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To make a joint decision, agents (or voters) are often required to provide their preferences
as linear orders. To determine a winner, the given linear orders can be aggregated
according to a voting protocol. However, in realistic settings, the voters may often only
provide partial orders. This directly leads to the Possible Winner problem that asks, given
a set of partial votes, whether a distinguished candidate can still become a winner. In
this work, we consider the computational complexity of Possible Winner for the broad
class of voting protocols defined by scoring rules. A scoring rule provides a score value for
every position which a candidate can have in a linear order. Prominent examples include
plurality, k-approval, and Borda. Generalizing previous NP-hardness results for some special
cases, we settle the computational complexity for all but one scoring rule. More precisely,
for an unbounded number of candidates and unweighted voters, we show that Possible

Winner is NP-complete for all pure scoring rules except plurality, veto, and the scoring
rule defined by the scoring vector (2,1, . . . ,1,0), while it is solvable in polynomial time
for plurality and veto.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Voting scenarios arise whenever the preferences of different parties (voters) have to be aggregated to form a joint deci-
sion. This is what happens in political elections, group decisions, web site rankings, or multiagent systems. Often, the voting
process is executed in the following way: each voter provides his preference as a ranking (linear order) of all the possible
alternatives (candidates). Given these rankings as an input, a voting rule produces a subset of the candidates (winners) as an
output. However, in realistic settings, the voters may often only provide partial orders (or partial votes) instead of linear
ones: For example, it might be impossible for the voters to provide a complete preference list because the set of candidates
is too large, as it is the case for web page ranking. In addition, not all voters might have given their preferences yet during
the aggregation process, or new candidates might be introduced after some voters already have given their rankings. More-
over, one often has to deal with partial votes due to incomparabilities: for some voters it might not be possible to compare
two candidates or certain groups of candidates, be it because of lack of information or due to personal reasons. Hence, the
study of partial voting profiles is natural and essential. One question that immediately comes to mind is whether any infor-
mation on a possible outcome of the voting process can be given in the case of incomplete votes. More specifically, in this
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paper, we study the Possible Winner problem: Given a partial order for each of the voters, can a distinguished candidate c
win for at least one extension of the partial orders into linear ones?

Of course, the answer to this question depends on the voting rule that is used. In this work, we will stick to the broad
class of scoring rules. A scoring rule provides a score value for every position that a candidate can take within a linear order,
given as a scoring vector of length m in the case of m candidates. The scores of the candidates are then added over all votes
and the candidates with the highest score win. Famous examples are Borda, defined by the scoring vectors (m − 1,m −
2, . . . ,0) and k-approval, defined by (1, . . . ,1,0, . . . ,0) starting with k ones. Two relevant special cases of k-approval are
plurality, defined by (1,0, . . . ,0), and veto, defined by (1, . . . ,1,0). Typically, k-approval can be used in political elections
whenever the voters can express their preference for k candidates within the set of all candidates. Another example is the
Formula 1 scoring, which until the year 2009 used the scoring rule defined by the vector (10,8,6,5,4,3,2,1,0, . . . ,0) and
since 2010 uses (25,18,15,12,10,8,6,4,2,1,0, . . . ,0).

The study of the computational complexity of voting problems is an active area of research (see the surveys [9,19]).
The Possible Winner problem was introduced by Konczak and Lang [26] and has been further investigated since then
for many types of voting systems [7,27,31,33,34]. Note that the related Necessary Winner problem (Given a set of partial
orders, does a distinguished candidate c win for every extension of the partial orders into linear ones?) can be solved in
polynomial time for all scoring rules [34]. A prominent special case of Possible Winner is Manipulation (see e.g. [8,13,
25,36,37]). Here, the given set of partial orders consists of two subsets; one subset contains linearly ordered votes and
the other one completely unordered votes. Clearly, all NP-hardness results would carry over from Manipulation to Possible

Winner. However, whereas the case of weighted voters is settled by a full dichotomy for Manipulation for scoring rules [25],
so far, for unweighted voters we are only aware of one NP-hardness result for a specially constructed scoring rule [35].
Indeed, the NP-hardness of Manipulation for Borda is a prominent open question [35,36]. There are NP-hardness results for
Manipulation in the unweighted voter case for several common voting rules which are not scoring rules [20,21,36]. Another
closely related problem is Preference Elicitation (see e.g. [11,12]). Here, the idea is to avoid that each voter has to report
his whole preference list, but to ask only for some part of the information that suffices to determine a winner.

Now, let us briefly summarize the known results for Possible Winner for scoring rules. Correcting Konczak and Lang [26]
who claimed polynomial-time solvability for all scoring rules, Xia and Conitzer [34] provided NP-completeness results for
a class of scoring rules, more specifically, for all scoring rules that have four “equally decreasing score values” followed
by another “strictly decreasing score value”; we will provide a more detailed discussion later. Betzler et al. [7] studied the
multivariate complexity of Possible Winner for scoring rules and other types of voting systems, providing an NP-hardness
proof for k-approval in case of only two partial votes. However, this NP-hardness result holds only if k is part of the input
and does not carry over for fixed values of k. Furthermore, whereas the corresponding many-one reduction relies on two
partial votes, the construction used in this work makes use of an unbounded number of partial votes and thus is completely
different.

Until now, the computational complexity of Possible Winner was still open for a large number of naturally appearing
scoring rules. One such open case has been k-approval for small values of k which is motivated as follows. A common way
of voting for a board consisting of a small number, for example, of five members, is that every voter awards one point
each to five of the candidates (5-approval). A second example is given by voting systems in which each voter is allowed to
specify a (small) group of favorites and a (small) group of most disliked candidates. As final example, we mention scoring
rules that have decreasing differences between successive score values as, for example, the scoring vector (2m,2m−1, . . . ,0).

This work aims at a computational complexity dichotomy for pure scoring rules. The class of pure scoring rules covers all
of the common scoring rules. It only constitutes some restrictions in the sense that for different numbers of candidates the
corresponding scoring vectors cannot be chosen completely independently (see Section 2). Our results can also be extended
to broad classes of “non-pure” scoring rules, see Section 7. Altogether, we settle the computational complexity of Possible

Winner for all pure scoring rules except the scoring rule defined by (2,1, . . . ,1,0). For plurality and veto, we provide
polynomial-time algorithms whereas for the remaining cases we show NP-completeness. Surprisingly, this includes the NP-
hardness of Possible Winner even for 2-approval. Our NP-hardness result for 2-approval has also been used to settle the
complexity of the Swap Bribery problem [16].

2. Preliminaries

Let C = {c1, . . . , cm} be the set of candidates. A vote is a linear order (i.e., a transitive, antisymmetric, and total relation)
on C . An n-voter profile P on C consists of n votes (v1, . . . , vn) on C . A voting rule r is a function from the set of all profiles
on C to the power set of C , that is, r(P ) denotes the set of winners. (Positional) scoring rules are a special kind of voting
rules. They are defined by scoring vectors �α = (α1,α2, . . . ,αm) with integers α1 � α2 � · · · � αm , the score values. More
specifically, we define that a scoring rule r consists of a sequence of scoring vectors s1, s2, . . . such that for any i ∈ N>0
there is a scoring vector si for i candidates which can be computed in time polynomial in i.2 Here, we focus our attention
on pure scoring rules, that is, for every i � 2, the scoring vector for i candidates can be obtained from the scoring vector
for i − 1 candidates by inserting an additional score value at an arbitrary position (respecting the described monotonicity).

2 For scoring rules that are defined for a constant number of candidates, the Possible Winner problem can be decided in polynomial time, see [13,33].
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This definition includes all of the common protocols like Borda or k-approval. We further assume that αm = 0 and that there
is no integer greater than one that divides all score values. This does not constitute a restriction since for every other voting
system there must be an equivalent one that fulfills these constraints [25, Observation 2.2]. Moreover, we only consider
non-trivial scoring rules, that is, scoring rules with α1 �= 0 for scoring vectors of every size.

For a vote v ∈ P and a candidate c ∈ C , let the score s(v, c) be defined by s(v, c) := α j where j is the position of c in v .
For any profile P = {v1, . . . , vn}, let s(P , c) := ∑n

i=1 s(vi, c). Whenever it is clear from the context which P we refer to, we
will just write s(c). A scoring rule selects all candidates c as winners with maximum s(P , c) over all candidates.

A partial vote on C is a transitive and antisymmetric relation on C . We use > to denote the relation given between
candidates in a linear order and � to denote the relation given between candidates in a partial vote. Sometimes, we specify
a whole subset of candidates in a partial vote, e.g., e � D for a candidate e ∈ C and a subset of candidates D ⊆ C . Unless
stated otherwise, this notation means that e � d for all d ∈ D and there is no specified order among the candidates in D .
In contrast, writing e > D in a linear order means that e > d1 > · · · > dl for an arbitrary but fixed order of D = {d1, . . . ,dl}.
A linear order v ′ extends a partial vote v if v ⊆ v ′ , that is, for any i, j � m, from ci � c j in v it follows that ci > c j in v ′ .
Given a profile of partial votes P = (v1, . . . , vn) on C , a candidate c ∈ C is a possible winner if there exists an extension P ′ =
(v ′

1, . . . , v ′
n) such that each v ′

i extends vi and c ∈ r(P ′). The corresponding decision problem is defined as follows.

Possible Winner

Given: A set of candidates C , a profile of partial votes P = (v1, . . . , vn) on C , and a distinguished candidate c ∈ C .
Question: Is there an extension profile P ′ = (v ′

1, . . . , v ′
n) such that each v ′

i extends vi and c ∈ r(P ′)?

This definition allows that multiple candidates obtain the maximal score and we end up with a whole set of winners. If
the possible winner c has to be unique, one speaks of a possible unique winner, and the corresponding decision problem is
defined analogously. All our results hold for both cases.

Several of our NP-hardness proofs rely on reductions from the NP-complete Exact Cover By 3-Sets (X3C) problem [24]
defined as follows. Given a set of elements E = {e1, . . . , eq}, a family of subsets S = {S1, . . . , St} with |Si | = 3 and Si ⊆ E
for 1 � i � t , it asks whether there is a subset S ′ ⊆ S such that for every element e j ∈ E there is exactly one Si ∈ S ′ with
e j ∈ Si . In our NP-hardness proofs we need to describe the consequence of extending partial votes for specific candidates.
To this end, we say that a candidate ci is shifted to the left (right) by another candidate c j when adding the constraint ci � c j
(c j � ci) to a partial vote.

In some of our theorems, we will need functions that map each instance of a certain problem P to some natural number
and in some sense behave like a polynomial. For this sake, we call

f : {I | I is an instance of P} → N

a poly-type function for P if the function value f (I) is bounded by a polynomial in |I| for every input instance I of P .

3. General strategy

This work aims at providing a dichotomy for Possible Winner for practically relevant scoring rules. To this end, we will
show the following.

Theorem. Possible Winner is NP-complete for all non-trivial pure scoring rules except plurality, veto, and scoring rules for which there
is a constant z such that the produced scoring vector is (2,1, . . . ,1,0) for every number of candidates greater than z. For plurality and
veto, Possible Winner is solvable in polynomial time.

The proof consists of several parts, see Table 1 for an overview. The polynomial time results for plurality and veto are
based on flow computations. Regarding the NP-hardness results, we give many-one reductions that work for scoring rules
that produce specific “types of scoring vectors” for an appropriate number of candidates. We combine the single results to
obtain the main result in Section 7. To this end, we have to take into account that, in general, a scoring rule might produce
different types of scoring vectors for different numbers of candidates.

The basic observation to classify the scoring vectors is that a scoring vector of unbounded size must have an unbounded
number of different score values or an unbounded number of equal score values. This leads to the following strategy.
First, we show NP-hardness for all scoring vectors having an unbounded number of different score values. To this end, we
generalize a many-one reduction due to Xia and Conitzer [34]. Second, we deal with scoring vectors having an unbounded
number of equal score values. Here, we consider two subcases, i.e., scoring vectors of type α1 > α2 = αm−1 > 0 but α1 �=
2 · α2, and all remaining scoring vectors with an unbounded number of equal score values.

Before stating the specific results, we give a construction scheme that is used in all many-one reductions in this work.

3.1. A general scheme to construct linear votes

In all many-one reductions presented in this work, one constructs a partial profile P consisting of a set of linear orders V l

and a set of partial votes V p . The position of the distinguished candidate c is already determined in every vote from V p ,
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Table 1
Overview of results and outline of the work. Basically, we partition the scoring rules into five different types
according to the types of algorithms or many-one reductions that are used to achieve the results. By “different-
type” we denote all scoring vectors with an unbounded number of different score values. By “equal-type” we
denote all scoring vectors with an unbounded number of equal score values if not listed explicitly in another
type. Reductions are from Exact Cover By 3-Sets (X3C) or Multicolored Clique (MC).

Scoring rule Result

Plurality and veto in P Proposition 1, Section 4
Different-type NP-c (X3C) Theorem 1, Section 5
Equal-type NP-c (MC/X3C) Theorem 2, Lemmata 3–6, Section 6.1
α1 > α2 = αm−1 > 0 NP-c (X3C) Theorem 4, Section 6.2

and α1 �= 2 · α2

(2,1, . . . ,1,0) ?

v1: c1 > c2 > · · · > cm−1 > cm

v2: c2 > c3 > · · · > cm > c1
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.

.

vm−1: cm−1 > cm > · · · > cm−3 > cm−2

vm: cm > c1 > · · · > cm−2 > cm−1

Fig. 1. Circular block for c1, c2, . . . , cm .

that is, s(P ′, c) is the same in every extension P ′ and thus is fixed. The “interesting” part of the reductions is given by
the partial votes of V p in combination with upper bounds for the scores which the non-distinguished candidates can make
in V p . For every candidate c′ ∈ C \ {c}, the maximum partial score smax

p (c′) is the maximum number of points c′ may make

in V p without beating c in P . More precisely, for the unique winner case, smax
p (c′) = s(P ′, c) − s(V l, c′) − 1 and, for the

winner case, smax
p (c′) = s(P ′, c) − s(V l, c′) for any extension P ′ of P . Since the maximum partial scores can be adjusted to

the unique and to the winner case, all results hold for both cases.
In the following, we show that for all our reductions, there is an easy way to cast the linear votes such that the maximum

partial scores that are required in the reductions are realized. For every many-one reduction of this work, it will be easy to
verify that the underlying partial profile fulfills the following two properties.3

Property 1. There is a “dummy” candidate d which cannot beat the distinguished candidate in any extension, that is,
smax

p (d) � α1 · |V p|.

Property 2. For every c′ ∈ C \ {c}, the maximum partial score smax
p (c′) can be written as a sum of at most |V p| integers

from {α1, . . . ,αm}. Formally, the definition of smax
p (c′) will be of the form smax

p (c′) = ∑m
j=1 n jα j where n j ∈ N0 denotes

how often the score value α j is added. We will always have that
∑m

j=1 n j � |V p|, that is, the total number of summands
is at most the number of partial votes.

The sets of linear votes which are necessary for the reductions given in this paper can be obtained according to the
following lemma.

Lemma 1. Given a scoring rule r, a set of candidates C with distinguished candidate c ∈ C, a set of partial votes V p in which c is fixed,
and smax

p (c′) for all c′ ∈ C \ {c}, a set of linear votes that realizes the maximum partial scores for all candidates can be constructed in
time polynomial in |V p| and m if Properties 1 and 2 hold.

Proof. We are interested in “setting” relative score difference between the distinguished candidate c and every other can-
didate. By inserting one linear order we change the relative score difference between c and all other candidates. To be able
to change the relative score difference only for c and one specific candidate while keeping the relative score difference
of c and all other candidates, we will build V l by sets of circular shifts instead of single votes. More precisely, for a set of
candidates {c1, c2, . . . , cm}, a circular block consists of m linear orders as given in Fig. 1. Clearly, all candidates have the same
score within a circular block.

We start with the construction for the winner case and then explain how to adapt it for the unique winner case. For the
winner case (smax

p (c′) = s(P ′, c) − s(V l, c′) for any extension P ′), for each candidate c′ ∈ C \ {c,d} where d denotes a dummy

as specified in Property 1, add the following votes to the set of linear votes V l . For each n j �= 0 as specified in Property 2,
construct n j circular blocks over C such that in one of the linear orders of every block, c′ sits on position j and d sits
on position m. Exchange the places of c′ and d in this linear order and add the modified circular block to V l . Then, for

3 The only exception appears in the proof of Theorem 4 and will be discussed there.
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Fig. 2. Possible Winner for plurality: The left-hand side shows an example for an election and the right-hand side the corresponding flow network. The
votes v2 and v3 can be extended such that c takes the first position. The position of the remaining candidates in v2 and v3 is not relevant; one possibility
how to extend these votes is shown in the picture.

one block, c′ has lost α j points and gained αm = 0 points relative to c. Thus, in total, one has the situation that c and c′
have exactly the same score if c′ makes smax

p (c′) points in V p . This settles the winner case. For the unique-winner case, we
additionally decrease the score of c′ by the minimum of {αi − α j | αi > α j and i, j ∈ {1,2, . . . ,m}}. This can be achieved by
adding a circular block such that in one of the linear orders of the block, c′ sits on position αi and d sits on position α j ,
and by exchanging the places of c′ and d in this linear order. Then, c beats c′ if c′ makes at most smax

p (c′) points in V p and
c′ beats c, otherwise.

Altogether, due to Property 2, we add at most |V p| summands for each candidate. Hence, so far, the number of linear
votes is bounded by m2 · (|V p| + 1) and can be constructed in polynomial time. It remains to adjust the maximum partial
score of d. Until now, we added at most m · (|V p| + 1) circular blocks. Thus, d can make at most α1 · m · |V p| points more
than c. By adding m(|V p| + 1) + |V p| further circular blocks for candidates from C \ {d} that are inserted in the first m − 1
positions, while d is put on the last position in these votes, smax

p (d) can be realized in polynomial time. �
4. Plurality and veto

Employing network flows turned out to be useful to design algorithms for several voting problems (see e.g. [17,18]).
Here, by using some flow computations very similar to [7, Theorem 6], we show the following.

Proposition 1. Possible Winner can be solved in polynomial time for plurality and veto.

Proof. First, we give an algorithm for plurality. Let P on C denote a Possible Winner-instance with distinguished candi-
date c. Clearly, it is safe to set c to the first position in all votes in which this is possible. Then the score of c is fixed at the
maximum possible value. We denote the partial votes of P in which the first position is not taken by c as P1. Now, we can
model the problem as network flow as follows (see Fig. 2): The flow network consists of a source node s, a target node t ,
one node for every vote of P1, and one node for every candidate from C \ {c}. There are three layers of arcs:

1. an arc from s to every node corresponding to a vote in P1 with capacity one,
2. an arc from a node corresponding to v j ∈ P1 to a node corresponding to a candidate c′ ∈ C \ {c} with capacity one if

and only if c′ can take the first position in an extension of v j , and
3. an arc from every node corresponding to c′ ∈ C \ {c} to target t with capacity s(c) − 1.

Now, c is a possible winner if and only if there is a flow of size |P1|: The first layer simulates that the first position of
every partial vote from P1 has to be taken, the second layer that it can only be taken by appropriate candidates, and the
last one that the score of every candidate will be lower than the score of c. Clearly, the flow network can be constructed in
time polynomial in |P1| and an integral flow computation can be done in polynomial time [14].

For veto, we first fix c at the best (leftmost) possible position in every vote. This fixes the maximum score of c. Then for
every candidate c′ ∈ C \ {c}, let z(c′) denote the minimum number of last positions that c′ must take such that it does not
beat c. Let P1 denote the set of partial votes in which c does not take the last position. Again, we model the problem by
a flow network with source node s, target node t , one node for every candidate from C \ {c}, and one node for every vote
of P1. The arcs are as follows:

1. an arc from s to every node corresponding to c′ ∈ C \ {c} with capacity z(c′),
2. an arc from a node corresponding to c′ ∈ C \ {c} to a node corresponding to v j ∈ P1 with capacity one if and only if c′

can take the last position in an extension of v j , and
3. an arc from every node corresponding to v j ∈ P1 to target t with capacity 1.

By similar arguments as for plurality, it follows that c is a possible winner if and only if there is a flow of size∑
c′∈C\{c} z(c′). �
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5. An unbounded number of positions with different score values

Xia and Conitzer [34] developed a many-one reduction from Exact Cover By 3-Sets showing that Possible Winner is
NP-complete for any scoring rule with scoring vectors which contain four consecutive, “equally decreasing” score values,
followed by another strictly decreasing score value. Using some additional gadgetry, we extend their proof to work for
scoring vectors with an unbounded number of different, not necessarily equally decreasing score values.

We start by describing the basic idea employed in [34] (using a slightly modified construction). Given an X3C-
instance (E, S), construct a partial profile P := V l ∪ V p on a set of candidates C where V l denotes a set of linear orders
and V p a set of partial votes. To describe the basic idea, assume that there is a scoring vector with α1 > α2 and the
differences between the four following score values are equally decreasing, that is, α2 − α3 = α3 − α4 = α4 − α5. Then,
C := {c, x, w} ∪ E where E is the universe from the X3C-instance. The distinguished candidate is c. The candidates whose
element counterparts belong to the set Si are denoted by ei1, ei2, ei3. The partial votes V p consist of one partial vote v p

i
for every Si ∈ S which is given by

x � ei1 � ei2 � ei3 � C ′, w � C ′

with C ′ := C \ {x, ei1, ei2, ei3, w}. Note that in v p
i , the positions of all candidates except w , x, ei1, ei2, ei3 are fixed. More

precisely, w has to be inserted between positions 1 and 5 maintaining the partial order x � ei1 � ei2 � ei3. By setting the
linear votes, the maximum partial scores are realized such that the following three conditions hold.

• For every element candidate e ∈ E one has the following. Inserting w behind e in two partial votes has the effect that e
would beat c, whereas when w is inserted behind e in at most one partial vote, c still beats e (Condition 1). Note that
e may occur in several votes at different positions, e.g. e might be identical with ei1 and e j3 for i �= j. However, due to
the condition of “equally decreasing” scores, “shifting” e increases its score by the same value in all of the votes.

• The maximum partial score of x is set such that if takes more than |V p| − |E|/3 times the first position, then it would
beat c. That is, w must be inserted before x at least |V p| − |E|/3 times (Condition 2).

• We set smax
p (w) = (|V p| − |E|/3) · α1 + |E|/3 · α5. This implies that if w is inserted before x in |V p| − |E|/3 votes, then

it must be inserted at the last possible position, that is, position 5, in all remaining votes (Condition 3).

Having an exact 3-cover for (E, S), extend the partial votes as follows:

v p
i : x > ei1 > ei2 > ei3 > w > · · · if Si is in the exact 3-cover,

v p
i : w > x > ei1 > ei2 > ei3 > · · · if Si is not in the exact 3-cover.

Then, every element candidate e is shifted exactly once (in v p
i for e ∈ Si , if Si is in the exact 3-cover) and thus is beaten

by c. It is easy to verify that c beats w and x as well. In a yes-instance for (C, P , c), it follows directly from Condition 2
and 3 that w must have the position 5 in exactly |E|/3 votes and the first position in all remaining partial votes. Since there
are |E|/3 partial votes such that three element candidates are shifted in each of them, due to Condition 1, every element
candidate must appear in exactly one of these votes. Hence, c is a possible winner in P if and only if there exists an exact
3-cover of E .

By inserting further candidates, one can pad the construction such that is also works if the equally decreasing score
differences appear at other positions [34]. Now, we consider the situation in which no such equally decreasing score differ-
ences appear at all. More precisely, we show how to extend the reduction to scoring vectors with strictly, but not equally
decreasing scoring values. The problem we encounter is the following: By sending candidate w to the last possible position
in the partial vote v p

i , each of the candidates ei1, ei2, ei3 improves by one position and therefore improves its score by the
difference given between the corresponding positions. In [34], these differences all had the same value, but now we have
to deal with varying differences. Since the same candidate e ∈ E may appear in several votes at different positions, e.g. e
might be identical with ei1 and e j3 for i �= j, it is not clear how to set the maximum partial score of e. Basically, to cope
with this situation, we construct three partial votes v1

i , v2
i , and v3

i for every set Si ∈ S and permute the positions of the
candidates ei1, ei2, ei3 such that each of them takes a different position in v1

i , v2
i , v3

i . For example:

v1
i : · · · � x � ei1 � ei2 � ei3 � · · · ,

v2
i : · · · � x � ei2 � ei3 � ei1 � · · · ,

v3
i : · · · � x � ei3 � ei1 � ei2 � · · · .

In this way, if the candidate w is sent to the last possible position in all three partial votes of a set Si , each of the
candidates ei1, ei2, ei3 improves its score by the same value. We only have to guarantee that whenever w is sent back in
the partial vote v1

i , then it has to be sent back v2
i and v3

i as well. This is realized by a gadget construction, which is the
main technical contribution of the following theorem.
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Table 2
Maximum partial scores. Recall that t = |S|, q = |E|, and ne = |{Si ∈ S | e ∈ Si}|.

smax
p (w) = (3t − q) · α1 + q · α5+2t

smax
p (x) = q · α1 + (3t − q) · α2

∀e ∈ E smax
p (e) = (α2 + α3 + α4) + (ne − 1) · (α3 + α4 + α5) + fixed(e)

∀di smax
p (di) = q/3 · α4+i + (t − q/3) · α5+i + fixed(di)

∀hi smax
p (hi) = q/3 · α4+i + (t − q/3) · α5+i + fixed(hi)

∀d′
i smax

p (d′
i) = q/3 · α4+i+t + (t − q/3) · α5+i+t + fixed(d′

i)

∀h′
i smax

p (h′
i) = q/3 · α4+i+t + (t − q/3) · α5+i+t + fixed(h′

i)

∀li smax
p (li) = 2t · α1 + fixed(li)

Theorem 1. An X3C-instance I can be reduced to a Possible Winner-instance for a scoring rule which produces a scoring vector
having f (I) positions with different score values. A suitable poly-type function f can be computed in polynomial time.

Proof. Given an X3C-instance (E, S) with S = {S1, . . . , St} and Si = {ei1, ei2, ei3} for i ∈ {1, . . . , t}, construct a partial
profile P on C as follows. The set of candidates is defined as C := {x, w, c} � E � D12 � D13 � L (where � denotes
the disjoint union), where E is the set of candidates that represent the elements of the universe of the X3C-instance,
D12 := {d1, . . . ,dt ,h1, . . . ,ht}, D13 := {d′

1, . . . ,d′
t ,h′

1, . . . ,h′
t}, and L := {l1, . . . , lt}. We define f ((E, S)) := |C |. To ease the pre-

sentation, we first assume that we have a strictly decreasing scoring vector of size f ((E, S)) and describe how to generalize
this at the end of the proof. The partial profile consists of a set of partial votes V p and a set of linear votes V l . The partial
votes are V p := {v1

i , v2
i , v3

i | 1 � i � t} with, for 1 � i � t − 1,

v1
i : x ei1 ei2 ei3 d1 . . . di hi+1 . . . ht d′

1 . . . d′
i h′

i+1 . . . h′
t � C1

i , w � C1
i ,

v2
i : x ei2 ei3 ei1 h1 . . . hi di+1 . . . dt l1 . . . . . . . . . lt � C2

i , w � C2
i ,

v3
i : x ei3 ei1 ei2 l1 . . . . . . . . . lt h′

1 . . . h′
i d′

i+1 . . . d′
t � C3

i , w � C3
i ,

and

v1
t : x et1 et2 et3 d1 . . . dt d′

1 . . . d′
t � C1

t , w � C1
t ,

v2
t : x et2 et3 et1 h1 . . . ht l1 . . . lt � C2

t , w � C2
t ,

v3
t : x et3 et1 et2 l1 . . . lt h′

1 . . . h′
t � C3

t , w � C3
t ,

where “�” signs are partially omitted and C1
i , C2

i , and C3
i denote the remaining candidates that are fixed in an arbitrary

order, respectively. Now, we give some notation needed to define the maximum partial scores. For c′ ∈ C \ {c}, let fixed(c′)
denote the number of points which c′ makes in the partial votes in which the position of c′ is already fixed. Let ne denote
the number of subsets with e ∈ Si and q = |E|. Due to Lemma 1, one can set the maximum partial scores as given in Table 2.
The particular partial scores will be explained within the proof of the following claim.

Claim: Candidate c is a possible winner of P if and only if there is an exact 3-cover for (E, S).

“⇐”: Given an exact 3-cover S ′ ⊆ S , complete the votes in V p in the following way: For each Si ∈ S ′ , place w in the
last possible position (i.e., position 5 + 2t) in the partial votes v1

i , v2
i , and v3

i , and on the first position in the remaining
partial votes. Since |S ′| = q/3, in the extension of the votes from V p ones has s(w) = (3t − q) ·α1 + q ·α5+2t = smax

p (w) and
s(x) = q ·α1 + (3t −q) ·α2 = smax

p (x). Furthermore, it is easy to see that s(li) < smax
p (li) for every i. Every element candidate e

is shifted to the left in exactly three partial votes. More precisely, in the three votes that correspond to Si ∈ S ′ with e ∈ Si ,
it makes α2 +α3 +α4 points and (ne − 1) · (α3 +α4 +α5)+ fixed(e) points in the remaining votes and thus does not beat c.
Every candidate from D12 is not “fixed” in exactly one vote of every triple corresponding to an Si . More precisely, it can be
shifted either in v1

i or in v2
i and never in v3

i . Due to the insertion of w , it is shifted to position 4 + i in q/3 of the votes
and takes position 5 + i in the remaining t − q/3 non-fixed votes. Thus, it does not beat c. Analogously, every candidate
from D13 makes α4+i+t points in q/3 of the non-fixed votes and α5+i+t in the remaining t − q/3 votes and hence does not
beat c. Altogether, c beats every other candidate and wins.

“⇒”: Consider an extension of P in which c wins. Due to its maximum partial score, candidate x can take the first position
only q times. Thus, it must be shifted 3t − q times to position 2. Clearly, this is only possible if w is placed on the first
position in 3t − q votes. Then due to its maximum partial score, w can only be set to position 5 + 2t in the remaining q
votes. In the following, we will show that for every i, w takes position 5+2t in v1

i if and only if it takes position 5+2t in v2
i

if and only if it takes position 5+2t in v3
i (Observation I). Then it follows that in the votes in which w takes position 5+2t ,

the corresponding element candidates are shifted to the left and obtain α2 +α3 +α4 points each, whereas they obtain α3 +
α4 + α5 points in the remaining corresponding vote triples. Since each element candidate e j can only obtain α2 + α3 + α4

points exactly once (and the scoring values are strictly decreasing), the set S ′ := {Si | w is placed on position 5 + 2t in v1
i }

must be an exact 3-cover of E .
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It remains to settle Observation I, which says that w behaves equally in the votes corresponding to one subset. First, we
argue that w must be inserted at position 5 + 2t in exactly q/3 votes of V p

1 := {v1
i | 1 � i � t}, V p

2 := {v2
i | 1 � i � t}, and

V p
3 := {v3

i | 1 � i � t}, respectively. Assume that w is inserted at position 5 + 2t in more than q/3 votes of V p
1 . Then, d1,

which is not fixed in every vote of V p
1 , would beat c. Analogously, if w was inserted at position 5 + 2t in more than q/3

votes of V p
2 or V p

3 , then c would be beaten by h1 or h′
1, respectively. Now, we have that w must take position 5 + 2t in

q votes and can take this position in at most q/3 votes from V p
i , for every i ∈ {1,2,3} and thus must take this position in

exactly q/3 votes of V p
1 , V p

2 , and V p
3 .

Second, we show that the candidates from D12 ensure that w takes position 5 + 2t in v1
i if and only if w takes posi-

tion 5 + 2t in v2
i . The proof is by contradiction. Assume that there is an extension in which w takes position 5 + 2t in v1

i
and another position in v2

i for any i. Since di and hi+1 have been shifted to the left in v1
i , each of them can only be shifted

to the left in at most q/3 − 1 further votes. By construction, v2
i is the only vote of V p

1 ∪ V p
2 in which neither di nor hi+1

is shifted to the left by setting w to position 5 + 2t . However, since w can either take the first or position 2t + 5 in an
extension (as argued above), it must take the first position in v2

i . Now, w has to take the position 5 + 2t in 2q/3 − 1 further
votes from V p

1 ∪ V p
2 and thus in each of these votes w will either shift di or hi+1. Hence, either di or hi+1 must be shifted

to the left in more than q/3 − 1 further votes and will beat c, a contradiction. The other case (w takes position 5 + 2t
in v2

i and another position in v1
i ) follows in complete analogy by considering hi and di+1. One can show analogously that

the candidates of D13 ensure that w takes position 5 + 2t in v1
i if and only if it takes the same position in v3

i . Thus,
Observation I follows.

Now, one has that Possible Winner is NP-hard for all scoring rules with a scoring vector of size f ((E, S)) with strictly
decreasing score values. By using some simple padding, we extend the result for the remaining cases, that is, for scoring
vectors of size m′ > f ((E, S)) and f ((E, S)) different score values. To this end, we introduce a set of m′ − f ((E, S)) new
dummy candidates and cast the linear votes such they cannot beat the distinguished candidate in any extension. The original
candidates from C are placed on positions endued with strictly decreasing points, whereas the new candidates are placed
on the remaining positions. Then, if the positions of candidates get shifted (when w is inserted), the “old” candidates are
affected in the same manner as in the above construction and the theorem follows. �
6. An unbounded number of positions with equal score values

In the previous section, we showed NP-hardness for scoring vectors with an unbounded number of different score val-
ues. In this section, we discuss scoring vectors with an unbounded number of positions with equal score value. In the
first subsection, we show NP-hardness for Possible Winner for scoring vectors that fulfill α2 �= αm−1, and, in the sec-
ond subsection, we consider the special case that α1 > α2 = · · · = αm−1 > 0. Note that these two cases cover all scoring
vectors with an unbounded number of equal score values (except plurality and veto): There are three ways to “violate”
α1 > α2 = · · · = αm−1 > 0. First, if one requires α1 = α2, then one ends up with veto. Second, requiring αm−1 = 0, one
arrives at plurality. Third, requiring α2 �= αm−1, then one ends up with the other case that includes the famous examples
2-approval and (m − 2)-approval.

6.1. An unbounded number of equal score values and α2 �= αm−1

The scoring vectors considered in this subsection divide into two classes. First, there are at least two score values that
are greater than the “equal score value”. Second, there are at least two score values that are smaller than the “equal
score value”. Formally, a size-m scoring vector for the second class looks as follows: there is an i, with i < m − 2 and an
“unbounded” integer x such that αi−x = αi > αi+1. This property can be used to construct a basic “logical” tool used in the
many-one reductions of this subsection: For two candidates c, c′ , having c � c′ in a partial vote implies that setting c such
that it makes less than αi points implies that also c′ makes less than αi points whereas all candidates placed in the range
between i − x and i make exactly αi points. This can be used to model some implication of the type “c ⇒ c′” in a vote.
For (m − 2)-approval, which will play a prominent role for stating our results, this condition means that c only has the
possibility to make zero points in a vote if also c′ makes zero points in this vote whereas all other candidates make one
point.

Most of the reductions of this subsection are from the NP-complete Multicolored Clique (MC) problem [22]:

Given: An undirected graph G = (X1 ∪ X2 ∪ · · · ∪ Xk, E) with Xi ∩ X j = ∅ for 1 � i < j � k and the vertices of Xi induce
an independent set for 1 � i � k.
Question: Is there a complete subgraph (clique) of size k?

Here, 1, . . . ,k are considered as different colors. Then, the problem is equivalent to ask for a multicolored clique, that is,
a clique that contains one vertex for every color. To ease the presentation, for any 1 � i �= j � k, we interpret the vertices of
Xi as red vertices and write r ∈ Xi , and the vertices of X j as green vertices and write g ∈ X j .

Reductions from MC are often used to show parameterized hardness results [22]. Intuitively, the different colors give
some useful structure to the instance. The general idea is to construct different types of gadgets. Here, the partial votes
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realize four kinds of gadgets. First, gadgets that choose a vertex of every color (vertex selection). Second, gadgets that
choose an edge of every ordered pair of colors, for example, one edge from green to red and one edge from red to green
(edge selection). Third, gadgets that check the consistency of two selected ordered edges, e.g. does the chosen red–green
candidate refer to the same edge as the choice of the green–red candidate (edge–edge match)? Finally, gadgets that check
whether all edges starting from the same color start from the same vertex (vertex–edge match). Though reductions from
MC have become a standard tool to obtain hardness results, the reduction given here is not straightforward. For example,
we are not aware of any reduction in the literature for which it is necessary to employ vertex–edge match gadgets.

We start by giving a reduction from MC that settles the NP-hardness of Possible Winner for (m − 2)-approval. Then we
describe how the given construction can be generalized to work for most of the cases considered in this subsection. The
NP-hardness of the remaining cases will be shown by reductions from Exact Cover By 3-Sets.

Lemma 2. Possible Winner is NP-hard for (m − 2)-approval.

Proof. Given an MC-instance G = (X, E) with X = X1 ∪ X2 ∪· · ·∪ Xk . Let E(i, j) denote all edges from E between Xi and X j .
Without loss of generality, we can assume that there are integers s and t such that |Xi| = s for 1 � i � k, |E(i, j)| = t for
all i, j, and that k is odd since every other instance can be padded easily in this way. We construct a partial profile P on
a set C of candidates such that the distinguished candidate c ∈ C is a possible winner if and only if there is a size-k clique
in G . The set of candidates C := {c} � C X � C E � D , where � denotes the disjoint union, is specified as follows:

• For i ∈ {1, . . . ,k}, let C i
X := {r1, . . . , rk−1 | r ∈ Xi} and C X := ⋃

i C i
X .

• For i, j ∈ {1, . . . ,k}, i �= j, let

Ci, j := {
rg

∣∣ {r, g} ∈ E(i, j), r ∈ Xi, and g ∈ X j
}

and

C ′
i, j := {

rg′ ∣∣ {r, g} ∈ E(i, j), r ∈ Xi, and g ∈ X j
}
.

Then, C E := (
⋃

i �= j Ci, j) � (
⋃

i �= j C ′
i, j), i.e., for every edge {r, g} ∈ E(i, j), the set C E contains the four candidates

rg, rg′, gr, gr′ .
• The set D := D X � D1 � D2 is defined as follows. For i ∈ {1, . . . ,k}, Di

X := {cr
1, . . . , cr

k−2 | r ∈ Xi} and D X := ⋃
i Di

X .

For i ∈ {1, . . . ,k}, one has Di
1 := {di

1, . . . ,di
k−2} and D1 := ⋃

i Di
1. The set D2 is defined as D2 := {di | i ∈ {1, . . . ,k}}.

We refer to the candidates of C X as vertex-candidates, to the candidates of C E as edge-candidates, and to the candidates of D
as dummy-candidates.

The partial profile P consists of a set of linear votes V l and a set of partial votes V p . In each extension of P , the
distinguished candidate c gets one point in every vote from V p (see definition below). Thus, according to Lemma 1, we
can set the maximum partial scores as follows. For every candidate di ∈ D2, smax

p (di) = |V p| − s + 1, that is, di must get
zero points (take a zero position) in at least s − 1 of the partial votes. For every remaining candidate c′ ∈ C \ ({c} ∪ D2),
smax

p (c′) = |V p| − 1, that is, c′ must get zero points in at least one of the partial votes.
In the following, we define V p := V 1 ∪ V 2 ∪ V 3 ∪ V 4. For all our gadgets only the last positions of the votes are relevant.

Hence, in the partial votes it is sufficient to explicitly specify the “relevant candidates”. More precisely, we define for all
partial votes that each candidate that does not appear explicitly in the description of a partial vote is positioned before all
candidates that appear in this vote.

The partial votes of V 1 realize the edge selection gadgets. Basically, selecting an ordered edge (r, g) with {r, g} ∈ E
means to select the corresponding pair of edge-candidates rg and rg′. The candidate rg is used for the vertex–edge match
check and rg′ for the edge–edge match check. Now, we give the definition of V 1. For every ordered color pair (i, j), i �= j,
V 1 has t − 1 copies of the partial vote {rg � rg′ | {r, g} ∈ E(i, j)}, that is, one partial vote contains the constraint rg � rg′
for every {r, g} ∈ E(i, j). The idea of this gadget is as follows. For every ordered color pair we have t edges and t − 1
corresponding votes. Within one vote, one pair of edge-candidates can get the two available zero positions. Thus, it is
possible to set all but one, namely the selected pair of edge-candidates, to zero positions.

The partial votes of V 2 realize the vertex selection gadgets. Here, we will use the k − 1 candidates corresponding to
a selected vertex to do the vertex–edge match for all edges that are incident in a multicolored clique. Formally, we set
V 2 := V a

2 ∪ V b
2 as further defined in the following. Intuitively, in V a

2 we select a vertex and in V b
2 , by a cascading effect, we

achieve that all k − 1 candidates that correspond to this vertex are selected. In V a
2 , for every color i, we have s − 1 copies

of the partial vote {r1 � cr
1 | r ∈ Xi}. In V b

2 , for every color i and for every vertex r ∈ Xi , we have the following k − 2 votes:

For all odd z ∈ {1, . . . ,k − 4}, vr,i
z : {

cr
z � cr

z+1, rz+1 � rz+2
}
.

For all even z ∈ {2, . . . ,k − 3}, vr,i
z : {

cr
z � cr

z+1, di
z−1 � di

z

}
,

vr,i : {
cr � di , rk−1 � di}.
k−2 k−2 k−2
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Fig. 3. Extension of the partial votes for the MC-instance. Extensions in which candidates that do not correspond to the solution set Q take the zero
positions are highlighted.

The partial votes of V 3 realize the vertex–edge match gadgets. For i, j ∈ {1, . . . ,k}, for j < i, V 3 contains the vote
{rg � r j | {r, g} ∈ E, r ∈ Xi, and g ∈ X j} and, for j > i, V 3 contains the vote {rg � r j−1 | {r, g} ∈ E, r ∈ Xi, and g ∈ X j}.

The partial votes of V 4 realize the edge–edge match gadgets. For every unordered color pair {i, j}, i �= j there is the
partial vote {rg′ � gr′ | {r, g} ∈ E(i, j), r ∈ Xi, and g ∈ X j}.

This completes the description of the partial profile. Now, we verify a property of the construction that is crucial to
see the correctness: In total, the number of zero positions available in the partial votes is exactly equal to the sum of the
minimum number of zero position the candidates of C \ {c} must take such that c is a winner. We denote this property of
the construction as tightness. To see the tightness property, we first compute the number of partial votes:

|V 1| + |V 2| + |V 3| + |V 4| = k(k − 1)(t − 1) + k(s − 1) + ks(k − 2) + k(k − 1) + k(k − 1)/2

= t
(
k2 − k

) + s
(
k2 − k

) + k2/2 − 3k/2. (1)

Regarding the number of zero positions that must be taken, we first compute the number of candidates for each subset:

• |C X | = sk(k − 1),
• |C E | = 2tk(k − 1),
• |D X | = sk(k − 2), |D1| = k(k − 2), and |D2| = k.

The candidates of D2 must take at least s − 1 zero positions and all other candidates at least one. Thus, in total the
number of zero positions must be at least

sk2 − sk + 2tk2 − 2tk + sk2 − 2ks + k2 − 2k + k(s − 1) = 2s
(
k2 − k

) + 2t
(
k2 − k

) + k2 − 3k. (2)

Furthermore, there are two zero positions for every partial vote. It is easy to verify that (1) times two equals (2). Hence,
the tightness of the construction is shown. It directly follows that if there is a candidate that takes more zero positions than
desired, then c cannot win in this extension since then at least one zero position must be “missing” for another candidate.

We can now show the following claim to complete the proof.

Claim: The graph G has a clique of size k if and only if c is a possible winner in P .

“⇒”: Given a multicolored clique Q of G of size k. We refer to the vertices and edges belonging to Q as solution vertices
and solution edges, respectively, and to the corresponding candidates as solution candidates. Then, extend the partial pro-
file P as given in Fig. 3. In the following we argue that in the given extension every candidate takes the required number
of zero positions.

In V 1, for every ordered color pair, all pairs of edge-candidates except the pair of solution edge-candidates are set to the
last two positions in one of the t − 1 votes.

In V a
2 for every color i, we set all candidates r1 that do not belong to the solution vertices and the corresponding cr

1 to
zero positions in one of the votes. In V b

2 for every non-solution vertex r ∈ Xi \ Q we set the corresponding candidates rz+1

and rz+2 at zero positions in the votes vr,i
z with odd index z ∈ {1, . . . ,k − 4}. In the votes with even index z ∈ {2, . . . ,k − 3},

we set the corresponding dummy candidates cr
z, cr

z+1 at zero positions. We further set the candidate rk−1 at a zero position

in votes vr,i
z for all the s − 1 non-solution vertices of color i, which implies that the dummy candidate di is placed at s − 1

zero positions. Thus, we have “enough” zero positions for all the copies of the non-solution candidates, the corresponding
dummy candidates {cr

1, . . . , cr
k−2 | r ∈ Xi \ Q }, and di . The remaining votes of V b

2 “correspond” to the gadgets for the solution
vertices. Here, we set the candidate pairs cr

z > cr
z+1 in the votes with odd index z ∈ {1, . . . ,k − 4} at position zero and the

candidate pairs with candidates di
p for p = 1, . . . ,k − 2 to zero positions in the votes with even index. Thus, in V 2, we

have improved c upon all dummy candidates and upon all candidates corresponding to non-solution vertices, whereas each
candidate corresponding to a solution vertex must still take a zero position.
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Now, it remains to set every candidate corresponding to a solution vertex or a solution edge to a zero position in at least
one vote. Due to construction, for a solution edge {r, g} ∈ E , the two corresponding candidates rg′ and gr′ can be set to
zero in the corresponding vote of V 4. And, in V 3 the k − 1 vertex-candidates belonging to every solution vertex can be set
to a zero position in combination with the corresponding edge-candidate. Thus, the distinguished candidate c is the winner
of the described extension.

“⇐”: Given an extension of P in which c is a winner, we show that the “selected” candidates must correspond to a
size-k clique. Recall that the number of zero positions that each candidate must take is “tight” in the sense that if one
candidate gets an unnecessary zero position, then for another candidate there are not enough zero positions left.

First (edge selection), for i, j ∈ {1, . . . ,k}, i �= j, we consider the candidates of Ci, j . The candidates of Ci, j can take zero
positions in one vote of V 3 and in t − 1 votes of V 1. Since |Ci, j | = t and in the considered votes at most one candidate
of Ci, j can take a zero position, every candidate of Ci, j must take one zero position in one of these votes. We refer to a
candidate that takes the zero position in V 3 as solution candidate rgsol. For every non-solution candidate rg ∈ Ci, j \ {rgsol},
its placement in V 1 also implies that rg′ gets a zero position, whereas rg′

sol still needs to take one zero position (which is
only possible in V 4).

Second, we consider the vertex selection gadgets. Here, analogously to the edge selection, for every color i, we can argue
that in V a

2 , out of the set {r1 | r ∈ Xi}, we have to set all but one candidate to a zero position. The corresponding solution
vertex is denoted as rsol. For every vertex r ∈ Xi \ {rsol}, this implies that the corresponding dummy-candidate cr

1 also takes
a zero position in V a

2 . Now, we show that in V b
2 we have to set all candidates that correspond to non-solution vertices to

a zero position whereas all candidates corresponding to rsol must appear only at one-positions. Since for every vertex r ∈
Xi \ {rsol}, the vertex cr

1 has already a zero position in V a
2 , it cannot take a zero position within V b

2 anymore without
violating the tightness. In contrast, for the selected solution candidate rsol, the corresponding candidates crsol

1 and rsol1 still

need to take one zero position. The only possibility for crsol
1 to take a zero position is within vote vrsol,i

1 by setting crsol
1 and

crsol
2 to the last two positions. Thus, one cannot set rsol2 and rsol3 to a zero position within V 2. Hence, the only remaining

possibility for rsol2 and rsol3 to get zero points remains within the corresponding votes in V 3. This implies for every non-
solution vertex r that r2 and r3 cannot get zero points in V 3 and thus we have to choose to put them on zero positions in
the vote vr,i

1 from V b
2 . The same principle leads to a cascading effect in the following votes of V b

2 : One cannot choose to set
the candidates crsol

p for p ∈ {1, . . . ,k − 2} to zero positions in votes of V b
2 with even index z and thus has to improve upon

them in the votes with odd index z. This implies that all vertex-candidates belonging to rsol only appear in one-positions
within V b

2 and that all dummy candidates di
p for p ∈ {1, . . . ,k − 2} are set to one zero position. In contrast, for every non-

solution vertex r, one has to set the candidates cr
p , p ∈ {2, . . . ,k − 2}, to zero positions in the votes with even index z, and

thus in the votes with odd index z, one has to set all vertex-candidates belonging to r to zero positions. This further implies
that for every non-solution vertex in the last vote of V b

2 one has to set di to a zero position, and since there are exactly
s − 1 non-solution vertices, di takes the required number of zero positions. Altogether, all vertex-candidates belonging to
a solution vertex still need to be placed at a zero position in the remaining votes V 3 ∪ V 4, whereas all dummy candidates
of D and the candidates corresponding to the other vertices must have taken enough zero positions.

Third, consider the vertex–edge match realized in V 3. For i, j ∈ {1, . . . ,k}, i �= j, there is only one remaining vote in
which rgsol with r ∈ Xi and g ∈ X j can take a zero position. Hence, rgsol must take this zero-position. This implies that
the corresponding incident vertex-candidate x is also set to a zero-position in this vote. If x �= rsoli , then x has already
a zero-position in V 2. Hence, this would contradict the tightness and rgsol and the corresponding vertex must “match”.
Furthermore, the construction ensures that each of the k − 1 candidates corresponding to one vertex appears exactly in one
vote of V 3 (for each of the k − 1 candidates, the vote corresponds to edges from different colors). Hence, c can only be a
possible winner if a selected vertex matches with all selected incident edges.

Finally, we discuss the edge–edge match gadgets. In V 4, for i, j ∈ {1, . . . ,k}, i �= j, one still needs to set the solution
candidates from Ci, j to zero positions. We show that this can only be done if the two “opposite” selected edge-candidates
match each other. For two such edges rgsol and grsol, r ∈ Xi , g ∈ X j , there is only one vote in V 4 in which they can get
a zero position. If rgsol and grsol refer to different edges, then in this vote only one of them can get zero points, and
thus the other one still beats c. Altogether, if c is a possible winner, then the selected vertices and edges correspond to a
multicolored clique of size k. �

By generalizing the reduction used for Lemma 2, one can show the following.

Theorem 2. An MC-instance I can be reduced to a Possible Winner-instance for a scoring rule which produces a size-m scoring vector
that fulfills the following. There is an i � m − 1 such that αi−x = · · · = αi−1 > αi with x = f (I). A suitable poly-type function f can
be computed in polynomial time.

Proof. We describe how to modify the reduction given in the proof of Lemma 2 to work for the considered cases. For
this, let P on C denote a partial profile as constructed in the proof of Lemma 2. Since i � m − 1, the position i + 1 must
exist. We set x = f (I) := |C | − 2 and fill all positions smaller than i − x and all positions greater than i + 1 with dummy
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candidates that are different from candidates in C and that are beaten by c in every extension. We distinguish the two
subcases αi = αi+1 (1a) and αi �= αi+1 (1b).

For the case (1a), one can argue in complete analogy to Lemma 2 by “identifying” the two zero positions of Lemma 2
with position i and i + 1 and setting the maximum partial score as follows (which can be done without changing the
partial votes due to Lemma 1). For all di ∈ D2, smax

p (di) = (s − 1) · αi + (|V p| − s + 1) · αi−1 and for all c′ ∈ C \ ({c} ∪ D2),
smax

p (c′) = αi + (|V p| − 1) · αi−1.
For (1b), we need to argue that the tightness argument still holds. For this, we set the maximum partial scores as follows

(which can be done without changing the partial votes due to Lemma 1). For all di ∈ D2, smax
p (di) = (s − 1) · αi+1 + (|V p| −

s + 1) · αi−1 and, for all c′ ∈ C \ ({c} ∪ D2), smax
p (c′) = αi + (|V p| − 1) · αi−1. Now, in any extension in which c wins, each

candidate in D2 must be placed at least s − 1 times on position i + 1, and each of the other candidates must be placed on
position i or i + 1 at least once. Then again, the number of positions i and i + 1 that still have to be assigned to candidates
is exactly equal to the number of candidates that need to take these positions, hence, the tightness argument still holds.
Thus, the correctness of the modified reduction can be shown in complete analogy to Lemma 2. �

In the following, we consider scoring rules with an unbounded number x of equal positions for which it holds that
there is an i � 2 such that αi > αi+1 = · · · = αi+x . Parts of the results are based on further extensions of the MC-reduction
used to prove Lemma 2. After that there still remain some cases for which it seems even more complicated to adapt the
MC-reduction. However, for these cases we can make use of other properties of the scoring rules and settle them by less
involved reductions from Exact Cover by 3-Sets. As we will see in Section 7, the following Lemmata 3–6 cover all scoring
vectors with i � 2 such that αi > αi+1 = · · · = αi+x .

Lemma 3. An MC-instance I can be reduced to a Possible Winner-instance for a scoring rule which produces a size-m scoring
vector that fulfills the following. There is an i � 2 such that αi > αi+1 = · · · = αi+x with x = f (I) and there is a position j < i with
α j < 2α j+1 . A suitable poly-type function f can be computed in polynomial time.

Proof. We describe how to modify the MC-reduction given in the proof of Lemma 2 to work for the considered case.
For this, let P on C denote a partial profile as constructed in the proof of Lemma 2. First, we describe the construction
for j = i − 1, that is, one has αi−1 < 2αi . We construct a partial profile P̃ as follows. We set x = f (I) = |C | − 2 and all
positions < i − 1 and > i + x are filled with dummy candidates that are beaten by c in every extension. The positions
not filled with dummies “contain” the partial votes of P in “reverse” order: In P all relative orders are given for pairs
of candidates. In P̃ we just “flip” every pair, for example, instead of having rg � rg′ we have rg′ � rg in V 1. We define
that all candidates that are not given explicitly are worse than the given candidates in a vote (instead of being better). By
flipping the order of a pair, we adapt the “logical implication”, for example, instead of having “if rg makes zero points,
then also rg′ makes zero points” in P , we have “if rg makes αi points, then also rg′ makes at least αi points” in P̃ .
Furthermore, we set the maximum partial scores to smax

p (di) = (s−1)·αi−1 +(|V p|−s+1)·αi+1 for all di ∈ D2 and smax
p (c′) =

αi−1 + (|V p| − 1) ·αi+1 for all c′ ∈ C \ ({c} ∪ D2). Note that since αi−1 < 2αi , every candidate c′ can take either position i or
position i − 1 in one of the partial votes. Then, we can use a “reverse” tightness argument: Since the positions i and i − 1
must be taken by two candidates in every vote and every candidate can take at most one such position (or at most s − 1
such positions for candidates in D2, respectively), by counting candidates and positions it holds that if every candidate
of D2 must make αi−1 points exactly (s − 1) times, then every other candidate must make αi−1 or αi points exactly once.
Thus, it remains to show that every di ∈ D must take position i − 1 in s − 1 of the votes. Assume this is not the case, then
there must be two votes vr,i

k−2 and vr′,i
k−2 with r �= r′ in which di does not take position i − 1. Due to construction, the only

remaining candidate that can take this position in these votes is di
k−2, but this is not possible due to smax

p (di
k−2). Hence,

we can use a tightness argument analogously to Lemma 2. Since we also adapted the logical implication, the correctness
follows in complete analogy to Lemma 2.

The remaining cases ( j < i − 1) follow by padding positions within the gadgets. More precisely, replace each specified
pair, e.g. rg′ � rg by rg′ � rg � H with a dummy set H of size i − ( j + 1) and replace αi−1 by α j in the new definitions of
the maximum partial scores. �

So far, we settled the NP-hardness for scoring vectors with i � 2 such that αi > αi+1 = · · · = αi+x if there is a position
j < i with α j < 2α j+1. Without the constraint α j < 2α j+1, it seems pretty complicated to adapt the tightness property
which is crucial for the MC-reduction. Fortunately, the remaining cases have some different properties that allow to settle
them by less complicated reductions from Exact Cover By 3-Sets. More precisely, in the following, we give three reductions
with increasing difficulty. (Although all three reductions are self-contained, they might be easier to understand when reading
them in the given order.)

Lemma 4. An X3C-instance I can be reduced to a Possible Winner-instance for a scoring rule which produces a size-m scoring vector
that fulfills the following. There is an i � 2 such that αi > αi+1 = · · · = αi+x with x = f (I) and there is a position j < i with α j � 3αi .
A suitable poly-type function f for X3C can be computed in polynomial time.
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Proof. Let (E, S) denote an X3C-instance. Construct a partial profile P on a set of candidates C . The set C of candidates is
defined by C := {c} � S � E � H � D where c denotes the distinguished candidate c, S := {sz | Sz ∈ S}, E the set of candidates
that represent the elements of the universe, and H and D contain disjoint candidates such that the following hold. We
define H := ⊎|S|

z=1 Hz with |Hz| = i − j for all z ∈ {1, . . . , |S|} needed to “pad” some positions relevant to the construction
and |D| = m − |S| − |E| − |H| − 1 needed to pad irrelevant positions. We refer to the candidates from S as subset candidates
and to the candidates from E as element candidates. Set f ((E, S)) := |C \ D| − (i − j). For 1 � z � |S|, let Sz = {ez1, ez2, ez3}.
The partial profile P consists of a set of linear votes and a set of partial votes V p . In all votes of V p , we pad all irrelevant
positions, i.e. all positions smaller than j and greater than j −1+|C \ D| by fixing candidates from D (omitted in the further
description). The set V p consists of |S| − |E|/3 copies of the vote

s1 � H1 � C \ (S ∪ H), s2 � H2 � C \ (S ∪ H), . . . , s|S| � H |S| � C \ (S ∪ H)

denoted as V p
1 and the following three votes, denoted as V p

2 (z), for every sz ∈ S

v1
z : H1 � {sz, ez1} � C \ ({sz, ez1} ∪ H1

)
,

v2
z : H1 � {sz, ez2} � C \ ({sz, ez2} ∪ H1

)
, and

v3
z : H1 � {sz, ez3} � C \ ({sz, ez3} ∪ H1

)
.

The basic idea of this construction is that in V p
1 one has to set all but |E|/3 “subset” candidates to position j whereas the

remaining candidates will be able to take a position greater than i in all votes from V p
1 . Therefore, the remaining |E|/3

subset candidates can make α j − αi+1 points more than the other candidates within the remaining votes. This will enable
them to shift their corresponding element candidates to position i + 1 by taking position i. Since α j > 3 · αi , they will
be able to shift all three element candidates, respectively. To realize the basic idea, we adapt the maximum partial scores
appropriately. For e ∈ E , let ne denote the number of subsets in S which contain e. Then according to Lemma 1, we can
cast the linear votes such that the following hold:

• smax
p (sz) = α j + (|V p| − 1) · αi+1, for all sz ∈ S ,

• smax
p (e) = (ne − 1) · αi + (|V p| − ne + 1) · αi+1, for all e ∈ E , and

• all other candidates are beaten by c in every extension.

We show that c is a possible winner in P if and only if there is an exact 3-cover for (E, S):
Assume there is an exact 3-cover Q . Then one extends P by setting each sz with Sz /∈ Q at position j in one vote

from V p
1 and the corresponding candidates from Hz to the positions j + 1, . . . , i in the same vote. Furthermore, set sz to

position i + 1 in v1
z , v2

z , and v3
z . Now, we have that every sz with Sz /∈ Q takes position j in one vote and a position greater

than i in all remaining votes and thus is beaten by c. This also means that in V p
1 all positions � i are filled and thus every

candidate sz with Sz ∈ Q takes a position greater than i in all votes from V p
1 . Thus, the remaining votes can be extended

by setting every sz with Sz ∈ Q to position i in v1
z , v2

z , and v3
z . Since α j � 3αi , the maximum partial score of sz is not

exceeded. Because Q is an exact 3-cover, all element candidates are shifted to position i + 1 in one vote and thus are
beaten by c. Hence, c is a winner in the described extension.

For the other direction, consider an extension of P in which c wins. Due to construction, in V p
1 only subset candidates

from S can take position j. Because of the maximum partial scores, position j must be taken by different candidates
from S in the |S| − |E|/3 votes of V 1

p . We denote these candidates as non-solution candidates and the remaining |E|/3
candidates from S as solution candidates. Due to smax

p (sz), every non-solution candidate must take position i + 1 in all
remaining votes and thus the corresponding element candidates must make αi points in the corresponding votes. Hence,
there remain only |E|/3 solution candidates that have to “shift” the |E| element candidates to position i + 1. Since every
solution candidate can shift at most 3 candidates, the solution candidates must correspond to an exact 3-cover. �

In the following lemma, we consider a more specific type of scoring vector in the sense that there are only two score
values greater than zero. This restriction allows us to find an easy way to “lift” the condition “α j � 3 · αi” for two special
types of scoring rules that will be sufficient for the proof of the main result in Section 7. Compared to the reduction from
the previous lemma, for the following cases we also choose a set of “solution subset candidates” within the first part of the
partial votes, but we will need some additional gadgetry to be able to “shift” the corresponding element candidates.

Lemma 5. An X3C-instance I can be reduced to a Possible Winner-instance for a scoring rule which produces a size-m scoring vector
(α1,α2,0, . . . ,0) with 3α2 > α1 > 2α2 and m = f (I) + 2. A suitable poly-type function f can be computed in polynomial time.

Proof. Let (E, S) denote an X3C-instance. Construct a partial profile P on a set of candidates C as follows. The set of
candidates consists of a distinguished candidate c, a set S := {si | Si ∈ S} (the subset candidates), a set D := {di | Si ∈ S},
the set E (the element candidates), a candidate x, and H := {h1, . . . ,h|S|}. Set f ((E, S)) := |C | − 2. For 1 � i � |S|, let
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Si = {ei1, ei2, ei3}. The partial profile P consists of a set of linear votes and a set of partial votes V p . The set V p consists
of |S| − |E|/3 copies of the vote

s1 � h1 � C \ (S ∪ H), s2 � h2 � C \ (S ∪ H), . . . , s|S| � h|S| � C \ (S ∪ H)

denoted as V p
1 and the following three votes for every Si ∈ S

v1
i : di � ei1 � C \ {di, ei1, si}, si � C \ {di, ei1, si},

v2
i : x � {di, ei2} � C \ {di, ei2, x},

v3
i : x � {di, ei3} � C \ {di, ei3, x}.

Let ne denote the number of subsets in which e occurs. Then, due to Lemma 1, we can set the maximum partial scores
as follows:

• smax
p (si) = α1 for all si ∈ S ,

• smax
p (di) = 3 · α2 for all di ∈ D ,

• smax
p (e) = (ne − 1) · α2 for all e ∈ E ,

• all other candidates are beaten by c in every extension.

We show that c is a possible winner in P if and only if there is an exact 3-cover for (E, S):
Assume there is an exact 3-cover Q for (E, S). Then we extend P as follows. For every Si /∈ Q , si takes position 1 and hi

takes position 2 in one vote from V p
1 and si takes position 3 in v1

i . The corresponding di takes position 3 in v2
i and v3

i .
Clearly, for Si /∈ Q , smax

p (si) is not exceeded, sp(di) = α1 < 3α2 = smax
p (di), and within V p

1 all first positions are fixed. For

every solution set Si ∈ Q , we set si to a position greater than 2 in all votes from V p
1 and to the first position in v1

i . Since
this implies that di takes the second position in v1

i , this enables us to set di to the second position in v2
i and v3

i without
violating smax

p (di). Since Q is an exact 3-cover, all corresponding element candidates are shifted to the third position once
and for every element candidate the maximum partial score is not exceeded. Hence, c is a winner.

To see the other direction, assume there is an extension in which c wins. In V p
1 , the first positions can only be taken

by candidates from S . Since each si ∈ S can get α1 points exactly once, |S| − |E|/3 different subset candidates from S have
to be placed on the first position. Let the set consisting of these candidates be denoted by S ′ . Every candidate si from S ′
has exploited its maximum partial score and therefore has to be placed on the third position in v1

i . This implies that the
corresponding candidate di takes the first position in v1

i . Since α1 > 2α2 and smax
p (di) = 3α2, di has to take the third position

in both v2
i and v3

i . Hence, for si ∈ S ′ , the corresponding element candidates ei1, ei2, ei3 receive α2 points each. However,
each of the element candidates from E has to be placed on position 3 at least once due to its maximum partial score. This
can only be in the remaining partial votes, that is, all v1

i , v2
i , v3

i with si ∈ S \ S ′ . Since |S \ S ′| = |E|/3, one must shift one
element candidate in each of these votes. For this, the only possibility is to set every si ∈ S \ S ′ to position 1 in v1

i , and
the corresponding candidate di takes the second position in v2

i and v3
i . Since c wins, all |E| element candidates must get

shifted to position 3. Hence, S \ S ′ corresponds to an exact 3-cover of (E, S). �
Finally, we settle the NP-hardness for a specific scoring vector.

Lemma 6. An X3C-instance I can be reduced to a Possible Winner-instance for a scoring rule which produces a size-m scoring vector
(2,1,0, . . . ,0) for m = f (I) + 2. A suitable poly-type function f can be computed in polynomial time.

Proof. Let (E, S) denote an X3C-instance. Construct a partial profile P on a set of candidates C as follows. The set of
candidates consists of a distinguished candidate c, a set S := {si | Si ∈ S} (the subset candidates), D := {di | Si ∈ S}, T :=
{ti | Si ∈ S}, E (the element candidates), a candidate y, and X := {x1, . . . , x|S|−|E|/3}. Set f ((E, S)) := |C | − 2. For 1 � i � |S|,
let Si = {ei1, ei2, ei3}. The partial profile P consists of a set of linear votes and a set of partial votes V p . The set V p :=
V p

1 ∪ V p
2 ∪ V p

3 is further defined as follows. The set V p
1 consists of |S| − |E|/3 copies of the partial vote

s1 � t1 � C \ (S ∪ T ), s2 � t2 � C \ (S ∪ T ), . . . , s|S| � t|S| � C \ (S ∪ T ).

The set V p
2 consists of |S| − |E|/3 copies of the partial vote

y � T � C \ (
T ∪ {y})

and V p
3 contains the following three votes for every Si ∈ S

v1
i : di � ei1 � C \ {di, ei1, si}, si � C \ {di, ei1, si},

v2
i : y � {di, ei2} � C \ {di, ei2, y},

v3: {ti, ei3} � C \ ({ti, ei3} ∪ X
)
.
i
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Table 3
Extension for the X3C-reduction for the case (2,1,0, . . .). The re-
mark “different q” means that for i �= i′ with Si /∈ Q and Si′ /∈ Q
one chooses two different candidates from X . Extensions corre-
sponding to non-solution candidates are highlighted.

Let ne denote the number of subsets in which e occurs and ne,3 the number of subsets in which e is denoted as ei3
for i ∈ {1, . . . , |S|}. Then, using Lemma 1, we set the maximum partial scores as follows:

• smax
p (si) = smax

p (ti) = smax
p (di) = 2 for i ∈ {1, . . . , |S|},

• smax
p (xi) = 1 for i ∈ {1, . . . , |S| − |E|/3},

• smax
p (e) = 2ne,3 + (ne − ne,3) − 1 for e ∈ E ,

• the candidate y is beaten by c in every extension.

We show that c is a possible winner in P if and only if there is an exact 3-cover for (E, S):
Assume there is an exact 3-cover Q for (E, S). Then we extend P as given in Table 3. For every Si /∈ Q , si takes the first

position in one vote from V p
1 and makes zero points in all remaining votes. The corresponding ti takes the second position

in one vote from V p
1 and one vote from V p

2 and makes zero points in all remaining votes. Hence, c beats these si and ti

and the votes from V p
1 and V p

2 are fixed. For every Si /∈ Q , we extend v3
i by setting a different candidate from X at the

second position such that none of them is put on this position twice, and hence c also beats every candidate from X . For
every Si ∈ Q , di , ti and si make exactly 2 points in V p

3 and thus are beaten by c as well. It remains to consider the element
candidates. To this end, note that a candidate e ∈ E is beaten by c if there is an i such that e takes position 3 in v1

i or v2
i or

takes position 2 in v3
i . Since Q is an exact 3-cover and all candidates corresponding to subsets from Q are shifted to the

right in one vote, c wins in the given extension.
To see the other direction, assume there is an extension in which c wins. Let G1 := {v1

i | 1 � i � |S|}, G2 := {v2
i | 1 � i �

|S|}, and G3 := {v3
i | 1 � i � |S|}. We start by arguing that at most 2/3 · |E| candidates from E can make zero points in a

vote from G1 ∪ G2. For any i, at most two element candidates, namely ei1 and ei2 can make zero points in G1 ∪ G2. More
precisely, due to smax

p (di), if si takes the first position in v1
i , then ei1 and ei2 can take the third position and if si takes the

second position, then only ei1 can be shifted to the third position, since di takes the first position in v1
i and has exploited

its maximum partial score. Thus, the number of points that all candidates from S can make within V p
3 is an upper bound

for the number of element candidates that can be shifted. Since only candidates from S can take the first positions in V p
1 ,

|V p
1 | = |S| − |E|/3, and smax

p (si) = 2, the candidates from S can make at most 2/3|E| points in V p
3 . Thus, there are at most

2/3|E| element candidates that can take a position with zero points in G1 ∪ G2. Thus, due to smax
p (e), in G3 one must shift

(at least) |E|/3 candidates to the second position (Observation 1). In the following, we show that the only way to do so
leads to an extension in which exactly |E|/3 candidates si from S make zero points in V p

1 and the corresponding ti make
zero points in V p

1 ∪ V p
2 whereas all other candidates from S ∪ T have already accomplished their maximum partial score

in V p
1 ∪ V p

2 (Claim 1). This means that the element candidates that are shifted to the right correspond to exactly |E|/3
subsets Si ∈ S . Since every element candidate must be shifted at least once, these subsets must form an exact 3-cover
in (E, S).

We use a tightness criterion (analogously to the MC-reduction from Lemma 2) to prove Claim 1. To this end, we show
that the score of all positions that must be filled equals the sum of the maximum partial scores of all candidates. Again, it
directly follows that a candidate c′ ∈ C \ {c} cannot make less than smax

p (c′) points since otherwise there must be another
candidate that beats c. Now, we show the tightness. The total number of votes is∣∣V p

1

∣∣ + ∣∣V p
2

∣∣ + ∣∣V p
3

∣∣ = |S| − |E|/3 + |S| − |E|/3 + 3|S| = 5|S| − 2/3|E|.
In V p

2 and V p
3 , candidate y is already fixed at the first position in 2|S| − 1/3|E| votes and since in every vote 3 points have

to be given, there are 3 · (5|S| − 2/3|E|) − 2 · (2|S| − 1/3|E|) = 11|S| − 4/3|E| points for the remaining candidates left. The
sum of the maximum partial scores from all candidates from S ∪ T ∪ D ∪ X ∪ E is

3 · 2 · |S| + |S| − |E|/3 + 2|S| + 2|S| − |E| = 11|S| − 4/3|E|.
To see this, note that clearly

∑
e∈E ne,3 = |S| and

∑
e∈E ne = 3|S|. Thus, the tightness follows.
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Now, we finally show the correctness of Claim 1. Due to the tightness, the |S| − |E|/3 candidates from X must take
position 2 in |S| − |E|/3 votes from G3. Thus, there remain |E|/3 second positions in G3 that are not fixed. Note that due
to tightness, a candidate ei3 cannot take the third position in v3

i . Hence, if the remaining second positions are not taken by
candidates from E , we shift less than |E|/3 candidates in G3, a contradiction to Observation 1. Hence, these positions must
be taken by candidates from E and thus all second positions within G3 are fixed. This implies that every candidate ti from T
must take either the first or the third position in v3

i . More precisely, since |E|/3 candidates from E take a second position
there must be |E|/3 candidates from T that take the first positions within the corresponding votes. However, a candidate
from T can only take the first position if it makes zero points in V p

1 ∪ V p
2 . Hence, there must be |E|/3 candidates from T ,

denoted as T ′ , that make zero points in V p
1 ∪ V p

2 and, due to tightness, all remaining candidates from T must make 2 points
in V p

1 ∪ V p
2 . A candidate ti ∈ T can make at most one point in V p

1 since due to the condition “si � ti ” it shifts si to the
first position (and smax

p (si) = 2). Hence, making two points within V p
1 ∪ V p

2 implies that ti must make one point in V p
1 and

one point in V p
2 and that the corresponding si must make 2 points in V p

1 . This fixes all positions in V p
1 ∪ V p

2 and since a
candidate si with ti ∈ T ′ clearly makes zero points in V p

1 ∪ V p
2 , the correctness of Claim 1 follows. Altogether, we have that

{Si | ti ∈ T ′} forms an exact 3-cover for (E, S). �
6.2. Scoring vectors with α1 > α2 = · · · = αm−1 > 0

In this subsection, we consider scoring rules defined by scoring vectors that fulfill α1 > α2 = · · · = αm−1 > 0. Although
quite special, these rules might be of interest of their own. They can be considered as a direct combination of the very
common plurality and veto rules where one allows to weight the contribution of the plurality or veto part. For example,
by using (10,1, . . . ,1,0) the “plurality” part would have more influence to the outcome, whereas for (10,9, . . . ,9,0) the
“veto” part would be more important. To show NP-hardness, we give two types of many-one reductions from X3C; one for
the case α1 < 2 ·α2 and one for the case α1 > 2 ·α2. As mentioned before, the case α1 = 2 ·α2 remains open. Intuitively, for
all other cases we make use of the “asymmetry” of the differences of the score values, that is, by shifting a candidate from
the first to the second position one decreases its score by a different amount than by shifting it from the last but one to
the last position. In the two following proofs, the position in a linear order in which a candidate gets α1 points is denoted
as top position, a position in which a candidate gets α2 points as middle position, and the position in which a candidate gets
zero points as last position.

Theorem 3. An X3C-instance I can be reduced to a Possible Winner-instance for a scoring rule which produces a size-m scoring
vector satisfying the conditions α1 > α2 = αm−1 > αm = 0 and α1 < 2 · α2 for m = f (I) + 2. A suitable poly-type function f can be
computed in polynomial time.

Proof. Let (E, S) denote an X3C-instance. We construct a partial profile P for which the distinguished candidate c ∈ C is a
possible winner if and only if (E, S) is a yes-instance. The set of candidates is C := {c,h} � {si,di, ti | Si ∈ S} � E . The partial
profile P consists of a set of partial votes V p and a set of linear orders V l . For 1 � i � |S|, let Si = {ei1, ei2, ei3}. Then the
set of partial votes V p := V p

1 ∪ V p
2 is given by the following subsets. The set V p

1 consists of |E|/3 copies of the partial vote

h � C \ {h, s1, . . . , s|S|} � {s1, . . . , s|S|}.
For every i ∈ {1, . . . , |S|}, the set V p

2 contains the three votes

v1
i : h � C \ {h, si,di} � {si,di},

v2
i : ei1 � C \ {ei1, ti,di} � ti, and

v3
i : ei2 � C \ {ei2, ei3, ti} � ei3.

Now, we pass on to the definitions of the maximum partial scores. To this end, for a candidate e corresponding to an
element e ∈ E (referred to as element candidate), let ne,1+2 denote the number of subsets from S in which e is identical
with ei1 or ei2. Due to Lemma 1, we can cast the linear votes such that the following hold:

• smax
p (si) = (|V p| − 1) · α2,

• smax
p (di) = smax

p (ti) = α1 + (|V p| − 2) · α2,
• smax

p (e) = (|V p| − ne,1+2 + 1) · α2 + (ne,1+2 − 1) · α1,
• h is beaten by c in every extension.

The maximum partial scores of the element candidates are set such that every element candidate has to be “shifted” to
the right at least once. More precisely, if a candidate e took the first position in all votes in which it is identical with ei1
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Fig. 4. Extension for the case α1 > α2 = αm−1 > 0 and α1 < 2 · α2. Extensions for candidates that do not correspond to subsets belonging to the solution
set Q are highlighted.

or ei2 and the second position in all remaining votes (including the votes in which it is identical with ei3), then s(e) =
(|V p| − ne,1+2) · α2 + ne,1+2 · α1 > smax

p (e) since α1 > α2. However, if, for any i, ti or di are inserted at the first position in
one of the votes in which e appears, then e makes at least α1 − α2 points less and thus is beaten by c. We denote this as
Observation 2. Now, we show the correctness of the construction.

Claim: Candidate c is a possible winner in P if and only if (E, S) is a yes-instance.

“⇐”: Let Q denote an exact 3-cover for (E, S). Then extend P as displayed in Fig. 4. More precisely, within V p
1 every

candidate si with Si ∈ Q takes the last position in exactly one of the |E|/3 votes. Then, the candidates make the following
points within the extension of the partial votes. Every si takes the last position in one vote and middle positions in all other
votes and thus makes exactly smax

p (si) points. For Si ∈ Q , every candidate ti and every candidate di takes one first and one
last position, and thus, s(di) = s(ti) = α1 + (|V p| − 2) · α2 = smax

p (di) = smax
p (ti). In the corresponding votes every element

candidate is shifted once since Q is an exact 3-cover and thus is beaten by c due to Observation 2. Clearly, for Si /∈ Q , si
is beaten by c as well. It remains to consider di and ti with Si /∈ Q . Here, one has s(di) = (|V p| − 1) · α2 < smax

p (di) and
s(ti) = (|V p| − 1) · α2 < smax

p (ti). Hence, c beats all other candidates and wins.

“⇒”: Consider an extension in which c wins. Due to smax
p (si), every candidate si must take the last position in at least one

of the votes. Since |V p
1 | = |E|/3, at most |E|/3 candidates can take a last position in V p

1 ; denote the set of them by S ′ .
Hence at least |S| − |E|/3 candidates si must take the last position in v1

i . Now, we show that for these candidates the
corresponding element candidates cannot be shifted to the right in v2

i or v3
i . Since si takes the last position in v1

i , di

already makes (|V p| − 1) · α2 in the extended partial votes without v2
i . Hence, di must take the last position in v2

i since
otherwise s(di) = |V p| · α2 > smax

p (di) because α1 < 2α2. This implies that ei1 is not shifted and that ti takes a middle

position in v2
i . Now, for ti it follows analogously that ti must take the last position in v3

i and thus neither ei2 nor ei3 is
shifted. Altogether, this means that all element candidates must be shifted by candidates from S ′ . Every si ∈ S ′ can shift
three candidates by setting si in the last position in v1

i and di and ti to the first positions in v2
i and v3

i , respectively.
Since there are |E| element candidates, it follows that |S ′| = |E|/3 and that all si ∈ S ′ must shift disjoint sets of element
candidates. Hence, S ′ corresponds to an exact 3-cover for (E, S). �

In the remainder of this subsection, we consider the case that α1 > 2 · α2. We also give a reduction from X3C. Note
that the previous proof cannot be transferred directly and thus we give a modified construction for which it will be more
laborious to show the correctness.

Theorem 4. An X3C-instance I can be reduced to a Possible Winner-instance for a scoring rule which produces a size-m-scoring
vector satisfying the conditions α1 > α2 = αm−1 > αm = 0 and α1 > 2 · α2 for m = f (I) + 2. A suitable poly-type function f can be
computed in polynomial time.

Proof. Let (E, S) denote an X3C-instance. Let k denote the size of a solution for (E, S), that is, k := |E|/3, and t := |S|.
We construct a partial profile P for which the distinguished candidate c ∈ C is a possible winner if and only if (E, S)

is a yes-instance. The set of candidates is C := S � D � E � {c,h} with S := {si | 1 � i � t} (the subset candidates) and
D := {di | 1 � i � t}, and E (the element candidates).

Very roughly, the basic idea of the reduction is as follows. There are three subsets of partial votes, in the first subset V p
1

one “selects” t − k subset candidates from S that do not correspond to an exact 3-cover and in the second subset V p
2 one

selects k subset candidates that correspond to an exact 3-cover. Selecting hereby means that a solution subset candidate
gets zero points in one vote of V p

2 whereas every non-solution candidate gets α1 points in a vote of V p
1 . Hence, a solution

candidate can make more points than a non-solution candidate in the third subset V p
3 . Thus, a solution candidate can take

a top position in V p
3 which yields a cascading effect that makes it possible to shift the corresponding element candidates

such that they do not beat the distinguished candidate c.
Formally, the partial profile P consists of a set of partial votes V p and a set of linear orders V l . For 1 � i � t , let Si =

{ei1, ei2, ei3}, then the set of partial votes V p := V p ∪ V p ∪ V p is given by the following subsets:
1 2 3
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Fig. 5. Extension of V p for an exact 3-cover S ′ ⊆ S . The middle positions are not given explicitly since the order of the candidates is irrelevant. Extensions
for candidates which do not belong to the solution set S ′ are highlighted.

V p
1 : t − k copies of the partial vote S � C \ (

S ∪ {h}) � h,

V p
2 : k copies of the partial vote h � C \ (

S ∪ {h}) � S,

V p
3 : for 1 � i � t the three partial votes wi

1: di � C \ {di, ei1, si} � ei1,

wi
2: h � C \ {di, ei2,h} � {ei2,di},

wi
3: h � C \ {di, ei3,h} � {ei3,di}.

Note that in wi
1, candidate si can be inserted at any position. The distinguished candidate c makes α2 points in every

partial vote from V p . Hence, according to Lemma 1, we can set the linear orders of V l such that the following holds.
For i = 1, . . . , t ,

smax
p (si) = (∣∣V p

∣∣ − 2
) · α2 + α1,

smax
p (di) = (∣∣V p

∣∣ − 2
) · α2 + α1 − z

with z = α1 mod α2 if α1 < 3α2, and z = α2, otherwise.4 Note that it holds that α2 � z and

α1 − z � 2α2. (3)

For all e ∈ E , smax
p (e) = (|V p| − 1) · α2, that is, e must have the last position in one of the partial votes. And, smax

p (h) �
|V p| · α1, that is, h can beat c in no extension.

We now prove the following claim.

Claim: Candidate c is a possible winner of (V , C) if and only if (E, S) is a yes-instance for X3C.

“⇐”: Let S ′ ⊆ S denote an exact 3-cover for (E, S). Then, we extend the partial profile as follows (Fig. 5). If Si ∈ S ′ , then
si is placed at the last position in one vote of V p

2 and at a middle position in all other votes from V p
1 ∪ V p

2 . If Si /∈ S ′ , then
si is placed at the first position in one of the votes in V p

1 and at a middle position in all other votes from V p
1 ∪ V p

2 . This is
possible since there are t − k top position and k last positions that can be taken by candidates from S in V p

1 ∪ V p
2 . In V p

3 ,
every candidate si with Si ∈ S ′ is placed at the top position and the corresponding element candidates ei2, ei3 at the last
position in the respective votes. Every candidate si with Si /∈ S ′ is placed at the last position and the corresponding element
candidates ei2, ei3 are placed at a middle position.

In the described extension, the candidates make the following points in V p . Every candidate si ∈ S takes exactly one
top position and exactly one last position in V p . Hence s(si) = smax

p (si). For the candidates of D one has to distinguish two
cases. First, if Si /∈ S , then, s(di) = (|V p| − 3) · α2 + α1 � smax

p (di) since α2 � z. Second, if Si ∈ S , then s(di) = |V p| · α2 =
(|V p|−2) ·α2 +2α2 � (|V p|−2) ·α2 +α1 − z = smax

p (di) because of Inequality (3). Finally, we have to consider the candidates
from E . Since for every Si in the 3-cover, the corresponding element candidates ei1, ei2, and ei3 get at the last position,
every candidate of E takes one last and |V p| − 1 middle positions and thus makes (|V p| − 1) · α2 points. It follows that c
wins in the considered extension.

“⇒”: In an extension of V in which c is the winner, every element candidate from E must take the last position in one
vote of V p . This is only possible in V p

3 since every element candidate is already fixed at a middle position in V p
1 ∪ V p

2 . More
precisely, for every i, ei1 gets a last position if si is inserted at a middle or the top position in the corresponding vote wi

1
and ei2/ei3 can get a last position only if di takes a middle position in the corresponding vote wi

2/wi
3.

To find out what this means for the other candidates, we have to go into details here. For i = 1, . . . , t , let bi denote the
“benefit”, i.e., the maximum number of element candidates that can be put at a last position in V p

3 depending on where si

is placed in wi
1. Then, we can show the following.

4 Note that this maximum partial score does not exactly fulfill the conditions of Lemma 1 if z �= α2. However, the construction can be easily extended
to work for this case as well. More precisely, in this case z = α1 − �α1/α2� · α2 and �α1/α2� � 3. Thus, in the construction given in the proof of Lemma 1
one can add α1 and “subtract” α2 as often as required. The subtraction can be accomplished by changing the role of the dummy “d” and di within a block.
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Observation 3.

1. bi = 3 if si is placed in a top position in wi
1.

2. bi = 1 if si is placed in a middle position in wi
1.

3. bi = 0 if si is placed in a last position in wi
1.

To see Observation 3, note that if si is on the top position in wi
1, then di can take the middle position in wi

2 or wi
3 since

the corresponding score s(di) = |V p| · α2 � smax
p (di). Thus, all three element candidates can be shifted to the last position.

If si is not placed on the top, but in the middle position, then ei1 is still shifted to the last position, but di must take the
last position in wi

2 or wi
3 and thus neither ei2 nor ei3 can have a last position in wi

2 or wi
3. To see this, assume that di has

the top position in wi
1 and a middle position in wi

2 or wi
3, then

s(di) �
∣∣V p

1 ∪ V p
2

∣∣ · α2 + (∣∣V p
3

∣∣ − 2
) · α2 + α1 = (∣∣V p

∣∣ − 2
) · α2 + α1 > smax

p (di),

a contradiction. If si is placed on the last position in wi
1, then ei1 cannot take the last position in V p

3 , and neither can ei2

and ei3, because di takes the first position in wi
1 and gets α1 points and has to take the last position in both wi

2 and wi
3

by the same argument as before.
In the following, we show that in an extension in which c wins, in V p

1 there must be t − k different subset candi-
dates si that take the top position and each of the remaining k (solution) candidates of S must take one last position in V p

2 .
It directly follows by Observation 3 that for all non-solution candidates we must have that bi = 0 and thus every solu-
tion candidate must shift the three corresponding element candidates that must be different from the element candidates
corresponding to the other solution candidates.

For every i, let ti denote the number of top positions that si takes within V p
1 and li the number of last positions that si

takes within V p
2 . Observe that the following conditions must hold:

t∑
i=1

li = k,

t∑
i=1

ti = t − k, since every position must be taken,

t∑
i=1

bi � 3k, since there are 3k element candidates and each one must take at least one last position. (4)

In the following, our strategy consists of three steps:

• We first investigate the dependencies of li , ti , and bi upon each other. For that sake, we distinguish the cases li = 0,
li = 1, and li � 2.

• Second, based on these case distinctions, we can show that the case li � 2 is not possible, that is, every si can have at
most one last position in V i

2. This will need the most technical effort and will directly imply ti � 1 for all i.
• Third, we show that there is no candidate si with li = ti = 1, which will imply that only candidates with li = 1 contribute

with a positive benefit and can place their element candidates at a last position. Since there are only k such candidates,
they must correspond to an exact 3-cover.

First step. We show some dependencies of li , ti , and bi by systematically enumerating all possible cases. (In the argu-
mentation that follows the case distinction we are only interested in upper bounds of bi . Hence, we omit to show lower
bounds.)

Case I: li = 0 a) if ti = 0, then bi � 1,
b) if ti = 1, then bi = 0,
c) ti � 2 is not possible.

Proof. Ia) (li = ti = 0): Assume bi = 3, i.e., si is on the top position in wi
1 due to Observation 3. Then s(si) = (|V p| − 1)α2 +

α1 > smax
p (si), a contradiction, hence bi � 1.

Ib) (li = 0, ti = 1): Assume bi = 1, i.e., si is on a middle position in wi
1 due to Observation 3. Then s(si) = (|V p| − 1)α2 +

α1 > smax
p (si), a contradiction, hence bi = 0.

Ic) (li = 0, ti � 2): Assume si takes the last position in wi
1, that is, si makes as few points as possible within this case.

Then,
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s(si) = (|V p| − ti − 1
)
α2 + tiα1

>
(|V p| − ti − 1 + 2(ti − 1)

)
α2 + α1

> smax
p (si),

a contradiction, hence this case is not possible. �
Case II: li = 1 a) if ti = 0, then bi � 3,

b) if ti = 1, then bi � 1,
c) ti � 2 is not possible.

Proof. IIa) (li = 1, ti = 0), trivial upper bound.
IIb) (li = ti = 1) Assume bi = 3, i.e., si is on the top position in wi

1 due to Observation 3. Then s(si) = (|V p|−3)α2 +2α1 >

smax
p (si), a contradiction, hence bi � 1.

IIc) (li = 1, ti � 2): Even if si takes the last position in wi
1 one has

s(si) = (∣∣V p
∣∣ − ti − 2

)
α2 + tiα1

>
(∣∣V p

∣∣ − ti − 2 + 2(ti − 1)
)
α2 + α1

= (∣∣V p
∣∣ + ti − 4

)
α2 + α1

� smax
p (si),

a contradiction, hence this case is not possible. �
Case III: li � 2 a) if ti = li , then bi = 0,

b) if ti = li − 1, then bi � 1,
c) if ti � li − 2, then bi � 3,
d) ti > li is not possible.

Proof. IIIa) (li � 2, ti = li): Assume bi = 1, i.e., si is on a middle position in wi
1 due to Observation 3. Then

s(si) = (∣∣V p
∣∣ − ti − li

)
α2 + tiα1

= (∣∣V p
∣∣ − 2ti

)
α2 + tiα1

>
(∣∣V p

∣∣ − 2ti + 2(ti − 1)
)
α2 + α1

= (∣∣V p
∣∣ − 2

)
α2 + α1

= smax
p (si),

a contradiction, hence bi = 0.
IIIb) (li � 2, ti = li − 1): Assume bi = 3, i.e., si is on the top position in wi

1 due to Observation 3, then

s(si) = (∣∣V p
∣∣ − ti − li − 1

)
α2 + (ti + 1)α1

= (∣∣V p
∣∣ − 2ti − 2

)
α2 + (ti + 1)α1

>
(∣∣V p

∣∣ − 2ti − 2 + 2ti
)
α2 + α1

= (∣∣V p
∣∣ − 2

)
α2 + α1

= smax
p (si),

a contradiction, hence bi � 1.
IIIc) (li � 2, ti � li − 2): trivial upper bound.
IIId) (li � 2, ti > li ): Then

s(si) = (∣∣V p
∣∣ − ti − li − 1

)
α2 + tiα1

>
(∣∣V p

∣∣ − ti − li − 1 + 2(ti − 1)
)
α2 + α1

= (∣∣V p
∣∣ + ti − li − 3

)
α2 + α1

� smax
p (si),

a contradiction, hence this case is not possible. �
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Second step. Using the previous case distinctions, we show that no subset candidate si can take more than one last
position in V p

2 . For this, without loss of generality, we assume that the candidates si are sorted in decreasing order according
to their corresponding li , i.e.,

s1, . . . , s j︸ ︷︷ ︸
li�2

, s j+1, . . . , sr︸ ︷︷ ︸
li=1

, sr+1, . . . , st︸ ︷︷ ︸
li=0

.

Claim 1: In an extension in which c wins, it holds that li � 1 for all i.

To prove Claim 1, we show that j = 0. More specifically, we prove that j > 0 implies that the total benefit B := ∑t
i=1 bi is

less than 3k. This means that not all 3k element candidates can take a last position and thus c cannot win.
Assume that j > 0. We start to show how to distribute the last and the first positions of V p

1 and V p
2 in order to

maximize B . For that sake, let T j := ∑ j
i=1 ti denote the number of top positions that were taken by the first j candi-

dates s1, . . . , s j . Now, we consider the remaining indices i ∈ { j +1, . . . , t}. Since for all of them li � 1, it must also hold ti � 1
(see Cases I and II). Thus and because of Eq. (4), there must be at least t − k − T j candidates from s j+1, . . . , st with ti = 1.
For both remaining cases (li = 1 and li = 0), the benefit bi is greater for the case ti = 0 than it is for the case ti = 1 (cf.
Cases I and II). Hence, to maximize the total benefit B , it is desirable to minimize the number of candidates having ti = 1.
Since there are t − j indices greater than j and ti must be equal to one for at least t − k − T j indices, there are at
most t − j − (t − k − T j) = k + T j − j indices with ti = 0 (Observation 4). Furthermore, for every index from { j + 1, . . . , sr},
by setting ti to zero or one, one can “choose” between bi = 1 and bi = 3 (Case II). For the remaining indices, one can choose
between bi = 0 and bi = 1 by setting ti to zero or one (Case I). We show by contradiction that choosing Case IIa (which
results in bi = 3) as often as possible is the way to maximize B:

Assume that Case IIa holds, that is, li = 1 and ti = 0 is not chosen as often as possible. Then, first, there must be an
index i ∈ { j + 1, . . . , r} with ti = 1 and hence with bi = 1 (Case IIb). Second, there must be an index x > r with tx = 0 and
hence bx = 1 (Case Ia).

Then setting ti = 1 and tx = 0 does not violate Eq. (4) and has the following effect.

• bi is increased by 2 (from 1 to 3),
• bx is decreased by 1 (from 1 to 0).

Thus, B = ∑t
i=1 bi was not maximal.

Now, we have argued that to maximize B , one has to choose Case IIa as often as possible (Observation 5). Using this,
we can compute the maximal value max B of B (showing that it must be less than 3k). For that sake, we first consider the
benefit coming from the first j candidates s1, . . . , s j , which we denote by B j := ∑ j

i=1 bi . Let B0
j denote the set of indices

i ∈ {1, . . . , j} with bi = 0, let B1
j denote the set of indices i ∈ {1, . . . , j} with bi = 1, and let B3

j denote the set of indices
i ∈ {1, . . . , j} with bi = 3. Then, Case III directly gives the following bound for the number of top positions assumed by the
first j candidates:

T j �
∑
i∈B0

j

li +
∑
i∈B1

j

(li − 1) +
∑
i∈B3

j

(li − 2) =
j∑

i=1

li − ∣∣B1
j

∣∣ − 2
∣∣B3

j

∣∣, (5)

which will be needed in the following.
Due to the previous discussion we know that in the remaining positions, we have to choose ti = 0 for k + T j − j indices

(cf. Observation 4) and one should choose Case IIa, that is, li = 1 and ti = 0, as often as possible (cf. Observation 5). Clearly,
li = 1 must be chosen k − ∑ j

i=1 li times whereas there are k + T j − j indices with ti = 0. Hence, to compute a total upper

bound on B , we have to distinguish two cases: First, k − ∑ j
i=1 li � k + T j − j, and, second, k − ∑ j

i=1 li > k + T j − j.
For the first case, we obtain

max B = ∣∣B1
j

∣∣ + 3
∣∣B3

j

∣∣︸ ︷︷ ︸
B j

+3

(
k −

j∑
i=1

li

)
︸ ︷︷ ︸

li=1, ti=0

+k + T j − j −
(

k −
j∑

i=1

li

)
︸ ︷︷ ︸

li=0, ti=0

= ∣∣B1
j

∣∣ + 3
∣∣B3

j

∣∣ + 3k − 2 ·
j∑

i=1

li + T j − j
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(5)

�
∣∣B1

j

∣∣ + 3
∣∣B3

j

∣∣ + 3k − 2 ·
j∑

i=1

li +
j∑

i=1

li − ∣∣B1
j

∣∣ − 2
∣∣B3

j

∣∣ − j

= 3k −
j∑

i=1

li − j + ∣∣B3
j

∣∣.
Since |B3

j | � j it holds that the maximal value of B is strictly less than 3k for j � 1. Thus, at least one element candidate
does not take a last position and hence beats c, a contradiction.

For the second case, we obtain

max B = ∣∣B1
j

∣∣ + 3
∣∣B3

j

∣∣︸ ︷︷ ︸
B j

+3 (k + T j − j)︸ ︷︷ ︸
li=1, ti=0

+k −
j∑

i=1

li − (k + T j − j)︸ ︷︷ ︸
li=1, ti=1

= ∣∣B1
j

∣∣ + 3
∣∣B3

j

∣∣ + 3k + 2T j − 2 j −
j∑

i=1

li

(5)

�
∣∣B1

j

∣∣ + 3
∣∣B3

j

∣∣ + 3k +
j∑

i=1

li − ∣∣B1
j

∣∣ − 2
∣∣B3

j

∣∣ + T j − 2 j −
j∑

i=1

li

= 3k + ∣∣B3
j

∣∣ + T j − 2 j.

Furthermore, in this case it follows directly from k − ∑ j
i=1 li > k + T j − j that

∑ j
i=1 li + T j < j. For j > 0 this means

that T j < j. By definition, we have |B3
j | � j, and thus max B is less than 3k. This completes the proof of Claim 1. We

therefore have j = 0 which means li � 1 for all i ∈ {1, . . . , t} and thus also ti � 1 for all i (Cases I and II).
Third step. We now show that there cannot be any candidate si which takes one last position and one first position

in V 1 ∪ V 2, i.e. we cannot have ti = li = 1 for any si . Assume that the set of candidates Q := {si | ti = li = 1} is not empty.
Then, due to Observation 3, the maximum value of B is

max B = 1 · |Q |︸ ︷︷ ︸
li=ti=1

+3 · (k − |Q |)︸ ︷︷ ︸
li=1, ti=0

+ 0︸︷︷︸
li=0, ti=1

+1 · |Q |︸ ︷︷ ︸
li=ti=0

= 3k − |Q |,

a contradiction. Thus, t −k many of the subset candidates si take a top position in V p
1 , and the remaining k subset candidates

take a last position in V p
2 . Now, each of these k candidates must place its corresponding element candidates at the last

positions in V p
3 . Since c can only be a winner if each of the 3k element candidates takes a last position in a vote from V p

3
and in total at most 3k element candidates can take a last position in V p

3 , every element candidate must take exactly one
last position. Thus, for i �= j such that si and s j take a last position in V p

2 , {ei1, ei2, ei3} and {e j1, e j2, e j3} must be disjoint.
It follows that {Si | si takes a last position in V p

2 } forms an exact 3-cover. �
7. Putting all together

We are now ready to combine the many-one reductions from the previous sections to one general reduction. Basically,
the problem we encounter by using one specific reduction from the previous sections is that such a reduction produces a
Possible Winner-instance with a certain number m of candidates. Thus, one needs to ensure that the size-m scoring vector
provides a sufficient number of positions with equal/different scores. This seems not to be possible in general. However, for
every specific instance of Exact Cover By 3-Sets or Multicolored Clique, we can compute a number of positions with equal
or different scores that is sufficient for the corresponding reduction, and we can use the maximum of all these numbers for
the combined reduction. This is the underlying idea for the following proof.

Theorem 5. Possible Winner is NP-complete for a scoring rule r if there is a constant z such that all scoring vectors produced by r for
more than z candidates are different from (0, . . . ,0), (1,0, . . . ,0), (1, . . . ,1,0), and (2,1, . . . ,1,0).

Proof. We give a reduction from X3C restricted to instances of size greater than z to Possible Winner for r. Let I with |I| > z
denote an X3C-instance. Since X3C and MC are NP-complete, there is a polynomial-time reduction from X3C to MC. Hence,
let I ′ denote an MC-instance whose size is polynomial in |I| and which is a yes-instance if and only if I is a yes-instance.
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Table 4
Subcases for scoring rules having an unbounded number of equal score values.

Case I ∃i � m − 1 s.t. αi−x = · · · = αi−1 > αi Theorem 2
Case IIa ∃i � 2, ∃ j < i s.t. αi > αi+1 = · · · = αi+x and α j < 2α j+1 Lemma 3
Case IIb ∃i � 2, ∃ j < i s.t. αi > αi+1 = · · · = αi+x and α j � 3αi Lemma 4
Case IIc (α1,α2,0, . . . ,0) and 3α2 > α1 > 2α2 Lemma 5
Case IId (2,1,0, . . . ,0) Lemma 6
Case III α1 > α2 = αm−1 > αm = 0 and α1 �= 2 · α2 Theorem 4

Let f1 denote a poly-type function to compute the number of different score values as stated for Theorem 1, f ′
1 as for

Theorem 2, f ′
2 as for Lemma 3, f2 as for Lemma 4, f3 as for Lemma 5, f4 as for Lemma 6, and f5 as for Theorem 4. Define

x := max{ f1(I), f ′
1(I ′), f ′

2(I ′), f2(I), f3(I), f4(I), f5(I)} and consider the scoring vector �α of size x · (x + 1) produced by r.
Then we show the following.

Claim: For �α it holds that |{i | αi > αi+1}| � x or that αi = · · · = αi+x for some position i.
The correctness of the claim can be seen as follows. First, assume that �α does not fulfill αi > α j for x different positions i.

Then consider x · (x + 1) indices of �α. Since they can have at most x different score values, there must be a single score
value that is assigned to at least x + 1 indices, that is, there is an index i with αi = · · · = αi+x . Second, if there is no index i
such that αi = · · · = αi+x for a position i, then again consider x · (x + 1) indices of �α. Since each score value can be assumed
at most x times, there must be at least x different score values.

Now, due to the Claim, we can distinguish two main cases. If �α has at least x different score values, then we apply
the X3C-reduction given in Theorem 1. Otherwise, we have an unbounded number of equal score values. In this case we
distinguish the subcases given in Table 4. For all these subcases, there are many-one reductions used in the corresponding
lemmata/theorems. Hence, it remains to show that each scoring vector can be handled by at least one of these cases.
Clearly, �α must have the form αi−x = · · · = αi−1 > αi for an i � m − 1 (Case I), or αi > αi+1 = · · · = αi+x for i � 2 (Case II),
or α1 > α2 = αm−1 > αm = 0 and α1 �= 2 · α2 (Case III). For Cases I and III, the existence of many-one reductions follows
immediately from the corresponding Theorems 2 and 4. Thus, it remains to discuss Case II, the case that �α has the form
αi > αi+1 = · · · = αi+x for i � 2.

To this end, we start with the case i > 2. Clearly, there must be at least three scoring values which are not equal to
zero, namely, αi−2,αi−1, and αi . If one has αi−1 < 2αi or αi−2 < 2αi−1, then NP-hardness follows directly from Lemma 3.
Otherwise, one must have αi−1 � 2αi and αi−2 � 2αi−1. Hence, it follows that αi−2 � 4αi and NP-hardness follows directly
from Lemma 4. It remains to consider all scoring rules of type (α1,α2,0, . . . ,0). Here, we can distinguish the following four
cases:

• α1 < 2α2: NP-hardness follows from Lemma 3,
• α1 = 2α2: NP-hardness follows from Lemma 6,
• 2α2 < α1 < 3α2: NP-hardness follows from Lemma 5, and
• α1 � 3α2: NP-hardness follows from Lemma 4.

Since the membership in NP is obvious, the main theorem follows. �
Pure scoring rules. Based on all previous considerations, for pure scoring rules we almost arrive at a dichotomy. More pre-
cisely, we can state the following.

Theorem 6. Possible Winner is NP-complete for all non-trivial pure scoring rules except plurality, veto, and scoring rules for which
there is a constant z such that the produced scoring vector is (2,1, . . . ,1,0) for every number of candidates greater than z. For plurality
and veto it is solvable in polynomial time.

Proof. Plurality and veto are polynomial-time solvable due to Proposition 1. Having any non-trivial scoring vector different
from (1,0, . . . ,0), (1, . . . ,1,0), and (2,1, . . . ,1,0) for m candidates, it is not possible to obtain a scoring vector of one of
these three types (or (0, . . . ,0)) for m′ > m by inserting scoring values. Hence, since we only consider pure scoring rules,
the scoring rule does not produce a scoring vector of type plurality, veto, (0, . . . ,0), or (2,1, . . . ,1,0) for all m � z. Then
the statement follows by Theorem 5. �
“Non-pure” scoring rules. We end this section with a brief informal discussion about the problem of classifying non-pure
scoring rules in general. As stated in Theorem 5, we can show NP-hardness for non-pure scoring rules if (starting from
a constant number of candidates) all produced scoring vectors are “difficult”. Clearly, it is possible to extend the range of
NP-hardness results to scoring rules that produce only few “easy” vectors; for example, having a difficult vector for all odd
numbers of candidates and an easy vector for all even ones. However, this is not possible in general. Roughly speaking, if
the underlying difficult part of the language becomes too sparse, then there cannot be a many-one reduction from an NP-
complete problem since the densities of the problems are not polynomially related (see e.g. [30]). Note that this situation
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does not appear for the dichotomy result from Hemaspaandra and Hemaspaandra [25] for Manipulation for weighted
voters. The intuitive reason for this is that their reductions for the NP-hardness in the case of weighted voters already hold
for a constant number of candidates (and all scoring rules except plurality are NP-hard in this case).

8. Conclusion and outlook

In this work, we settled the computational complexity for Possible Winner for almost all pure scoring rules. More
precisely, the only case that was left open regards the scoring rule defined by the scoring vector (2,1, . . . ,1,0), whereas
for all other rules except plurality and veto, we obtained NP-completeness results. In a very recent work, Baumeister and
Rothe [2] completed the dichotomy by showing the NP-completeness of Possible Winner for the case of (2,1, . . . ,1,0).

A natural next step of research is to investigate algorithmic approaches that deal with NP-hard problems like approxi-
mation algorithms or “efficient” exponential-time algorithms. Here, an interesting approach is to consider the parameterized
complexity [15,23,28] and its sequel multivariate algorithmics [29]. There are first considerations for several voting rules [7]
as well as fixed-parameter tractability results for Possible Winner for k-approval with respect to the combined parameter
“number of partial votes” and k [3]. A parameter of general interest is the “number of candidates”. In this case, Possible

Winner is shown to be fixed-parameter tractable for several voting systems using a powerful classification framework based
on integer linear programming but still lacks efficient combinatorial fixed-parameter algorithms [7]. Furthermore, multivari-
ate complexity analysis might offer a way to tackle the Possible Winner problem for voting systems for which the “normal”
winner determination is already NP-hard. For example, there are recent studies for Kemeny, Dodgson, and Young elections
that contain parameterized algorithms with respect to several parameters [4–6,32]. It is open whether such results can be
achieved for the Possible Winner problem.

The Possible Winner problem not only generalizes the Manipulation problem but also comprises other relevant special
cases. For example, very recently, Chevaleyre et al. [10] investigated the computational complexity of the following problem:
Given a set of linear votes, an integer s, and a distinguished candidate c, can one add s candidates such that c becomes a
winner? There is reasonable hope to achieve more positive algorithmic results for this and other relevant special cases of
Possible Winner.

A further direction of future research regards the counting version of Possible Winner [1]. Here, one wants to find out
in how many extensions a distinguished candidate wins. Answering this question allows to compare two candidates that
are possible winners.
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