
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 38, 360-379 (1989)

Deleting Completed Transactions

THANASIS HADZILACOS

Computer Technology Institute, Patras, Greece

AND

MIHALIS YANNAKAKIS

AT & Bell Laboratories, Murray Hill, New Jersey

Received February 19, 1988

We derive necessary and suflicient conditions on when it is safe to forget (and remove) a
completed transaction in several versions of conflict-graph-based schedulers. We show that the
conditions can be applied repeatedly and analyze their complexity. 0 1989 Academic heas, Inc.

1. INTRODUCTION

An important point in the life of a transaction, besides commit time, is when its
existence no longer influences the correct scheduling of present or future trans-
actions, and information about it (its name, the items it read or wrote) can be
forgotten. [SR] calls this closing the transaction. Of course, when a transaction can
be closed depends on the particular algorithm used to control concurrency.

One of the most widely used criteria for ensuring correctness of interleaved trans-
actions is confrict serializability. From a schedule of transactions a graph is formed
(the conflict graph of the schedule, sometimes called also serialization or depen-
dency graph), whose nodes correspond to the transactions and whose arcs reflect
the order in which the transactions executed conflicting steps. Acyclicity of the
graph guarantees the correctness of the schedule [EGLT]. Locking protocols
provide a simple and efficient way for ensuring correctness but capture only a
subset of the conflict serializable schedules. A way to implement (all) conflict
serializable schedules is to keep track of the conflict graph and output a step only if
it does not produce a cycle in the graph. The use of portions or variants of the
conflict graph has been also proposed in conjunction with multiple versions,
locking, and timestamps [BOG, BHR, HP, SRI.

If pure locking is used to control concurrency (i.e., the scheduler just manages
locks), then it is easy to see that transactions can be closed at commit time. First,

360
0022~0000/89 $3.00
Copyright 0 1989 by Academic Press, Inc.
All rights of reproduction in any form rcscrved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82414144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DELETING COMPLETED TRANSACTIONS 361

observe that once a transaction T completes and releases all its locks, it no longer
influences the scheduling of future steps. That is, as far as serializability is concer-
ned, the transaction does not play any role from that time on. However, we may
still have to keep information about T for reliability purposes: if T has read values
from some transactions that have not committed yet, then T has to wait for these
transactions to commit before it can also commit. (The reason is that if one of these
transactions aborts, then T must also abort because it has read invalid data). Once
T commits, it can be closed; i.e., all information about it can be removed from the
database. This observation is valid for all locking protocols, including the protocols
that operate on structured databases, such as the ones in [SK, Y].

In contrast to the case of schedulers based on locking, it is well known that, for
schedulers that use the conflict graph, it is not correct to close transactions at com-
mit time. Even though a transaction has committed, its presence in the graph may
be necessary to detect future cycles. On the other hand, of course, we cannot keep
transactions indefinitely. The problem of characterizing when a transaction can be
safely removed in conflict-graph based schedulers has been floating around for
some time.

In this paper we study necessary and sufficient conditions for removing trans-
actions in several versions of conflict graph schedulers. These versions differ
depending (1) on the model of the transactions and (2) on the information
available to the scheduler. In the basic version, (1) a transaction is a sequence of
read steps followed by a final atomic write step, and (2) the scheduler does not
know ahead of time what data the transactions will access. In Section 2 we describe
the model and define in more detail the basic conflict graph scheduler.

In Section 3 we prove a necessary and sufficient condition under which a com-
pleted transaction can be removed from the conflict graph without affecting our
ability to detect cycles in the future. Of course, in order for this to be useful, we
must extend it so that multiple nodes can be removed from the graph, one by one
as more steps come in and more transactions become irrelevant. Section 4 examines
this problem. The issues involved are subtle and require a careful formalization of
the problem. A counterintuitive phenomenon is that we may have two transactions
each one of which can be removed, but such that they cannot be both removed
simultaneously: removing one of them disables the criterion for the other. In
general, when several transactions are eligible for removal we can determine in
polynomial time whether a given subset of them can be (simultaneously) removed.
However, we show that finding such a subset with the maximum number of trans-
actions is NP-complete.

Section 5 examines two variants of the basic model. In the first variant, trans-
actions may have multiple write steps, while in the second variant, transactions
predeclare their steps. Surprisingly, we show that in the multiple write case, the
problem of deciding whether a transaction can be removed from the graph is
NP-complete. In the case of predeclared transactions we prove a necessary and
sufficient condition which can be tested in polynomial time.

362 HADZILACOS AND YANNAKAKIS

2. THE MODEL

We employ the usual model of concurrency control [Pa]. A database is a set of
entities. A transaction is a sequence of steps; each step reads some entity x (denoted
rx for short) or writes x (wx for short). The value written by a transaction in a
write step is an uninterpreted function of the values read so far. A schedule of a set 7

of transactions is an execution of the transactions of 7 in a (possibly) interleaved
fashion. A schedule is serial if there is no interleaving. A schedule S is serializable if
there is a serial schedule S’ such that no difference is “visible” between S and S’;
formally, for every initial state of the database and every interpretation of the
functions computed by the transactions, each transaction reads the same values,
and the final state of the database is the same in both schedules.

Serializability is an intricate concept (as manifested by its NP-completeness), so
that a stronger but simpler criterion is usually employed. Two steps of two (dif-
ferent) transactions conflict if they involve the same entity and at least one of them
is a write step. If S is a schedule of a set 7 of transactions, the conflict graph CG(S)
is a directed graph with set of nodes 7, and arcs ri + T, if a step of Ti precedes a
conflicting step of Tj. The schedule is conflict serializable (CSR for short) if the
conflict graph is acyclic. This is a sufficient condition for serializability.

We make the following two assumptions about the transactions:

(1) We will assume that all values written by a transaction are installed
atomically at the end, i.e., that the execution of a transaction is a sequence of read
steps followed by a final write step. The effect of this assumption is that no trans-
action reads dirty data, cascading aborts do not happen, and transactions may
commit upon completion.

(2) We assume that the future of an actioe transaction (one that has not
completed) is unknown; i.e., the scheduler does not know what entities it will read
or write.
In Section 5 we relax these assumptions.

The full freedom of CSR can be achieved using either a certification (optimistic)
or a preventive scheduling algorithm. In the first case, the conflict graph of the com-
pleted transactions is maintained. The active transactions are left free to run. When
an active transaction is ready to terminate, a certification phase takes place, in
which it is tested whether the transaction can be added to the conflict graph
without creating cycles; if so, it is certified and completed, otherwise it aborts (and
is restarted). In the second case, the conflict graph of the schedule seen so far of the
completed and active transactions is maintained step-by-step. A new step of a trans-
action is accepted only if it does not create a cycle; otherwise, the transaction
aborts. The issues are very similar in the two cases, so we will restrict ourselves to
the second one.

In more detail, the conflict scheduler operates as follows. We assume that every
transaction starts with a BEGIN step and completes with its final write step. The
rules of the scheduler are as follows. Initially the conflict graph CG is empty. When

DELETING COMPLETED TRANSACTIONS 363

the next step of a transaction arrives the graph is modified as follows, provided that
no cycle is created; if a cycle is created the transaction aborts and is removed from
the graph:

Rule 1. If the step is the BEGIN step of a new transaction Ti, a node Tj is
added to the graph.

Rule 2. If the step is a read x step of transaction Ti an arc is added from
every node (transaction) in the graph that has written x to Ti.

Rule 3. If the step is the write step of transaction Ti, then-for every entity x
that is written and for every node of the graph (transaction) Tj that has previously
read or written x, an arc Tj + Ti is added to the graph.

The sequence s of steps that have arrived up to a certain time may contain steps
of transactions which have in the meantime aborted and may not contain all the
steps of some transactions (namely, the active transactions). Still, we will use the
term “schedule” also for s. The accepted subschedule of s is its projection on the
nonaborted transactions; i.e., the subsequence of s consisting of the steps of trans-
actions that have not aborted. We denote the graph that has been constructed by
the scheduler on input s by CG(s) and call it the conflict graph of s; in terms of our
previous definition, CG(s) is the conflict graph of the accepted subschedule.
According to Rules 1-3 of the scheduler, the current graph CG(s) is always acyclic;
thus, if no more steps are to be executed, the accepted subschedule (of the
completed and active transactions) is serializable.

In the following, for ease of notation, we will say that CG(r) is cyclic to mean
that if the last step of r is executed, then a cycle will be created in the graph. Of
course, the scheduler will abort the transaction that wants to execute the last step
to maintain the acyclicity of the conflict graph.

3. DELETING A SINGLE TRANSACTION

Recall first some graph-theoretic definitions. A transaction Ti is a predecessor
(resp. immediate predecessor) of transaction Tj in the graph if there is a path (resp.
arc) from Ti to Tj. We say also that Tj is a successor (resp. immediate successor)
of Ti.

From Rules l-3 according to which the conflict graph is built, it follows that a
new arc Ti + Tj is added to the graph because of some step of Tj; i.e., Ti is active
when the arc is added. Therefore, once a transaction completes, it will never acquire
any new immediate predecessors. It follows inductively that if a completed trans-
action Ti has no active predecessors, then its set of predecessors will remain the
same forever. In particular, if Ti is not a predecessor of itself, it will never become
one. Thus,

LEMMA 1. If a completed transaction Ti has no active predecessors, then Ti will
not participate in any cycle in any future conjlict graph.

364 HADZILACOSANDYANNAKAKIS

T2 Tl r..
FIGURE 1

The converse to the lemma is also true. A continuation of a schedule p is a
sequence of steps of the active transactions of p and possibly some new trans-
actions. It is easy to show that for any schedule p with an (acyclic) conflict graph
CG(p) and any completed transaction Ti of p which has some active predecessor,
there is a continuation r such that CG(pr) contains a cycle passing through Ti.
This does not mean, however, that Ti is essential to detecting the fact that CG(pr)
is cyclic.

EXAMPLE 1. Suppose that p is the following schedule. Transaction T, first reads
(among other things) entity x. Subsequently, before T, terminates, in a serial order
T, and T3 read and write x and complete. The conflict graph of p is shown in Fig. 1.
Transaction T2 has an active predecessor (namely, T,). However, it should be
intuitively clear that any cycle passing through T2 which is formed in the future can
equally well go through T,; therefore, T2 can be safely deleted.

We define now how a transaction is removed. Let p be a schedule and Ti a com-
pleted transaction of it. The reduced conflzct graph of p by Ti, denoted RCG(p, Ti),
is CG(p) with node Ti deleted and arcs to and from it replaced by arcs from all its
immediate predecessors to all its immediate successors. The arcs from immediate
predecessors to immediate successors of Ti are added so that paths going currently
through Ti do not get lost. If the cycle-checking algorithm keeps track of the trans-
itive closure of the graph (to facilitate testing whether a new arc can be inserted),
then removing a transaction is equivalent to simply deleting the corresponding
node and incident edges from the transitive closure.

Removal of a transaction Ti means that the scheduler replaces CG(p) by
RCG(p, Ti) and continues applying the same rules l-3 as usual. If r is a con-
tinuation of p, the graph resulting from RCG(p, Ti) after applying the rules for r is
denoted by RCG(p, Ti, r). We want to delete a transaction only if correctness is not
jeopardized, that is, only if the reduced scheduler (the scheduler with the reduced
information) still accepts only conflict serializable schedules.

LEMMA 2. Suppose that a (completed) transaction Ti is removedfrom the conflict
graph after schedule p, The following conditions are equivalent:

(1) For all continuation r, RCG(p, Ti, r) acyclic implies CG(pr) acyclic; i.e., if

DELETING COMPLETED TRANSACTIONS 365

a step is accepted by the reduced scheduler then it is also accepted by the original
conflict scheduler.

(2) For ail continuations r, RCG(p, Ti, r) acyclic tf and only tf CG(pr)
acyclic; i.e., the reduced and the conflict scheduler behave exactly the same way.

(3) For all continuations r, the subschedule of pr accepted by the reduced
scheduler is conflict serializable.

Proof It is obvious that condition (2) implies both (1) and (3). We have to
show that (3) implies (2) and (1) implies (2). Consider a shortest continuation r
that violates condition (2). We shall argue that r violates also both (1) and (3). Let
t be the last step of r, and let r = st. During s the two schedulers, the reduced and
the original one, have behaved the same way. Therefore, the same transactions have
been aborted after s. If RCG(p, Ti, r) contains an arc Tk + Tj, then both nodes T,,
Tj are present in CG(ps). This arc was either generated from some step, in which
case CG(ps) contains the same arc, or was generated in the process of removing Ti,
in which case CG(ps) contains arcs Tk + Ti, Ti + Tj. Thus, if there is a path
between two transactions in RCG(p, Ti, s) then there is such a path also in
CG(ps). It follows that if step t creates a cycle in RCG then it creates a cycle also in
CG. Since the two schedulers disagree at step t, we conclude that t creates a cycle in
the conflict graph but not in the reduced graph. Thus, r violates condition (1). To
see that r violates also (3), note that t is accepted by the reduced scheduler while
CG(pr) is cyclic. If all active transactions complete now, the reduced scheduler has
accepted a non-CSR schedule. 1

We define now what it means for a condition to be necessary and sulkient. A
condition C is sufficient for the removal of transaction Ti if C implies any one of the
equivalent conditions of Lemma 2; it is necessary if the conditions of Lemma 2
imply C. To state our necessary and sullicient condition we need the following
definition. Transaction Ti is a tight predecessor of Tj (and Tj is a tight successor of
Ti) if there is a path from Ti to Tj that uses only completed transactions as inter-
mediate nodes. We say also that a write access of an entity by a transaction is
stronger than a read access. A necessary and sufficient condition is given in the
following theorem.

THEOREM 1. Let p be a schedule and Ti a completed transaction. The following
condition is necessary and sufficient for the removal of T,:

(Cl) For all active tight predecessors Tj of Ti and for all entities x accessed by
Ti there is a completed tight successor Tk (# T,) of T, that accesses x at least as
strongly as Ti.

Proof Sufficiency) Suppose that Cl is true, but condition (2) of Lemma 2 is
false. Let r = st be a shortest continuation for which the reduced and the conflict
scheduler disagree. From the proof of Lemma 2, the last step t creates a cycle in the
conflict graph but not in the reduced graph. If the cycle does not contain Ti, then

571/38/2-9

366 HADZILACOS AND YANNAKAKIS

the same cycle would be created in the reduced graph RCG(p, T,, r). Therefore, the
cycle contains Ti.

The transactions of the cycle can be partitioned according to their state right
after p into (a) completed, (b) active, and (c) those that had not started yet. Not all
transactions are of type (a) because of the acyclicity of CG(p). Starting from T,
walk backwards in the cycle until a transaction T, not of type (a) is encountered for
the first time. Clearly, the graph cannot have an arc from a transaction of type (c)
to a transaction of type (a). Therefore, T, was active right after p. All arcs in the
path from T, to T, enter transactions which had completed in p. Therefore, they are
all present in CG(p), and T, was an active tight predecessor of Ti in CG(p).

Let T, be the immediate successor of Ti on the cycle; see Fig. 2. If the arc T, -+ T,
is present in CG(p), then the reduced graph RCG can use the arc from the
immediate predecessor of T, on the cycle to T, to avoid T,. Therefore, the arc
T, + T, must have been added to the conflict graph at some step of the
continuation r. At that step, transaction T, performed an access of some entity x
conflicting with some access of Ti. Let T, be the tight successor of T, for x
guaranteed by Cl. Since T, accesses x at least as strongly as Tj in p, there is an arc
from Tk to T,. The reduced conflict graph can use the path from T, to T, (still
present since all transactions are completed) and the arc T, -+ T, to form a cycle
avoiding Ti.

(Necessity) Suppose that Cl does not hold: i.e., there is an active tight
predecessor Tj of Ti and an entity x such that there is no tight completed successor
of T, accessing x at least as strongly as T,. We shall find a continuation r such that
RCG(p, T,, r) is acyclic while CG(pr) contains a cycle.

The continuation r has the form r = st, where s is constructed so that it has the
effect of aborting all active transactions except Tj. Let y be any entity other than x.
The sequence s is as follows. First, all active transactions except Tj read y; then a
new transaction T,,, writes y, and finally all active transactions except T, try to write
y. Clearly, the last writes will fail and all active transactions except Tj will be
aborted, both by the reduced and by the conflict scheduler.

The last step t of r is as follows. If Ti reads but does not write x then Tj writes x;
if Ti writes x then T, reads x. Thus, the last step t tries to introduce an arc T, + Tj
in the conflict graph, which of course forms a cycle. Let us see, however, what
happens in the reduced graph. After s the only nodes are the transactions that

FIGURE 2

DELETING COMPLETED TRANSACTIONS 367

completed in p (except Ti), Tj and the new transaction T,,,. The reduced graph
RCG(p, Tj, s) has possibly some arcs directed into the new transaction T,; all of its
other arcs were present in the reduced graph RCG(p, TJ before r. Therefore, the
successors of Tj in RCG(p, Ti, s) are exactly the completed tight successors of Tj in
CG(p) and possibly T,. The last step t introduces arcs to Tj from all nodes Tk
which have performed a conflicting step on x. Any such node accessed x at least as
strongly as Ti, and therefore, is not a successor of Tj. It follows that no cycle is
created in the reduced graph. 1

Clearly, the condition of Theorem 1 can be tested in polynomial time. The
following corollary gives another, easy to check, sufficient condition. The condition
is incomparable to the one of Lemma 1. Say that a completed transaction is current
if it has read or written the current value of some entity (i.e., the entity has not been
subsequently overwritten). For example, transaction T, of Example 1 is current, but
T2 is not.

COROLLARY 1. A noncurrent transaction can be removed.

Proof: Let Ti be a noncurrent transaction and x an entity accessed by it. Let T,
be the last transaction to write x. Since Ti is not current, Tk wrote x after the access
of Ti, and therefore the conflict graph has an arc Ti + Tk. Also, since transactions
write atomically at the end, Tk has completed. Consequently, every active tight
predecessor of Ti has a completed tight successor, namely T,, which has accessed x
at least as strongly as Ti. 1

4. REPEATEDLY DELETING TRANSACTIONS

In the last section we proved a necessary and sufficient condition for removing a
transaction from the conflict graph. We would like conditions that allow us to do
this reduction repeatedly as the schedule progresses and more and more trans-
actions become irrelevant. Can we use the condition of Theorem 1 to repeatedly
remove transactions? This is not immediately clear. One reason is that after
removing a transaction, we do not deal any more with the conflict graph but with a
reduced graph. To illustrate this point, consider Corollary 1. According to the
corollary we can remove a noncurrent transaction from the conflict graph; in fact it
can be shown that we can remove all of them. This does not mean that we can
remove a noncurrent transaction from a reduced graph that has resulted after
deleting other transactions. For instance, in Example 1, both T2 and T, satisfy
condition Cl of Theorem 1, and therefore either of them can be safely removed;
however, after T3 is deleted, it is wrong to remove the noncurrent transaction T2.

Also, it is not immediately clear what “necessary and sufficient condition” means
in the dynamic environment. In its generic form, what we have here is an algorithm
which operates continuously, is fed (transaction) steps as input, and depending on
the past history makes a decision (to accept or reject them). The algorithm encodes

368 HADZILACOS AND YANNAKAKIS

incrementally the history in a data structure (a graph) on which it bases its
decisions. We want a policy which as information about the past becomes
redundant reduces the data structure, keeping only relevant information. What
information is relevant? First, it is information sufficient for the algorithm to keep
making the correct decision in the future. Second, we need information sufficient
to keep reducing the data structure. It turns out here that if the information is
sufficient for the algorithm to keep working correctly, then it is sufficient also for
deducing all possible subsequent reductions.

More concretely, Rules l-3 of Section 2 specify a function F.from conflict graphs
and transaction steps to conflict graphs: F(CG(p), t) = CG(pt). F is extended
naturally to sequences of steps:

F(CG(p), tr) = F(F~‘(CG(p), t), r) = FtWpf), r) = CGW),

where t is a step and r a sequence of steps. The conflict graph of p is
CG(p) = F(E, p), where E is the empty graph.

The graph obtained by removing one or more completed transactions (possibly
at different times) has the following properties: (1) it is acyclic, (2) its nodes are
transactions of the schedule p executed so far including all active transactions, and
(3) whenever two transactions present in the graph have executed two conflicting
steps, there is an arc indicating the order; the graph may have also arcs connecting
nonconflicting transactions (because of the previous removal of other transactions).
Call any graph satisfying these properties a reduced graph of p. A schedule has only
one conflict graph but may have many reduced graphs. The same rules (l-3) are
applied to reduced graphs: when a transaction step arrives, the graph is modified
according to the appropriate rule provided that the graph remains acyclic; as
before, if a cycle is created, then the step is rejected, the transaction aborts, and it is
deleted from the graph. Thus, F is well defined on the larger domain of reduced
graphs. As in the previous section, for ease of notation, we will say that F(G, r) is
cyclic to mean that if the last step of r is executed, then a cycle will be created; of
course, the last step will be rejected and its transaction will be aborted and deleted
from the graph.

Removal of a completed transaction defines a transformation on reduced graphs
G: D(G, ri) is G with node T, deleted and all arcs to and from Ti replaced by arcs
from the immediate predecessors of T, in G to all its immediate successors. D can be
naturally extended to sets of transaction N: D(G, N) = D(D(G, Ti), N- { Ti}). It is
obvious that the order of deletion of nodes in N is immmaterial.

A deletion poZicy P is an algorithm which given reduced graph G (the current
graph) outputs a set of (completed) nodes to be deleted. A deletion policy together
with F (Rules l-3) specify the behavior of the scheduling algorithm (thus also the
set of schedules accepted): when a new transaction step arrives, the function F is
applied to the current graph giving a new graph G; then the set of nodes P(G) is
removed. Call a deletion policy correct if the scheduling algorithm accepts only
CSR schedules.

If p is a schedule, we denote by R’,(p) the graph formed by the scheduling

DELETING COMPLETED TRANSACTIONS 369

algorithm after processing p before the removal of the (completed) transactions
dictated by the deletion policy P, and we will denote by R,(p) the graph formed
after the removal of these nodes. Formally, if 1 is the empty schedule, R,,(1) =
Rlp(lZ)= E, the empty graph. If p is a schedule and t a step, then R>(pt)=
F(R,(p), t), and R,(pt) = D(R>(pt), N), where N= P(R’,(pt)).

The dynamic problem of characterizing correct deletion policies will be reduced
to a static problem. If G is a reduced graph and N a set of (completed) transactions
of G, we say that the deletion of N from G is safe if for all continuations
r, F(D(G, N), r) acyclic * F(G, r) acyclic. We say that a deletion policy P performs
only safe deletions if for any schedule p, the deletion of P(R’,(p)) from R>(p) is safe.

LEMMA 3. Let G be a reduced graph and N a set of completed transactions of G.
The following are equivalent:

(1) For all continuations r, F(D(G, N), r) acyclic implies F(G, r) acyclic.

(2) For all continuations r, F(D(G, N), r) acyclic if and only if F(G, r) acyclic.

Proof: The proof is similar to that of Lemma 2. The implication (2) * (1) is
obvious. To prove (1) =z. (2) we take a shortest continuation r = st which
violates (2). Argue as in Lemma 2 that if there is a path between two transactions
in F(D(G, N), s), then there is such a path also in F(G, s). As a consequence, the
only way that (2) can be violated at step t, is if F(G, r) has a cycle, but
F(D(G, N), r) is acyclic; i.e., (1) is also violated. 1

The definition of safe deletions is justified by the following.

THEOREM 2. A deletion policy is correct zff it performs only safe deletions.

Proof: (if) Suppose that the deletion policy performs only safe deletions. We
show that the reduced scheduling algorithm using this policy behaves exactly the
same as the original conflict scheduler. The proof is by induction on the length of a
schedule p. The inductive hypothesis is as follows: Let G = R,(p) be the current
graph that has resulted after p, using the deletion policy P. For all continuations
r, F(G, r) acyclic o CG(pr) acyclic.

The basis (I pi = 0) is trivial: G is the empty graph E and F(E, r) = CG(pr). For
the induction step let p = st, where t is the last step. Let G, = Rp(S) be the current
graph after s. From the induction hypothesis for G, and continuation t, the step t is
rejected by the reduced scheduler (forms a cycle in G,) iff it is rejected by the
conflict scheduler. Let G, be the graph resulting after applying step t to G,:
G2 = F(G,, t) = R’,(p). Let G = D(Gz, P(G,)) = R,(p) be the graph resulting from
Gz after removing the transactions dictated by the deletion policy. Let r be any
continuation. From the induction hypothesis for G, and tr, F(G,, r) = F(G,, tr)
acyclicoCG(pr) acyclic. Since the deletion of P(G,) is safe, the resulting graph G
satisfies: F(G, r) acyclic c> F(G,, r) acyclic o CG(pr) acyclic.

(only if) Suppose that the deletion policy P performs in some cases nonsafe
deletions. Let p be a smallest schedule such that P performs a nonsafe deletion

370 HADZILACOS AND YANNAKAKIS

after p. Let r be a shortest continuation of p witnessing the nonsafety of the
deletion. That is, if G = R’,(p) is the graph that has resulted after p before the
deletion, N= P(G), and G, = D(G, N) = R,(p), then r is a shortest continuation
such that F(G1, r) is acyclic but F(G, r) has a cycle. From our choice of p, all
deletions performed during p were safe. We can argue as in the (if) part that during
p the reduced and the conflict scheduler have behaved the same way, and that
furthermore, for all continuations s of p, F(G, s) acyclic o CG(ps) acyclic.
Therefore, CG(pr) has a cycle.

Consider now how the reduced scheduler (with deletion policy P) operates on
input pr. During p it agrees with the conflict scheduler. We shall argue that there is
a step t of r (not necessarily the last step) in which the two schedulers disagree.
Furthermore, the earliest such step t is accepted by the reduced scheduler but
rejected by the conflict scheduler. From this it will follow then that, if all active
transactions completed at that point, the reduced scheduler would accept a
non-CSR schedule; that is, the deletion policy is not correct.

If the reduced algorithm did not make deletions during the continuation r, then
our claim about the existence of the step t as above would be true by Lemma 3: t is
just the last step of r. To show that further deletions after the unsafe one will not
help, we use repeatedly the argument of Lemma 3. Let n be the length of r, and ri its
ith step. Let Si be the scheduler which uses the deletion policy up to step ri of r,
and then stops making deletions any more. We use induction on i to show that the
claim is true of Si; that is, there is a step t of r on which Si and the conflict
scheduler disagree, and the earliest such step is accepted by Si.

The basis i = 1 is our previous observation. For the induction step, assume the
induction hypothesis for i. If Sj and the conflict scheduler disagree in one of the first
i steps of r, then the claim for Si+ i follows from the induction hypothesis. Thus,
assume that Si and the conflict scheduler agree on the first i steps, and let rj be the
earliest step on which they disagree; i > i. The schedulers Si and Si+ i are in the
same state right after processing of the step ri; the difference is that at this point
Si+ i performs a reduction whereas Si does not. If Si and Si+ i agree on the con-
tinuation ri+ , . . . rj, then the claim for Si+ i follows from the induction hypothesis.
On the other hand, if they do not agree and rk, k < j is the first disagreement, then
by Lemma 3, Sj+ i accepts rk whereas Si rejects it. Since Si accepts rj, we must have
k < j. Therefore, the first disagreement between Si+ i and the conflict scheduler is
at rk. 1

A careful reading of the proof of the theorem shows that it does not depend on
the particular rules (l-3) for adding edges. Also, no correct deletion policy can
perform nonsafe deletions even if it knows the complete past schedule (not only the
current graph). That is, all the information relevant to deciding whether some
transactions can be safely deleted is contained in the reduced graph.

THEOREM 3. Let G be a reduced graph. The deletion of a (completed) transaction
Ti from G is safe lff T, satisfies condition Cl of Theorem 1 with respect to G.

DELETING COMPLETED TRANSACTIONS 371

Proof: The reader can go through the proof of Theorem 1 and verify that it
works for any reduced graphs, not only conflict graphs. 1

Even though two transactions may satisfy Cl (with respect to the current graph),
it may not be safe to delete both of them. For instance, in Example 1, both T2 and
T3 satisfy Cl. However, only one of them (either one) can be safely deleted. We can
use condition Cl repeatedly to prove:

THEOREM 4. Let G be a reduced graph and N a subset of completed transactions.
The deletion of N from G is safe iff the following condition is satisfied:

(C2) For all Ti in N, for all tight active predecessors Tj of Ti and for all
entities x accessed by Ti, there is a completed tight successor of Tj not in N which
accesses x at least as strongly as Ti.

Proof Let N= {T,, T,,}, and let G, be the graph obtained by deleting
T ,, Ti from G. It is not hard to see that the deletion of N from G is safe if and
only if the deletion of Ti from Gi- , is safe for all i (where we let GO be G); the proof
is essentially contained in Theorem 2. Also, from the definition of deletion it is
obvious that the predecessor and tight predecessor relations in Gi are just the
restrictions of these relations in G to the nodes of Gi. From these facts and
Theorem 3 it is straightforward to show that (C2) implies the safety of the deletion.

For the converse, suppose that (C2) does not hold, and let Ti be a transaction in
N with maximum index i for which (C2) is violated. Thus, there is an active tight
predecessor Tj of Ti and an entity x assessed by Ti such that there is no completed
tight successor of Tj outside N, which accesses x at least as strongly as Ti. We claim
that T, violates condition (Cl) in Gi- 1. For, suppose that Tj has a completed tight
successor Tk in Gi- I which accesses x at least as strongly as Ti. Then T, must
be in N and k > i. By our choice of i, Tk does not violate (C2). Thus, there is a
completed tight successor T, of Tj not in N which accesses x at least as strongly
as Tk, and therefore, at least as strongly as Ti. Thus, Ti does not violate (C2), a
contradiction. 1

Let M be the set of transactions which satisfy Cl. Clearly, every set N which can
be safely deleted is a subset of M. There may be many such safe subsets; in fact a
single step may make many transactions candidates for deletion. Choosing the best
safe subset is a difficult problem.

THEOREM 5. Let G be a reduced graph. Finding the maximum subset of trans-
actions which can be safely deleted is NP-complete.

Proof: From Theorem 4, we can determine in polynomial time if a given subset
can be safely removed. This implies membership in NP. The NP-hardness part uses
a reduction from the set cover problem.

The set cover problem is the following problem. We are given a family F of sub-
sets S,, S, of a set X= {xi, x,}, and a number k. A cover of X is a collection

372 HADZILACOS AND YANNAKAKIS

of sets whose union is X. The set cover problem is to determine if F contains a
cover of size at most k. This is a well-known NP-complete problem [GJ]. Given an
instance of the set cover problem we will construct a schedule p and a number I
such that

(1) no transaction can be removed safely from the conflict graph before the
last step of p, and

(2) after the last step of p, we can remove safely at least 1 transactions from
the graph iff there is a cover of size at most k.

We have transactions T,, T,,,, one for every set in the family F, and two more
transactions, To and T, + 1. The structure of the schedule p is as follows. First, To
reads. Then, T,, T2, T,,,, T,,,, , execute to completion serially in this order. All
these transactions become successors of the active transaction T,,; furthermore,
none of them satisfies condition (Cl) until the last step (when T,,, + r writes), at
which point T,, T,,, satisfy (Cl). We shall construct the transactions in such a
way that there is a l-l correspondence between a cover and the transactions that
remain after a safe deletion.

In more detail we have one entity xi for every element of X. In addition there are
entities y, and z,, z,. Transaction T,, reads y and all elements of X. Transaction
Ti with 1 < i<m reads zi and writes the elements of Si. Finally, T,+ I reads
zr, z, and writes y. Because of Si there is an arc from T,, to Ti for all 1 < i < m.
At the last step, an arc is added from To to T,,, + , because of entity y. Up to that
step, each Ti, 1 < i< m has accessed an entity, namely zi, which has not been
accessed by any successor of To. Therefore, no transaction can be safely removed.
After the last step, transactions T,, T,,, satisfy Cl. It follows easily from condition
C2, that a subset N of these transactions ca be safely removed iff the remaining ones
correspond to a cover. Therefore, we can remove at least 1= m -k transactions iff
there is a cover of size at most k. 1

To summarize, condition Cl (or C2 for sets of transactions) gives a necessary
and sufficient condition for the removal of transactions. At any given point we may
have several choices which may lead to reduced graphs of different sizes. Determin-
ing the best choice is an intractable problem. We note however, that if the number
of active transactions and the size of the database are bounded, then any irreducible
graph (graph from which no transaction can be removed) has also bounded size.
To see this, associate with every completed transaction T, in the graph the set of
pairs (Tj, x) that witness the fact that Ti does not satisfy condition Cl; i.e., Tj is an
active tight predecessor of Ti, x is an entity accessed by Ti, and T, does not have a
completed tight successor that accesses x at least as strongly as Ti. Suppose that
two completed transactions Ti and T, had a common witness (Tj, x), and assume
without loss of generality that Tk accesses x at least as strongly as Ti. It would
follow then that (T,, x) is not a witness for Ti because Tj has a completed tight suc-
cessor (namely, Tk) that accesses x at least as strongly as T,. We conclude that no
two completed transactions in the graph have a common witness. Therefore, if the

DELETING COMPLETED TRANSACTIONS 373

number of active transactions is a and the number of entities is e, an irreducible
graph can have no more than a . e completed transactions (and, of course, a active
transactions).

5. VARIANTS OF THE MODEL

We axamine now how the criterion is affected if we relax the assumptions of
Section 2. In each case, by Theorem 2, it s&ices to find a necessary and sullicient
condition for a single safe deletion.

Multiple Write Steps

In this model a transaction is an arbitrary sequence of read and write steps. At a
consequence, a transaction A may read an entity written by an actiue transaction B.
In this case we say that A depends directly on B. If for some reason transaction B
aborts in the future, then transaction A must also abort. The abortion of A may in
turn cause another transaction to abort (if it has read an entity from A), and so on.
That is, if we let depends be the transitive closure of the “depends directly” relation,
the abort of a transaction B causes the abortion of all transactions that depend on
it. Therefore, a transaction cannot commit upon completion; it has to wait until it
does not depend any more on any active transactions. Thus, at any point during a
schedule we have now three types of transactions:

(A) Active.
(F) Finished but not committed yet: depend on some active transactions, and

therefore may abort in the future.
(C) Committed: do not depend on active transactions, only on committed

ones.

How does this new situation affect the necessary and sufficient condition Cl for
closing transactions? First we need a clarification of the concept of tight
predecessor. We shall use the letters A, F, and C to restrict the types of transactions
that are allowed as intermediate nodes of a path; for example, an FC-path is a path
all of whose intermediate nodes have completed (are of type F or C). Condition Cl
of the atomic write model has the word “tight” in two places. In the first place it
makes the condition more liberal: it says that we have to worry only for paths from
an active transaction Tj to Ti that use completed transactions as intermediate
nodes. In the second place it makes the condition more restrictive: we must find a
second path from Tj to another node Tk whose nodes are completed. In the mul-
tiple writes model, in the first place the word “tight” must be replaced by FC; i.e.,
we have to worry about paths from to Tj to Ti that use both type F and C nodes.
However, there is no right replacement for the second occurrence of “tight”: what
nodes should be allowed to appear on the second path, from Tj to T,, depends on
the nodes of the first path, from Tj to Ti. This fact introduces complications which
make the problem NP-complete.

374 HADZILACOSAND YANNAKAKIS

We shall introduce some notation and then state the necessary and sufficient con-
dition for this model. If M is a set of active transactions, we let M + be the set of all
transactions that depend on (transactions in) M. If G is the current graph and N a
set of type A and F transactions, we let G - N be the graph obtained by aborting
the transactions of N (i.e., deleting the nodes in N and their incident edges from G).
The necessary and sufficient condition for the removal of a committed transaction
T, from the graph G is as follows:

(C3) For each set M of active transactions, for each entity x accessed by T,, if
G - M+ has a FC-path from an active transaction Tj to Ti, then it has also a path
from T, to some other transaction T, that accesses x at least as strongly as T,.

The nodes of the second path from T, to Tk (including T,) may be of any type,
even active. The condition remains the same whether we require the first path to be
arbitrary or contain only completed nodes.

LEMMA 4. Condition C3 is necessary and sufficient for the deletion of a
committed transaction Ti to be safe.

Proof. Similar to the proof of Theorem 1. 1

THEOREM 6. Let G be a conflict graph. It is NP-complete to decide (i) whether G
cannot be reduced and (ii) whether a particular transaction T, cannot be safely
deleted from G.

ProoJ We can test in NP if a particular transaction Ti violates C3: we just have
to guess the “right” set M of active transactions. Once M is fixed, we can construct
M+ and check the rest of the condition in polynomial time. The graph G cannot be
reduced if no transaction can be safely removed.

For the NP-hardness part we use a reduction from 3-SAT [GJ]. Let f be a for-
mula in conjunctive normal form with n variables xi, x, and m clauses ci, c,
with 3 literals each. We construct a conflict graph G as follows (see Fig. 3). For
each variable xi, we include two type F transactions xi, Xi, and two type A trans-
actions Ai, Ai. For each clause cj we have three type F transactions cji , clz, cj3, one
for each literal. In addition we have an active transaction A and three committed
transactions B, C, D.

Our graph G has two kinds of arcs: arcs caused by write-write conflicts, and arcs
caused by write-read conflicts. Each arcs is labeled by a distinct entity which is not
accessed by any other transaction besides the two endpoints of the arc. Thus, the
write-read arcs show actually the direct dependencies among transactions; the
transaction at the head of such an arc reads an entity from the transaction at the
tail. These arcs are drawn as dashed arrows in Fig. 3. The graph has the following
write-write arcs. For each i = 1, n - 1, arcs from xi and Zi to xi+ i and Xi+ i ; from
A to xi and 2,; from x, and X, to B; from B to C; from Ai and Ai (for all i) to D;
for each clause cj, arcs forming a path A + cil + ciz + cjJ + D from A to D. The

DELETING COMPLETED TRANSACTIONS 375

(a)
FIGURE 3

00

write-read arcs are Ai+ xi, Ai+ Xi for i= 1, n; Ai + cjk if the kth literal of
clause cj is xi, and Ai -+ cjk if it is xi.

Each transaction accesses the entities which label its incident arcs. In addition, all
transactions except C have written an entity which is not accessed by any other
transaction. Transaction C has read an entity y which has been read only by D.

Note that the graph G is acyclic. A schedule p, whose conflict graph is G, can be
obtained by executing the steps of the transactions serially in a topological order of
G. We shall argue that the only (committed) transaction whose deletion may be
safe is transaction C, and that the deletion of C is safe if and only if the formulafis
not satisfiable.

The fact that every transaction except C writes a private entity implies
immediately that it violates condition C3. Transaction C accesses two entities: y,
and the entity, call it z, labeling the arc B + C. Note that any path in G from an
active transaction to C must pass through B. Therefore, for any set M of active
transactions, if G - M+ has a path from an active transaction Tj to C then it has
also a path from Tj to another transaction (namely, B) which accesses z at least as
strongly as C. Therefore, in order to check if condition C3 holds for transaction C,
we only have to worry about entity y. Thus, the role of T, in C3 will be played by
transaction D. Another observation is that C3 holds if the role of the active trans-
action Tj is played by Ai or Ai, regardless of the choice for A4. This is because of the
arcs Ai + D and Ai + D. To summarize, in checking C3 for transaction C we may
substitute y for x, D for Tk and A for Tj.

376 HADZILACOS AND YANNAKAKIS

Suppose now that f is satisfiable and pick a satisfying truth assignment. Let A4
consist of those transactions Aj whose corresponding variable xi is true, and 6, for
which xi is false. The set M+ includes all true literals cjk from the clauses. Since the
truth assignment satisfies f, no path is left in G - A4 + from A to D. However, there
is clearly a path from A to C, and therefore C3 does not hold.

Conversely, assume that C3 does not hold and pick a set M that violates it. Since
G - M + contains a path from A to C, for each i, either xi or Xi is not in M+. That
is, either Ai or Ai is not in M. Consider the assignment which sets a variable xi to
true if Aig M and to false otherwise. If Ai is in M, then Ai is not, and therefore xi is
false. Since G - M + has no path from A to D, for each clause at least one of the
literals depends on a member of M, that is, at least one of the literals is true, and
the formula is satisfied. 1

Predeclared Transactions

If transactions predeclare the entities they are going to read and write, then
aborts can be avoided. The conflict scheduler can use the extra information to
predict future cycles in the conflict graph and prevent them from happening by
delaying steps. It does so by adding an arc to the graph as soon as the first of the
two conflicting steps takes place. In more detail, the rules are as follows.

RULE 1. When a new transaction T, starts, a node Ti is added to the graph. For
every other transaction Tj which has executed a step conflicting with a (future) step
of Ti add an arc Tj + T,.

RULE 2 AND 3. Suppose Ti wants to read or write x. For every other transaction
Tk which will perform in the future a conflicting step on x, add an arc T,+ Tk,
provided that no directed cycle is formed; tf the arc would create a cycle, then Ti has
to wait for T, to execute its conflicting step.

Note that there is no danger of deadlock (cyclic wait among transactions). To see
this, observe that if Ti waits for Tk then the graph has a path from Tk to Ti. Since
the graph is acyclic at all times, the same is true of the “waits-for” graph.

The necessary and sufficient condition for the safe deletion of a transaction Ti is
somewhat more complicated than Cl, although it can still be tested in polynomial
time. The condition holds even in the multiple write model, and is as follows:

(C4) For all active predecessors Tj of Ti and for all entities x accessed by Ti,
either

1. Tj has another successor Tk (# Ti, Tj) which has accessed x at least as
strongly as Ti, or

2. every entity y that Tj will access in the future has already been accessed at
least as strongly by some successor T, (# Ti) of Tj.

The second clause was omitted from a preliminary version of this paper that
appeared in the PODS 86 conference. As we shall see, active transactions which

DELETING COMPLETED TRANSACTIONS 377

B c

V
A

FIGURE 4

satisfy this clause behave essentially as completed, in the sense that they will not
acquire any more immediate predecessors in the future. The following example
illustrates this.

EXAMPLE 2. Consider the following schedule p of three transactions A, B, C.
First A reads entities U, z; then B reads y, writes u and completes; then C writes x
and z and completes. Transaction A is still active with one remaining step which
reads y. The graph at this point is shown in Fig. 4.

Transactions B and C have both an active predecessor, A. Transaction B does
not satisfy C4, but C does and can be safely removed. The reason is that the only
way A can acquire a new immediate predecessor D, is if this new transaction D
writes y before the read step of A. But as soon as D starts and declares its steps, an
arc B + D will be added to the graph. As a consequence, D will be prevented from
writing y before A reads it.

THEOREM 7. Condition C4 is necessary and sufficient for the safe deletion of a
(completed) transaction Ti in the case of predeclared transactions

Proof Let p be a schedule, G(p) the current graph after p, Ti a completed trans-
action, and R(p, Ti) the reduced graph with T, removed. For a continuation r, we
will denote by G(pr) the graph that results after pr from the original scheduler
(without the deletion of T;), and by R(p, Ti, r) the reduced graph.

(Sufficiency) Assume C4 and consider a shortest continuation r for which the
original and the reduced scheduler disagree. As before, G(pr) has a cycle but
R(p, Ti, r) is acyclic. First we argue that any active transaction Tj satisfying clause
(2) of C4 has not acquired any new immediate predecessors. For suppose that
D + Tj is a new arc. This arc must have been caused by a step t of D in r which
conflicts with a later step t’ of Tj. By (2), some successor Tk of Tj has executed in p
a step which conflicts with the step t of D. Therefore, right before t, there is an arc
Tk + D in both the unreduced and the reduced graph. Thus, Tj is a predecessor of
D before the step t, and t will not be accepted (it will be delayed).

Consider now the cycle that is formed in G(pr). As in Theorem 1, it must contain
Ti. Also, the arc from Ti to its immediate successor T, on the cycle must be new
(i.e., not present in G(p)), because otherwise the reduced graph would contain an

378 HADZILACOS AND YANNAKAKIS

arc from the immediate predecessor of T, to T,. Starting at T, walk backwards on
the cycle until a new arc (not in G(p)) is first encountered, and let T, be the head of
this arc. Transaction T, must have been active at the end of p, and from the
previous observation, it does not satisfy clause (2). The argument from here on is
identical to Theorem 1.

(Necessity) Suppose that C4 does not hold. That is, there is an active
predecessor T, of T, and an entity x accessed by Tj such that neither clause (1) nor
(2) is satisfied. We shall construct a continuation r such that G(p) contains a cycle
but RG(p, T;, r) is acyclic.

Let M be the set of all transactions which are not successors of Tj. Clearly, a
predecessor of a node in M is itself in M. The continuation r at first completes all
active transactions in M serially in a topological order. These steps will be accepted
without delay both by the original and the reduced scheduler. The reason is that
when a member of M executes its remaining steps it has no active predecessors, and
therefore by the rules no cycle will be formed. All arcs that are added to the
(original or reduced) graph during these steps have nodes of M as their tails.
Therefore, the succesors of Tj do not change.

Let y be an entity which witnesses the fact that Tj does not satisfy clause (2). The
final two steps of r belong to a new transaction T,, and access x and y in the
weakest mode that conflicts with Ti and the future step of Tj respectively. That is, if
Ti has written x then T, reads x, otherwise T,, writes x. Similarly with y; if Tj will
write y then T,, reads y, otherwise it writes y. These two steps will add edges
Ti --t T,,, T,, + Tj which together with the path from T, to Ti create a cycle in the
original graph.

We claim that no cycle will be created in the reduced graph. Such a cycle must
necessarily involve T,,. When T,, starts and declares its steps, we will add arcs in the
reduced graph from all nodes which have already performed conflicting steps on x
and y. By (1) of C4, no successor of T, in the reduced graph has performed a con-
flicting step on x. By (2) the same is true of y. Therefore, all arcs into T, come from
nonsuccessors of Tj. On the other hand, the last two steps of T,, cause arcs from T,
only to active transactions; these are all successors of T,. For a cycle to form there
must be an arc from a successor of T, to a nonsuccessor, which is impossible. If the
remaining active transactions complete their steps now serially in a topological
order of the graph R(p, Ti, r), the reduced scheduler has accepted a non-CSR
schedule. 1

6. CONCLUSIONS

We have studied the problem of when it is safe to remove a transaction that has
completed without jeopardizing correctness. We proved necessary and sufficient
conditions in several versions of conflict-graph-based schedulers and analyzed their
complexity.

We also formulated the corresponding dynamic problem of repeatedly deleting

DELETING COMPLETED TRANSACTIONS 379

transactions as they become irrelevant and solved it by reducing it to the static
problem of a single deletion. We believe the same techniques may be applicable in
other similar situations, where we have an algorithm which operates continuously
taking decisions depending on the past history, and we want to remove information
as it becomes redundant.

REFERENCES

[BHR] R. BAYER, H. HELLER, AND A. REISER, Parallelism and recovery in database systems, ACM
Trans. Darubuse Systems 5 (1980), 139-156.

[BEG] P. A. BERNSTEIN AND N. GOODMAN, A sophisticate’s introduction to Distributed database
concurrency control, in “Proceedings, 8th Internat. Conf. on VLDB, 1982,” pp. 62-76.

[BOG] H. BORAL AND I. GOLD, Towards a self-adapting centralized concurrency control algorithm, in
“Proceedings, ACM-SIGMOD ‘84,” pp. 18-32.

CGJI M. R. GAREY AND D. S. JOHNSON, “Computers and Intractability: A Guide to the Theory of
NP-Completeness,” Freeman, San Francisco, 1978.

[EGLT] K. P. ESWARAN, J. N. GRAY, R. A. LORIE, AND I. L. TRAIGER, The notions of consistency and
predicate locks in a database system, Comm. ACM 19 (1976), 624633.

[Hal V. HADZILACOS, A theory of reliability for database systems, to appear.

CHPI T. HADZILAC~X AND C. H. PAPADIMITRIOU, Some algorithmic aspects of multiversion
concurrency control, in “Proceedings, 4th ACM Symp. on PODS, 1985,” pp. 96104.

PaI C. H. PAPALXMITRIOU, “The Theory of Database Concurrency Control,” Computer SC.,
Rockville, MD, 1986.

CSI G. SCHLAGETER, Process synchronization in database systems, ACM Trans. Database Systems
3 (1978), 248-271.

[SKI A. SILBEIWHATZ AND Z. KEDEM, Consistency in hierarchical database systems, J. Assoc.
Compur. Much. 27 (1980), 72-80.

[SRI R. E. STEARNS AND D. J. ROSENKRANTZ, Distributed database concurrency controls using
before-values, in “Proceedings, ACM-SIGMOD ‘81,” pp. 74-83.

CYI M. YANNAKAKIS, A theory of safe locking policies in database systems, J. Assoc. Compur.
Mach. 29 (1982) 718-740.

