes
the amount of increase in the predictive performance
that we can achieve by adding one more protein to the
training set. In order to check for non-linearity with
respect to the training set, we used the non-linear
model of von Bertalanffy (31 ):

y = β0

(
1 − e−β1(x−β2)

)

This model requires the estimation of three pa-
rameters β0, β1 and β2. β0 corresponds to the max-
imal prediction performance, β1 corresponds to the
growth rate and β2 is an offset corresponding to the
hypothetical size of a training set required in order
to have a y equal to zero. The parameters were esti-
mated iteratively by non-linear least squares. In order
to decide which model fits better to the data (linear
vs non-linear), we used the RMSE statistic given by
the formula:

RMSE =

√√√√∑
i

(yi − ŷi)
2

n

where ŷi is the predicted model value for the ith ob-
servation. Smaller values of RMSE denote a better
fit.
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