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1. INTRODUCTION 

The Laplacian of a real-valued function u whose domain is an open 
subset of a real Hilbert space H is defined as the trace of the second 
Frechet derivative of u when the latter exists and is a trace class 
operator. This definition coincides with the usual one when H is 
finite-dimensional. We shall consider the Dirichlet problem for the 
equation Au = f when His separable and infinite-dimensional and Au 
denotes the Laplacian of U. When the Dirichlet problem is suitably 
formulated the existence and uniqueness of generalized solutions is an 
immediate consequence of the theory of Markov processes. It is our 
object to investigate regularity properties of the solutions. 

The dissimilarities with the finite-dimensional case originate in 
two ways. First of all the open set in which it is appropriate to seek a 
solution to the equation Au = f is not actually a subset of H but rather 
a subset of a topological space which contains H as a dense subset. 
The reason for this is discussed in the following paragraphs. The 
second dissimilarity lies in the fact that even if the second Frechet 
derivative of the generalized solution u at the point X, D%(x), exists as a 
bounded operator on H it may not be of trace class and one may ask 
whether or not it is in fact of trace class, or of Hilbert-Schmidt type, 
or compact, etc. This type of question does not arise when H is 
finite-dimensional and represents, therefore, a new kind of regularity 
problem, We shall show that even if a potential u is harmonic in a 
region in a generalized sense then D2u(x) need not be of trace class 
but will in general be of Hilbert-Schmidt type. Thus it appears that 
the generalized Laplacian of a function u involves some summability 
method applied to the series of eigenvalues of the Hilbert-Schmidt 
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operators D2u(x). In this article we shall give sufficient conditions on a 
function f which ensure that the second Frechet derivative of the 
potential off is, respectively, Hilbert-Schmidt, or trace class. Regular- 
ity properties of harmonic functions will be studied in another paper. 

In order to motivate our formulation of the Dirichlet problem let us 
consider for each real number t > 0 Gauss measure p I on H. p, is a 
cylinder set measure on H corresponding to the normal distribution 
with variance parameter t. (See [7], [IO], [II], or [20] for expositions 
of these concepts.) If H is finite-dimensional then the measures p, 
determine the transition probabilities for Brownian motion in H in a 
well-known manner. In case H is infinite-dimensional, a Brownian 
motion with values in H (in so far as this concept is meaningful) 
might similarly be defined with pt(A - x) as transition probability 
from the point x to the tame set A. But for all t > 0 the outer p, 
measure of the ball of radius Y is zero so that a Brownian motion with 
values in H would have the property that a particle starting at the 
origin instantly leaves the ball of radius Y with probability one. In 
particular the sample paths are not continuous, nor right-continuous, 
when the norm topology is taken on H. In view of the intimate and 
well-known connection between Brownian motion in En and potential 
theory on E, the preceding heuristic considerations indicate that the 
Dirichlet problem for Laplace’s equation in a region Sz C H is not 
likely to be reasonable when Sz is chosen to be such a simple set as the 
unit ball or for that matter any other bounded set if one wishes to 
use arbitrary bounded strongly continuous boundary data. 

On the other hand these same considerations point the way to a 
reasonable formulation of the Dirichlet problem. As is known there 
are various topological linear spaces [II] which contain H as a dense 
subset and on which the set functions p, can be realized as countably 
additive measures. Such a space B is the completion of H in a suitable 
topology Y weaker than the norm topology of H. The measures p I on 
B may now be used to construct a Brownian motion with values in B 
and having continuous sample paths. The characteristic operator of 
the resulting Markov process is an extension of the previously defined 
Laplacian to less smooth functions. By utilizing this Markov process 
in a standard way generalized solutions of the Dirichlet problem for 
Laplace’s equation may be obtained for reasonable Y-open subsets of 
B and Y-continuous boundary data. In this connection we mention 
that a further dissimilarity from the finite dimensional case arises in 
that the transition probabilities pr(A - x) are continuous neither in t 

nor in x (Y topology) for some Bore1 sets A in B. 
Perhaps the best known example of such a triple (H, B, pt) is 
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that in which B is Wiener space and H is the subset of Wiener space 
consisting of the absolutely continuous functions on [0, l] vanishing 
at zero and having square-integrable first derivative. In this case p, is 
simply Wiener measure on B with variance parameter t. We shall 
use in this article a simple abstraction of this example. I-r may be any 
real separable Hilbert space and B will be the completion of H with 
respect to a measurable norm on H. Although greater generality in 
the choice of B is possible it does not seem worthwhile pursuing it at 
this early stage of development of the subject. Thus B will be a Banach 
space and in fact any real separable Banach space can arise in this 
fashion. 

Although neither the fundamental solution c&7’ in En nor 
Lebesgue measure dx makes sense when n = cc their product makes 
sense and may simply be defined as the Green’s measure 
G(A) == JI p,(A) dt. The potential of a real-valued function f on B 
is the convolution of G with f. We elaborate here on a feature that 
distinguishes sharply between finite and infinite-dimensional potential 
theory. As is known, the potential u of a bounded function f (with 
bounded support say) on E, is analytic in a neighborhood of a point 
if f is zero in a neighborhood of the point. Consequently local smooth- 
ness behavior of u in a neighborhood of a point depends only on the 
local behavior off near the point. In infinite dimensions u is again 
analytic near a point x if f is zero in a neighborhood of x (and is 
bounded and has bounded support). However the rate of decay of 
the eigenvalues of D2u(x) is a new and meaningful local property of u 
in infinite dimensions and it develops that it does not depend only 
on the local behavior off at x. Thus if f is Lip 1 on B then D2u(x) 
is a trace class operator (Theorem 3). But if f is merely bounded and 
continuous with bounded support then D%(x) need not be of trace 
class even if f is zero in a neighborhood of x (Theorem 2). However it 
is of Hilbert-Schmidt type in this case. 

An infinite-dimensional analog of Poisson’s equation has also 
been studied over a period of many years by Levy [14]-[17]. His 
Laplacian is defined by d’u = limlz+ac n-l Cj”=, ?u;8xj2 where the 
differentiations refer to an orthonormal coordinate system. In partic- 
ular if u is a twice-differentiable function that depends on only 
finitely many coordinates then d’u = 0. There appears to be no 
relation between Levy’s investigations and the work in the present 
paper. 

When the manuscript for this paper was nearly complete we 
learned of the recent work of Daletzki [2] on the existence and uni- 
queness of solutions of parabolic equations with variable coeficients 
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in infinitely many variables. Although technically disjoint from the 
main results of the present paper it is closely related in point of view. 

There are several motives behind the present work. Firstly, 
classical potential theory has deserved and received extension to a 
wide variety of different contexts and abstraction in many directions. 
Secondly, recent progress has shown analysis over infinite-dimensional 
(nonlinear) manifolds to be a potentially rich field for investigation. 
We regard the present work as a step toward the study of elliptic 
and parabolic partial differential equations over such manifolds. In 
particular, an extension of Hodge’s theorem to suitable infinite- 
dimensional manifolds seems at the present time to be a reasonable 
goal. 

In order to make this work more accessible to those with a back- 
ground primarily in functional analysis we have included several 
remarks containing proofs of facts which are well known in the 
theory of Markov processes but which are particularly simple to 
prove in the present case. The results of Sections 2 and 3 are largely 
probabilistic in nature while Section 4 which contains the main 
results is entirely functional-analytic. 

2. CONTINUITY PROPERTIES OF THE TRANSITION FUNCTIONS 

We begin this section with a brief review of some background 
material and, at the same time, establish notation. Let B be a real 
Banach space and B* its topological dual space. A tame set in B 
(also known as a measurable cylinder set) is a set of the form 
C = {x E B : ( (yI , x} ,..., (yn , x)) E D> where y1 ,..., yn are in B* 
and D is a Bore1 set in R, . If K is a finite-dimensional subspace of B* 

. . 
contammg yr ,..., yn then C is said to be based on K. The collection 
of tame sets in B is a ring 9 and the collection of tame sets based on a 
fixed finite-dimensional subspace K of B* is a u-ring YK. A non- 
negative set function p on 98 is called a cylinder set measure on B if 
p(B) = 1 and p is countably additive on 9&for each finite-dimensional 
subspace K C B *. If H is a real Hilbert space then every tame set is 
of the form C = {x E H : Px E D} where P is a finite-dimensional 
projection in H and D is a Bore1 set in PH. For t > 0 Gauss measure 
on H with variance parameter t is the cylinder set measure pf defined 
bY 

/Q(C) = (2Trt)+ SDexp [- $$f] dx, (1) 

where C = {x E H : Px E D>, k is the dimension of PH and dx is 
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Lebesque measure in PH. Henceforth H will denote a real separable 
Hilbert space and I * j its norm. A measurable norm on H is a norm 
I/ x // on H with the property that for every strictly positive number e 
there is a finite-dimensional projection P, such that, for every finite- 
dimensional projection P orthogonal to P,, , pl({x E H : j! Px 1: 1.1 E>) -‘: E. 
It is a consequence of the definition of measurable norm that there 
exists a constant a such that /I x /I < a ~ x 1 for all x in H. Denote by B 
the completion of H with respect to the measurable norm /; * /j . 
Then B is a separable Banach space and, as has been pointed out in 
[II], any real separable Banach space can arise (up to a linear isometry) 
as the completion of H with respect to a suitable measurable norm. 
If y is a non zero element of B* then the restriction of y to H is a 
nonzero element of H*. Thus restriction is a (continuous) embedding 
of B* into PI” and we shall identify B* with its image in ILi*. Since 
B* separates points of H, B* is dense in H*. Now p f induces a cylinder 
set measure m t in B as follows. If yi ,..., yn are in B* and n is a Bore1 
set in R, define 

nlt({x E B : ((~1 , x),..., (yn , x?) f: 0) 

= Pt({X E H : ((y1, x),-v (Yn., x>) E q,. (2) 

m 1 is well-defined. It is established in [ll] that m t is countably additive 
on the ring of tame sets of B. Hence it has a unique countably additive 
extension p, to the a-ring 9’ generated by all tame sets in B. .9 is 
exactly the Bore1 field of B. 

The triple (H, B, i) where i : H + B is the natural injection is called 
an abstract Wiener space. The measure p, is Wiener measure on B 
with variance parameter t. 

In concluding this review of background material we define for x 
in B and for a Bore1 subset A of B 

when t > 0. 

PROPOSITION 1. For positive s and t and for x and y in B p,(x, *) 
and pt(y, *) are equivalent measures if and only if s = t and x - y is 
in H. Otherwise they are mutually singular. 

Proof. By translating by y we may assumey = 0. The functionals 
in B* are Gaussianly distributed with respect to the measures 
P~(x, 3 and ~0, 9 and determine the u-ring 9. According to a 
theorem of Feldman [6], these measures are either equivalent or 
singular and a necessary condition for equivalence is that the L2 
norms defined by these measures on the space of functions spanned 
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by B* and the constant functions be equivalent. If z is in B* and a 
is a constant then 

and 

s Mu> + Q)2Pt(dU) = t I x I2 + a21 
where 1 z 1 denotes the H* norm of z. The first L2 norm is dominated 
by a multiple of the second L2 norm if and only if x is in H. Thus if 
P&, d4 and p t(d 1 u are equivalent then x is in H. But for x in H,p,(x, du) 
and p8(du) are equivalent by [22, Theorem 31. Hence the equivalence of 

PS(X? 9 and P 1(-) im Pl ies the equivalence of p,(a) and p t(.) which, by 
[22, Theorem 31, implies s = t. The converse is also implied by 
[22, Theorem 31. 

PROPOSITION 2. If x0 in in B and t > 0 then there exists a closed 
set A such that p,(x, A) is d iscontinuous in the B topology as a function 
of x at x = x0 . 

Proof. Choose y in B such that x,, - y is not in H. Then there 
exists a Bore1 set A, such that p,(x, , A,) # 0 and p,(y, A,) = 0 by 
Proposition 1. Since p t(~O , *) is regular there exists a closed set 
A C A, such that pt(x,, , A) # 0. Of course pl(y, A) = 0. Moreover, 
pt(y + h, A) = 0 f or all h in H. Since y + H is dense in B there 
exists a sequence x, in B such that x,--t x,, in B norm and 
Pr(% Y A) = 0. Thus lim,,, p &, , A) # p &,, , A). 

We note here the equation 

pm = Pt(s-1’2q (3) 

valid for any Bore1 set E and strictly positive real numbers t and s. 
Such an equation is valid for the Gauss measure pr and tame sets 
in H by (1) and therefore also for the measures m I and tame sets in B 
by (2). Thus (3) holds for tame sets E and therefore for all sets in the 
monotone class generated by the tame sets, i.e., for all Bore1 sets. 

PROPOSITION 3. For any x,, in B and t,, > 0 there is a closed set A 
such that pl(xO , A) is a discontinuous function of t at t = t, . 

Proof. We construct an example of A. We may clearly take 
x0 = 0. Lety, ,y4, y; ,... be an orthonormal basis of H* with yj E B*, 
j = 3, 4, 5 ,... . Let bi be an increasing sequence of positive numbers. 
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We shall later choose them to go to infinity in a suitable way. Let 
A, = (X E B : / yj(x) j < bi j = 3, 4 ,..., n} for n = 3, 4 ,... . Then the 
sets A, decrease and if A = nz’a A, we shall show that p,(A) is 
discontinuous at t = t, for a suitable sequence b, . The functions yj 
are independent with respect to p, and normally distributed with 
mean zero and variance t. Hence 

= fi fi (27d)-112 
3=3 

,Tb, ~XP [- &] h 
J 

= exp [ $ log /2(27rt)-‘:z 11’ exp [ - &] dsi] . 
j=3 

(4) 

Thus p,(A) > 0 if and only if the infinite sum in the last line converges. 
Using the inequalities 

2((9 + 4)w + x)-v2 < p2/2 
s 

m e-ta/2 dt < x-1 
x 

and estimating log (1 - a) by - a for small a it follows that p ,(A) > 0 
if and only if the sum 

f bT1 exp [ - $$] 
j=3 

converges. Now take bj 2 = 2t, log [ j(log j)3/4]. Then the sum con- 
verges if and only if 

f (2to log { j (logj)3/4})-112 [ j (logj)a/4]-toP 
j=3 

converges. This is easily seen to converge if and only if t < t, by 
using the inequality xi j-l(log j)+ < co when P > 1. Thusp,(A) > 0 
when t < t, and p,(A) = 0 when t > t, . Hence p,(A) is discontinu- 
ous at t = t, . 

Remark 2.1. The example used in the preceding proposition may 
also be used to settle a point left open in [9]. If 11 * IIn is an increasing 
sequence of measurable seminorms on H such that the corresponding 
sequence of measurable functions 11 * 11,” converges in probability 
with respect to the normal distribution to a function h with essential 
lower bound zero then 11 . IIR converges on H to a measurable semi- 
norm by Theorem 4 of [9]. We shall show the indispensability of the 
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assumption that the essential lower bound of h is zero. Indeed, 
resuming the notation of Proposition 3, and choosing t, = 1, we let 
11 x 1ln = sup {I yi(x) 1 b;’ :i = 3, 4,..., n} for x in H. Then (1 x Iln 
is an increasing sequence of measurable (in fact tame) semi-norms on 
H. In view of the choice of the numbers 6, the limit 11 xl/ ,, = limn+co I/ x lllz 
exists for each x in H. If 11 x [I; d enotes the corresponding random 
variable defined with respect to the normal distribution with variance 
parameter one [e.g., we may and shall take 

11 x 11,” = sup {I yj(x) 1 bil : j = 3,..., n) 

defined for x in B], then the II l 11,” form an increasing sequence. It 
is easily seen that the sequence converges almost everywhere (a.e.) 
Cpl] if and only if for every strictly positive number E there is a number 
N such that pl({x : I] x 11,” < N}) > 1 - E uniformly in n. Putting 
N = t-1/2, this condition may be written inf,pl({x : II x 11; < 1)) + 1 
as t -+ 0 by (3). However, since {x : 11 x 11,” < l} = A, and A, 1 A, 
this condition may be rewritten p,(A) -+ 1 as t --+ 0. That p,(A) does 
indeed approach one as t -+ 0 follows from the last expression for 
p,(A) in Eq. (4) because the infinite sum in the exponent converges 
for t < 1, as we have shown, and each term in the sum increases 
monotonically to zero as t decreases to zero. Thus h = lim,,, ]I x 11,” 
exists as a measurable function with respect to the normal distribution. 
However, 

Thus only the hypothesis that essential inf h = 0 fails in the 
present example. And indeed II x ]I,, is not a measurable seminorm. 
For if it were then denoting by xQ , xq ,... the orthonormal basis of H 
dual to y3, y4 ,... and by P, the projection onto span (x3 ,..., x,J the 
sequence 11 P,x 11; would converge in probability with respect to the 
measure p, by [9, Corollary 5.31 and by [9, Theorem I] the limit 
must have essential inf equal to zero. But I( Pmx Ilo = 11 x lllz so that 
the limit function in question is h. Since the essential lower bound of h 
is not zero 11 l Ilo is not a measurable seminorm. 

DEFINITION 1. A Bore1 set A C B is called an absolute nuZZ set 
if p 1(x, A) = 0 for all t > 0 and all x in B. 
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PROPOSITION 4. If A is a closed (open) set in B then for t 3 0 
p t(~, A) is upper (lower) semicontinuous in x in the topology of B. If A is 
a Bore1 set and if the boundary of A (8A) is an absolute null set; then, 
for t ‘:> 0, p,(x, A) is continuous in x in the topology of B. 

Proof. If f is a bounded continuous real-valued function on B 
then the function (plf) (x) = Jf(y)pt(x, dy) L- Jf(z --t x) p,(dz) is 
also bounded and continuous. Thus if f%(x) = exp [- nS(x, A)] 
where 6(x, A) is the distance from x to A in the B norm then for 
closed A, p,(x, A) = limn+co (pt f,) (x) is the limit of a decreasing 
sequence of continuous functions. Hence p,(x, A) is upper-semi- 
continuous. If A is open then p,(x, A) = 1 - p,(x, B -- A) is lower- 
semicontinuous. If PA is a null set thenp,(x, A) -= p t(~, A) =: p I(x, A”) 
where A and A0 are the closure and interior of A, respectively. Thus 
p,(x, A) is both upper- and lower-semicontinuous and hence is 
continuous. 

Remark 2.2. In view of the natural isomorphism of H” with H 
we may and shall identify B” with a subset of B via the injections 
B* -+ H* + H + B. This leads to a useful product decomposition of 
Wiener measure p, as follows. Let K be a finite-dimensional sub- 
space of B*. Let L be its annihilator in B. If yi , ya ,..., yn is an ortho- 
normal basis of K then the equation Qx = z7-r (yI , x) yj defines 
a continuous operator on B and since (yj , x} = (yj , x) for x in H 
Q is the continuous extension to B of the orthogonal projection of H 
onto K. Hence Q is a projection and it is clear that its range is K 
and null space is L. Consequently B = K @L. If Kl is the orthogonal 
complement of K in H then KI CL and moreover L is the closure 
in B of Kd-. For if x is in L then there is a sequence x, in H converging 
to X. Then (I -- Q) .v, lies in K-L and also converges to X. It is a simple 
consequence of the definition of a measurable norm that the restriction 
of a measurable norm to a closed subspace is again a measurable norm. 
Hence analogous to the measures p, on B there is a Wiener measure 
pi on the space L. If PL; denotes Gauss measure in K then we assert 
that in the Cartesian product decomposition B -= K x I, there 
holds, 

, 
Pt = CLt x P; 3 

for p, is characterized by the property that for any y in B* the 
function x + (y, x) on B is normally distributed with mean zero 
and variance t j y I2 where 1 * 1 is the H norm. pi is similarly character- 
ized. But writing y = u + v where u is in K and v is in KJ- we see 
that the functions w -+ (u, x) and x + (v, x> are independent with 
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respect to pi x pi and have mean zero and variance t 1 u I2 and t j ZI 12, 
respectively with respect to this measure. Hence the function 
x + (y, x) is also normally distributed with respect to & x pi 
with mean zero and variance t(I u I2 + 1 n 1”) which equals t 1 y 12. 
Thus& xp;=p,. 

DEFINITION 2. An open set V C B has a differentiable boundary 
if for each point x in aV there is a neighborhood U of x in B and a 
continuously differentiable real-valued function g defined in U such 
that g’(x) # 0 and such that V n U = {y : g(y) > 0). 

We note that g’ is the derivative of g as a function defined in B, 
i.e., &(y + =)/A Lo exists uniformly for 11 z 11 < 1. 

PROPOSITION 5. Let V be an open set in B which is either conwex 
or has a dz@rentiable boundary. Then aV is an absolute null set. 

Proof. Since B is a separable metric space so is 8V and the latter 
is therefore a Lindelijf space. Hence it suffices to show that every 
point in 3V has a neighborhood in 8V which is an absolute null set 
for then aV can be covered by a countable family of absolute null 
sets. Using the natural isomorphism of H* with H we may and shall 
identify B* with a subset of H and hence with a subset of B. 

First assume V is a convex nonempty open set. Let x be a point 
in aV. Then the translated set V - x is open and since B* is dense 
in B there exists a nonzero vector w in B* n (V - x). Then x + v 
is in V and there exists a strictly positive real number E such that the 
ballS={y:Ily-(x+w)II < } E is contained in V. We may choose 
E < 11 w I//2. W e s h ow that the set U which is the intersection of i3V 
with the ball T E (r : 11 y - x II < E} is an absolute null set. Thus 
for any vector x,, in B it must be shown that p 1(x,, , U) = 0 for t > 0. 
By translating V if necessary we may assume x,, = 0. Let M be the 
null space in B of the linear functional z, and let K be the line in B 
spanned by V. Then B = M @ K and p I is a product measure in this 
Cartesian product decomposition of B. Thus p, = pi x p; where pi 
is Wiener measure in M and t.~; is Gauss measure on the line K. 
We assert that any line k parallel to K intersects U in at most one 
point. For if x1 and xa are two distinct points on k lying in U then, 
since k is parallel to v and intersects T, it also intersects S. Hence 
there is a third pointy on k lying in V. But it is easily seen that x1 or 
x2 lies between the other two points since S and T are disjoint. Since 
x1 and x2 are in aV and y is not this is impossible. Thus k n U 
consists of at most one point and therefore &(k n U) = 0. Hence 
by Fubini’s theorem pl( U) = 0. 
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Now suppose that V has a differentiable boundary. If x is in al; 
and U’ is a neighborhood of x such that V r\ U’ is given by g :> 0 
where g is a differentiable function defined in U’ then letting 
‘u == grad g(x) and M = kernel ZI we have, upon identifying H* with 
H, B _ i%!l @ span V. Moreover, fory in M we have ag(olz! + y)/& # 0 
at 01z’ + y == x. Hence by the implicit function theorem there is a 
neighborhood U” of x such that for each y in the projection of U” 
into &’ along D the equation g(olv + y) = 0 has exactly one solution oi. 
In particular any line k parallel to u intersects li” n i3V in at most 
one point. The remainder of the proof is the same as that for convex 
sets. 

COROLLARY 5.1. The distribution function of any measurable norm 
with respect to the normal distribution is continuous. 

Proof. pi({x : I/ x 11 = X}) = 0 by Proposition 5 for any X > 0 
and any measurable norm. 

If f is a bounded measurable complex valued function on B we 
denote by p 1 f the function 

when t > 0. We putpsf = f. 
It is clear that if f is bounded and continuous then so is p t f. 

PROPOSITION 6. The operators p t , t > 0 form a strongly continuous 
contraction semigroup on the Banach space 0! consisting of bounded 
uniformly continuous complex valued functions on B. 

Proof. It is clear from the definition of p 1 f that if f is in GZ so is 
p,fandthat lptf Im < If Im. LetEbeatamesetinB.Supposethat 
E is based on the finite dimensional subspace K of B*. Adopting 
the notation of Remark 2.2 we may write B = K x L where L is the 
annihilator of K. Then E is a product: E = F x L where F is a Bore1 
set in K. Consequently, for any x in B, E - x depends only on the 
component of x in K : E - x = (F -- Qx) x L. Thus 

P,(E - 4 = PL;P - Q4 f rom which it follows that P1(E - x) is 
continuous in x in the strong B topology and, moreover, 

j p,(E - x)p,(dx) = j PCL;(F - Y) PX49 = P.;+s(V = Pt+dE) B K 
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since, as is well-known, the measures p; in K form a semigroup. Now 
the collection 9 of Bore1 sets E for which pt(E - X) is a Borel- 
measurable function on B is clearly closed under monotone limits and 
complements and as has been noted includes all tame sets. Therefore 
9 consists of all Bore1 sets in B. The same argument applies to the 
collection of all Bore1 sets for which the equation 

s PO - X)PsW = Pt+@) 
B 

holds since both sides are countably additive set functions of E. 
Hence the last equation holds for all Bore1 sets E in B. As in well 
known this implies that the operators p, form a semi group acting 
in the space of all bounded measurable functions on B as well as in 0Z. 

In order to establish strong continuity we note that from (3) it 
follows that for any real number a > 0, 

P& : II x II > 4) = A(@ : II x II b ~t-l/~}) = o(l) t -+ 0. 

Hence if f is in UZ and if IIyIl <6 implies jf(x +y) -f(x) 1 <E 
for all x then 

Thus lp,f-ffI,<2c f or all sufficiently small t and strong con- 
tinuity is established. 

Remark 2.3. It follows from [18, Theorem 21 that if the measures 
p, satisfy 

Pt(@ : II x II 2 f% = ow, t 4 0, (5) 
for all real numbers 6 > 0, then there exists a Markov process with 
state-space B and transition functions p 1(~, A) and having continuous 
sample paths and which starts at the origin of B. In one of our main 
results (Theorem 3) and elsewhere we shall have to assume that the B 
norm is in L2(p,). This implies (5) since 
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so that by (3) 

All measurable norms known to us (see [9]) are in LQ,). In any 
case, Varadhan has pointed out to us that methods established in [23] 
can be modified to prove that (5) holds for any measurable norm. 
In the remainder of this paper we shall therefore use the validity of (5) 
for the measurable norm I/ * Ij . Thus the measures p,(x, 0) are the 
transition functions for a Markov process with continuous sample 
paths starting at the origin in B. In view of the translation invariance 
of the pr(x, A), the process may be described as follows. Let ,Q be the 
space of continuous functions w on [0, co) with values in B and such 
that w(O) = 0. Then there is a unique probability measure 9 on the 
g-field in S.J generated by the functions w ---f w(t) for t 3, 0 with the 
property that if 0 = t, < t, < ... < t,, then w(tj) -- w(tj..r), 
j := I,..., n are independent and the jth one is distributed in B 
according to pt,-tj-,(*). We denote expectation with respect to 9 by 
E[ ] and put IV(t) (w) = w(t). Thus IV(t) may be called a Wiener 
process with state space B. The corresponding Brownian motion 
starting at x is x + l+‘(t). Thus 9(x + IV(t) E A) = p ,(x, A) when A 
is a Bore1 set in B. We use the notation established in this remark in 
the remainder of the paper. 

Let V be an open set in B. We denote by T,(W) the first exit time 
from Y starting at X, i.e., 

T,(W) = inf (t > 0 : x + IV(t) (w) $ Vj 

and by T;(W) the first exit time from I/ after time f 0, i.e., 

T;(W) = inf(t > 0 : x + W(t)(w) f$ V> 

Then T and T’ are measurable functions from B x D to [0, 001 
(cf. [12]). A point x in the boundary of I’ is called a regular point if 
qTj,=o)= 1. 

Many of the standard theorems concerning the relation of Markov 
processes to potential theory are derived under the assumption that 
the operators p t take the bounded measurable functions into continu- 
ous functions. This assumption does not hold for the process under 
consideration in view of Proposition 2. Nevertheless under mild 
regularity assumptions on the boundary of V it is easy to show (cf. 
Corollary 1.1 below) that generalized solutions of the Dirichlet 
problem du = 0 for V exist where d denotes here the characteristic 
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operator of the process. The regularity assumption on aV that will 
be made is the infinite-dimensional analog of PoincarBs cone condi- 
tion. 

DEFINITION 3. A cone in B with oertex x is the closed convex hull 
of the set consisting of x and a ball B,(y) = {Z : 11 x - y 11 < Y> of 
positive radius Y, not containing x. An open set V C B is called strongly 
regular at a point x in aV if there is a cone K in B with vertex x such 
that V n K is empty. V is strongly regular if it is strongly regular at 
each of its boundary points. 

PROPOSITION 7. Let x be a point in the boundary of an open set 
V C B. If V is strongly regular at x then x is a reguZar point of V. 
Moreover for any number 6 > 0, 9(x + W(t) E 7, 0 < t < 6) = 0. 

Proof. The proof of the first assertion is identical to one of the 
standard finite-dimensional proofs given some background facts. 
We include it here for completeness. We have 9(~j: > 0) is equal to 
zero or one by the zero-one law. Since Y(T~. > 0) = lim,,, P(T~. > t), 
it suffices to show that lim 1J.0 @(T; > t) < 1. But for t > 0, 

Hence 

P’(TL > t) < 9(x + W(t) E V) 

< 9(x + W) $ K) 
= 1 -9(X + w(t)EK) 

= 1 -p&J, K). 

Therefore it suffices to prove that lim sup 1+0 pr(x, K) > 0. But by 
Eq. (3) p,(x, K) = p,((K - x) t-lj2) > p,(K - x) for t < 1. Since 
K - x has a nonempty interior p,(K - x) > 0 by Corollary 4 
of [11]. This establishes the first part of the proposition. 

In order to prove the second assertion we suppose that K is the 
convex hull of b : 11 y - x,, 11 < Y} u (~1. Let 0 < Y, < Y and let 
Kl be the convex hull of (r : 11 y - x,, II < rl} u {x}. Let VI be the 
complement of Kl . Then x is in aV, and is the vertex of the cone 
Kl which is itself disjoint from V, . Hence by the first part of this 
proposition almost every path starting at x goes outside of VI , i.e., 
enters Kl at some time strictly between 0 and 6. But Kl is contained 
in the complement of V except for the point x. Hence the second 
assertion of the proposition will follow once it is shown that almost no 
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path returns to x up to time 6. This follows however from the corre- 
sponding fact in two dimensions. For if yr and ya are in R* and are 
orthonormal as elements of H* then the map 

is a two-dimensional Brownian motion which as is well known (see, 
e.g., [4]) returns to ((yi , x}, (yz , x)) with probability zero. 

Remark 2.4. Instead of using a cone K with a nonempty interior 
in the first part of Proposition 7 one can also use certain compact 
cones. For let /I * //i b e a measurable norm on H which dominates the B 
norm. Then the closure, C, in B of (X E H : 11 x /jl < r} is a set of 
positive p, measure by Corollary 2 of [II]. If K’ is the closed convex 
hull of C u {y} where y is a point not in C then any translate of K’ 
can be used in place of K in Proposition 7 to establish regularity of a 
boundary point. There is no change in the proof. Now if /j j/i is suf- 
ficiently strong then C and hence K’ will be compact in B and will 
therefore have an empty interior. Such strong measurable norms jj * /Ii 
always exist by Lemma 2 of [II]. We shall not use such cones in this 
paper since our methods will require the cone to have a nonempty 
interior. 

THEOREM 1. Let V be an open set in B which is strongly regular. 
Suppose also that aV is an absolute null set. If f is a bounded continuous 
function on B then so is the function 

The operators q f form a semigroup acting in the space of bounded measura- 
ble functions on B. The semigroup leaves invariant the Banach space GZ,, 
of bounded continuous functions on B which vanish on the complement of 
V. If f is in 6&, and is in addition uniformly continuous then qf f + f 
uniformly as t + 0. 

LEMMA 1.1. If V is a strongly regular open set in B then for each 
point x,, in B there is a null set Nz, C Sz such that T,(W) is continuous at 
x,, for each w not in Nz. . 

Proof. Even with no restrictions on the open set V TJW) 
is lower semicontinuous for every continuous path w since 
if T,,(W) = t > 0 then for a given number E > 0 with E < t the 
path (x,, + W(s, UJ) : 0 < s < t - e> is a compact set contained in V 
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and is therefore bounded away from the complement of V by 6, say. 
Hence if (1 x - x,, I/ < 6 then the set {x + W(s, w) : 0 < s < t - E> 
is contained in V. Thus TJW) > t - E when 11 x - x0 I] < 6 so that 
lim inf3c+z, T,(W) > T,,(W). If t = 0 then the last equation holds 
trivially and if t = co then a similar argument shows that 
lim infz-tzO T%(U) > M for all M. Let 

Nzo = U{UJ EQ’ : x0 + W(s + Tzo(W), w) E 7, 0 < s < E> 

where the union is taken over all rational numbers E > 0 and 
Q’ = {w : T,,(W) < co}. If w is not in Nz, then either ~.Jw) = co, 
in which case lim SUP~+~, 7z(o) G G&J-d so th t 2( ) a 7 w is continuous at 
x0 (in the usual sense for [0, co] valued functions), or else for every 
positive rational number E there is a number s with 0 < s < E 
such that the point x0 + W(s + T,,(W), w) $ 7. If 6 is the distance 
of this point from P then II x - x,, II < 6 implies that 
x -j- W(s + T,.(W), w) $ P. Hence T%(W) < T~~(c.cJ) + E whenever 
]I x - x,, I] < 6. Therefore lim SUP~+~, r,Jw) < T,,(W) and ~~(0) is 
continuous at x0 . Thus it remains to show that P(N,J = 0. 

Now if P(Q’) = 0 then B(NJ = 0. So assume B(Q) > 0. Let 
B’(A) = B(A)/9(Q’) when A is a measurable subset of Q’. Then 
(52’,8’) is a probability space and we assert that the random variable 
w-4 = x0 + ~(Q-4, 0) over Q’ is independent of the process 
I$“($, w) = W(s + Tz,(W), w) - W(T,.W), w) which is also defined 
over 52’. That is, for any finite set si ,..., s, Y is independent of 
Pw,),..., IV’(s,)) which takes values in B x B x --a x B (n 
factors). Moreover IV’(s) is a Wiener process in B. The proof of 
these assertions is exactly the same as the proof of Theorem 2.5 of [12] 
which deals with the case in which H (and consequently B) is finite- 
dimensional. We need only remark that the set A used in Section 2.9 
of the proof of Theorem 2.5 should be taken to be a set of the form 

where n is arbitrary andy, ,..., yn are in B* and are orthonormal in the 
H* inner product. 

Now for every positive rational number E 

B(Q’, x0 + Jqs + ~zo(W>, w> E p, 0 < s < c> 

=B(sz')B'(Y+w(s)E~,o~s~E). 

Let H(x, , A) = P( Y E A) be defined for the Bore1 sets of t3V. Y 
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clearly takes its values in aV. Then standard arguments involving the 
separability of the process IV’ and independence of it from Y yield 

However by Proposition 7 and the hypotheses of this Lemma, 

B’(u f w’(s) E v, 0 < s 6 c) = 0 for every u in a 17. 

Hence {w E Q’ : x0 + W(s + TV,, W) E r,O < s < l } is a set of 
9 measure zero and since Nz. is a countable union of such sets 
.9(Nz,> = 0. This concludes the proof of Lemma 1. I. 

Proof of Theorem. Suppose that f is bounded and continuous on B 
and x0 is a point of B. For t > 0 

.GyT,“(W) = t) < .9(x, + w(t) E av) =$,(x0 ) aq = 0. 

Thus if N r0 is the set given in Lemma 1.1 thenB(NzO u (750 = t}) = 0. 
On the complement of Nz, u {TV, = t} the function x7,> t(~) is 
easily seen to be continuous in x at x = x0 . Hence if xn + x0 then 

by the dominated convergence theorem, showing q,f is continuous 
on B. 

It is well known that the qt , t > 0, form a semigroup. If f is a 
bounded continuous function on B then qlf is zero on the comple- 
ment of V for t > 0 since 7% = 0 for x not in V. Finally if f is bounded, 
uniformly continuous and zero on the complement of V then q[.f+ f 
uniformly as t J 0 since 

The first term goes to zero uniformly as t J 0 by Proposition 6. 
Given a number E > 0 choose a number 6 > 0 such that 
If(x) -f(Y) I < E whenever Ij x - y 11 < 6. Thus if the distance 
from x to aV is less than 6 then /f(x) ! < E. If x is in I’ and the 

580/1/2-z 
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distance from x to aV is greater or equal to 6 then writing 
S,(x) = {z : 11 x - x 11 < S} we haveP(T% < t) < 9(x + W(s) 4 S,(X) 
for some s in [0, t]) = P( W(s) $ S,(O) for some s in [0, t]) -+ 0 uni- 
formly in x as t J 0. Thus in either case If(x) 1 E[x7,< J < E for all 
sufficiently small t and all x in V. This concludes the proof of the 
theorem. 

The following is a corollary of Lemma 1.1. 

COROLLARY 1.1. Let V be an open set in B. Let a be in aV and 
suppose V is strongly regular at a. Let v be a bounded measurable function 
on aV. If y is continuous at a and if 

then 
44 = E[e(x + WTZ)) XT,<rnl, x E v, 

Proof. Let K be a cone with vertex a which is disjoint from V. 
Let T, be the first exit time from the complement K’ of K. Since 
V C K’ there holds T,(W) < Tz(w) for all w. It is easily seen that 
K’ is strongly regular. Since T,(o) = 0 for all w it is a consequence 
of Lemma 1.1 that Em,,, Tz(w) = 0 with probability one. Hence 
1in-h TV = 0 with probability one also. Thus if x, is a sequence 
in V with x, + a then x, + W(T~,) ---f a with probability one and 
X mn< m -+ 1 with probability one and the corollary now follows from 
the dominated convergence theorem. 

COROLLARY 1.2. If V is strongly regular and y is a bounded- 
continuous function on 2V then the function U(X) given in the preceding 
corollary is continuous on V and equals v on aV. 

Proof. The corollary follows immediately from the a.e. continuity 
of 7, . 

Remark 2.5. Theorem 1 shows that, when V is strongly regular, 
the semigroup q1 acts in the space C( p> of bounded continuous func- 
tions on V vanishing on aV. For a function f in C( n it is easily seen 
that q1 f + f pointwise as t 4 0. However it need not necessarily 
converge uniformly and q1 is therefore not strongly continuous on 
C(p). The largest subspace, A, of C( p> on which qr is strongly 
continuous includes the uniformly continuous functions of C(P) 
along with some others (e.g., functions which are uniformly continu- 
ous with respect to a strictly stronger measurable norm than the B 
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norm.) Although J%! is invariant under the semigroup qt it seems 
doubtful that the space of uniformly continuous functions is invariant 
under the q( without further restrictions on V. 

Remark 2.6. Corollary 1.2 shows that the usual stochastic solution 
of the Dirichlet problem actually assumes its correct boundary values 
and is continuous in V. 

3. THE GENERALIZED LAPLACIAN AND B-SMOOTH FUNCTIONS 

Consider a real valued function u defined in an open set V of the 
abstract Wiener space B. If x is a point of V there are three relevant 
senses in which u may possess a Frechet derivative at X. As a function 
defined in B its Frechet derivative at x is the element y of B* deter- 
mined by j u(x + z) - U(X) - (y, x) j = o(]I z 11) for small x in B. 
If, however, one restricts u to the coset x + H of H then one obtains 
a function v(h) = u(x + h) defined in a neighborhood of the origin 
in H. The Frechet derivative of v at 0 is an element y’ of H* such that 
j U(X + h) -- U(X) - (y’, h) / = o(I h 1) for small h in H. We shall 
refer to y’ as the derivative of u at x in H directions and we shall say 
that u is H differentiable at x if such a vector y’ exists. Clearly, since 
the H norm is stronger than the B norm, the derivative of u at x in H 
directions will exist when the derivative of u at x in B directions 
exists and they will then be equal. Finally, by virtue of the existence 
of continuous injections B* --+ H* -+ H -+ B, we may also regard 
B* as a subset of B, in which case the restriction of u to x + B* defines 
a function on a neighborhood of the origin in B*. Its Frechet deriva- 
tive is an element of B**. Differentiability in this sense is weaker 
than in the other two senses. We shall be primarily interested in 
differentiability in H and B directions. Similar considerations apply 
to higher derivatives. The second H-derivative of u at x will be denoted 
by P%(x). D2u(x) will always denote a bounded operator from H into 
H. 

Suppose that u is B differentiable in a neighborhood V of a point x. 
Its derivative U’ is then a function from V to B*. Suppose further 
that U’ is B differentiable at x. Its derivative u”(x) is a bounded linear 
operator from B to B *. Since H C B and B* C H*, the restriction of 
u”(x) to H may be regarded, upon identifying H* with H, as a bounded 
linear operator from H into H and it is clear that the operator so 
obtained is exactly D2u(x). By Corollary 5 of [II] the symmetric part 
of D%(x) is therefore a trace class operator on H and since D”u(x) is 
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symmetric it is trace class. We shall use this fact in the next proposi- 
tion. 

Not only are there several senses of differentiability for a function 
on B but also there are several senses of continuity of which we shall 
need two. If x is in B but not in H, put 1 x 1 = + co. Then in addition 
to the B topology on B, whose basic neighborhoods of x are of the 
form {z E B : I] z - x jj < E>, there is also the H topology whose 
basic open neighborhoods of a point x in B are of the form 
{z E B : 1 z - x 1 < E}. Clearly, the last neighborhood is contained 
in the coset x + H of H. A function which is continuous with respect 
to one of these topologies will be called B-continuous or H-continu- 
ous, respectively. Of course a function which is H-differentiable at x 
is H-continuous at x but not necessarily B-continuous at x. 

Denote by L(B, B*) the space of all bounded linear operators from 
B to B*. Define the weak operator topology on L(B, B*) to be the 
weakest topology which for every y and z in B makes the function 
A -+ (Ay, z) continuous. Let L, be the subspace of L(B, B*) con- 
sisting of those operators A whose restriction to H is symmetric. L, 
is a closed subspace of L(B, B*) in operator norm since the L(B, B*) 
norm of A dominates the L(H, H) norm of A [ H. Since A 1 H is a 
trace class operator for every operator A in L, a simple application 
of the closed graph theorem shows that the trace class norm of A I H 
is dominated by a constant times the L(B, B*) norm of A. 

PROPOSITION 8. Assume 11 * II is in L2(p,(dx)). Let u be a bounded 
measurable function on B. Suppose that in a neighborhood V of a point x 
u’ and u” exist, u” is bounded and the map U” : V--t L(B, B*) is B 
continuous at x in the weak operator topology. Then 

lim @tu) (‘> - ‘(‘) 
a0 t 

= +-trace [ZPu(x)]. (6) 

Moreover, if V = B, u is unaformly B continuous on B, and 
U” : B +L(B, B*) is unzformly B continuous in the weak operator 
topology, then u is in the domain of the infinitesimal generator of the 
semigroup p, and the limit in (6) holds unsformly. 

Proof. Let T be a closed ball of radius a with center x and con- 
tained in V. The function u(x + sy) is a twice differentiable function 
of s on the interval [0, l] when ]I y ]I < a with 

d”y v) = (u’(x + sy), y> and dzu(x@; sy) = (u”(x + sy) y, y). 
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Since the second derivative is bounded, the first derivative is abso- 
lutely continuous and two integrations by parts yield 

U(X ! yj =: U(X) -! <u’(x),Y) + 
J 
“’ (1 - s) (u”(x -’ s-y) y, y> ds (7) 

0 

for Ij y j/ < u. Now since u is bounded, say I U(X) j < JM, there holds 

p,u(x) -- u(x) -___ - t =z f jB w + Y) - 441.Pt@Y) 

The second term is dominated by 2Mt-‘p,([l y /I > a), which goes 
to zero as t 4 0 and uniformly in x when relevant. (See Remark 2.3.) 
Apply (7) to the integrand in the first term of the last line. Since the 
measure p, is even and {y : 11 y jl < a> is symmetric while (u’(x), y} 
is an odd function, 

Hence 

s <u’(x), Y> PddY) = 0. 
llr!lG a 

lim P,‘(‘) - u(x) 
tL0 t <u”(x + SY)Y, ri +449 A 

= j!j- 1,7: 
t 

j WY4 Y, Y> t-4tVY) 
MIQ a 

((u”(x + sy) - u”(x))Y, Y) t-‘My) ds 

=+liz j t /I ?,,( Sat-‘,2 WWY~Y)PddY) 

({u”(,z’ + st”‘r) - u’W)y, Y> My) ds, 

where the last equality is obtained by replacing y by t1i2y and using (3). 
If supBEY 11 U”(Z) 11 = N, th en the integrand in the last term is domi- 
nated by 2N 11 y 112, which is integrable over all of B with respect top, . 
For each y the integrand converges to zero as t -+ 0, by the weak 
continuity of U” at x. Thus the last term converges to zero as t ---f 0. 
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Moreover, if U”(Z) is uniformly continuous on B into L(B, B*) with 
the weak operator topology, then the convergence to zero is uniform 
in x because, for each y in B and each s, and any countable dense set 
{x,J in B, 

SUP I wh + st1'2Y) - G%))Y,Y> I n 

by continuity in x, so that the last sup is a measurable function of y 
and s and converges to zero for each y and s as t J 0 while remaining 
dominated by 2N [j y j12. 

Finally, 

%.I IIYII< at-“2 
<U”(X)Y>Y)Pl(~Y) = IB W(4Y9Y)Pd~Y) 

by dominated convergence. By Corollary 3 of [11] and Lemma 1.2 
of [S] applied to the positive and negative parts of D2u(x), this integral 
is trace D2u(x). Moreover, the convergence is uniform on B when U” 
is bounded since the integral for positive t differs from the limit by at 
most 

NS llVll>d1’2 
II Y II2 MY)* 

Thus, for the second part of the proposition, the convergence of al1 
terms has been established to be uniform on B and thus, in particular, 
trace [D2u(x)] is a bounded uniformly continuous function and u is in 
the domain of the infinitesimal generator of the semigroup p, . 

Remark 3.1. In a general Banach space, the functions which are 
twice continuously differentiable do not constitute a very large set of 
functions. The works [I], [13], [24] h s ow in particular that for many 
separable Banach spaces B the bounded continuously differentiable 
functions on B are not dense in the space of bounded uniformly 
continuous functions. In fact for some spaces, including classical 
Wiener space, there exists no nonzero differentiable function with 
bounded support. 

DEFINITION 4. Let ~g) be the first exit time for the Brownian 
motion starting at x from the open ball of radius Y in B with center x. 
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Let f be a Borel-measurable function defined in a neighborhood of 
the point X. The generalized Laplacian offat the point x is defined by 

Q(x) = 2 lim Jw(x + W2Nl -f(x) 
Y.LO E[$‘] 

when it exists. 

Remark 3.2. The existence of Of(x) means, in particular, that 
E[f(x $ w(Tg’))] - fi ‘t f is m e or all sufficiently small r. 

Remark 3.3. E[T~‘] is clearly not zero since ~,‘(a) is a strictly 
positive function on 9. Moreover, E[T~)] is also finite. In fact, for 
any bounded open set V in B and any x in B, E(T,) < 00 when rZ 
is the first exit time from V starting at x. This follows by 
a standard technique (see [5, p. 1121) once it is known that for 
some t SU~,,~~(T, > t) < 1. But for x not in V 9’(~~ > t) = 0 and 
for x in V L?(T, > t) <pp(x, V) < pl((y : JJ y jj < d}) < 1 where d 
is the diameter of V. 

We shall also need the dependence of E[$)] on r. By (3), the process 
N”(t) = r--lW(tr2) has the same transition functions as the process 
lV(t) and is clearly a Wiener process. Hence 

Thus if y,.(t) = P($‘) > t) then y?(t) = (pi(t/+). Hence 

Denote by S, the set {y E B : jl y jj = r}. Let A be a Bore1 set in S, 
and put 

n,(A) = 9(W@) f A), 

c = E[& 
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Then v,. is a probability measure on the Bore1 sets of S, and the gener- 
alized Laplacian of a function u at x may be written 

Au(x) = 2c-1 lj$l r-2 [Is u(x + y) q(dY) - u(x)] * 
I 

Remark 3.4. The function u in Corollary 1.2 satisfies du = 0 
in V. Although this type of result is standard in the theory of Markov 
processes we shall give a short proof here suitable for the present 
setting. If TV is the first exit time from V and x is a point in V choose Y 
so small that x is at distance greater than r from i?V. Now since the 
paths are continuous there holds 7% (r) < TV since a path starting at x 
must cross the surface of the sphere with radius r and center x before 
it reaches 8V. But u(x) = E[q(x + W($) + (w(Tz) - W(T~)))]. 

Since IV(t) = ?V(t + Tg’) - w(T!$) is a Wiener process indepen- 
dent of W(T~)), the term in braces on the right of the last equation 
may be regarded as w’ stopped on i3V when started at x + w(Tg)). 

Taking the expectation first with respect to w’ we therefore get 

which is the general Markov-process analog for the mean-value 
property of harmonic functions. It follows now from Definition 4 
that du = 0. 

Thus by Corollary 1.2 the Dirichlet problem can be solved in a 
generalized sense for reasonable regions in B. It remains to see to 
what extent the generalized Laplacian of a function u agrees with 
trace D%(x) for a smooth function U. In Corollary 8.1 below we con- 
sider the simplest case in which they agree. 

DEFINITION 5. The Green’s measure on B is the measure 

GM) = j@~t(A) dt 
0 

defined on Bore1 sets A. The potential of a Bore1 function f on B is / 
the function u defined by 

44 = ]/(x +Y> GM9 = (W) (4 

whenever it exists. 
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Remark 3.5. The function G(A - x) is bounded on B whenever A 
is a bounded set. For let e r , e2 , es be elements of B* which are ortho- 
normal in 11”. Then each ei is bounded on A-say, 1 c<ej , yi 1 < llil 
for y in A. Let T = {y E B : 1 (ei , y) / < M, j := 1, 2, 3). Then T is 
a tame set based on the span K of e, , e2 , e3 . In the notation of Remark 
2.2, T is a product: T = C x L where C is a cube in K of side 2M. 
If Q is the projection of B onto K then for any x in B 

Thus 

7’- x=cxL-x=(c-pY) XL. 

G(A --- x) -<, G(T - x) = jmpt(T ~- x) dt = ia pL;(C -- Qx) dt 
0 * 0 

1 =- ( )I 47f 
y-l dy 

C-QX 

where r = I y j and dy is Lebesgue measure in the three-dimensional 
space K. The last expression is clearly bounded. We have used the 
well known fact that, in n dimensions, 

j; P;(A) dt = ((n - 2) q-l j, r2- dy, 

provided n 3 3 where w, is the surface area of S(+l). 

Remark 3.6. Let f be a bounded Bore1 function on B such that 
G / .f / is bounded on B. Let u = Gf. If f is continuous at x then 
Au(x) = -f(x). 

Proof. 

I _ E [ jhf(x + w(t)) dt] 

= E [ j:“‘f(. + w(t)> dt] + E [s4~,f(x + w(t)) dt] 
72 

72’ 
= E [ j, .f(x + w(t)) dt] 

- E [j;“’ f(x $ W(t)) dt] + E[u(x + IV($)], 
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where we have used again the fact that IV’(t) = w(t + v$“)) - I$‘($)) 
is a Wiener process independent of I$‘($‘)). Thus 

Au(x) = li i 
E[u(x + ~(~~‘))I - f@) 

E(&) z 

E 
= -f(x) - l$l 

E(r,(“) 

The numerator after the last limit sign is E(T,(‘)) * o(1) as r + 0 
because of the assumed continuity of f at X. Hence Au(x) = f (3). 

Remark 3.7. We give here an example which will also be useful 
later. Let A be a bounded operator from B to B*. Then A 1 H is 
a Hilbert-Schmidt operator on H by Corollary 5 of [II]. However 
since H is real only the symmetric part of A / H enters into the 
expression x, (Ae, , n e ) for the trace of A and since the symmetric 
part of A 1 H is of trace class A 1 H has a well-defined trace. Let 
u(y) = (&) (Ay, y) be defined on B. Assume that the B norm is 
twice continuously B-differentiable away from the origin and that 
its second Frechet B-derivative is bounded on the annulus 
C: 1 < II x 11 < 2. Then Au(O) = trace (A 1 H). 

For the proof we let g be an infinitely differentiable function on 
[O,c0)suchthatg(r)=lforO,<r<landg(r)=Ofor2<r<co. 
Letf (4 = Widl 32 II). 0 ne verifies easily thatf”(x) exists for every 
x in B, is bounded and continuous into the weak operator topology 
and f”(0) = 4 [A + A* 1 B]. Consequently by Proposition 8 
limul WPtf) 64 -f 641 exists for each x and equals (8) trace 

f”(x). By the te h c niques used in Proposition 8 it follows that the 
limit exists boundedly (although not necessarily uniformly) and that 
the limit is B-continuous. Thus f is in the domain of the weak infini- 
tesimal operator (see [5]) and by [5, Theorem 5.2, p. 1331 

(df) (0) = trace [f”(O) 1 H] = trace (A 1 H). 

Since (du) (0) = df(0) the proof is concluded. 
Remark 3.8. We conjecture that the preceding remark remains 

true without any differentiability assumption on the B norm or any 
assumption concerning the existence of smooth functions on B with 
bounded support. However a proof is lacking. 
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COROLLARY 8.1. Let x be a point of an open set V in B. Let u be u 
real valued function on V such that 

(a) U” exists at each point of V. 

(b) u”(z) is continuous at x into L(B, B*) with the weak operator 
topology. 

(c) u”(z) is uniformly bounded on V. 

Assume that the B norm is twice continuously B-dzferentiable away 
from the origin and that its second Frechet derivative is bounded on the 
annulus 1 < /I x j/ < 2. Assume also that /I . // is in L2(B, pl). 

Then Au(x) exists, D2u(x) is trace class and 

Au(x) = trace D%(x). 

Proof. Equation (7) is applicable and, since rr,(dy) is an even 
probability measure while (u’(x), y} is an odd function of y, we have, 
for sufficiently small r, 

j [24(X + y) - u(x)] 7+iy) = ,: (1 - s) j <u”(x -t SY)Y, Y> TPY) ds. 

Putting y - T-Z the term on the right becomes 

r2 j; (I - s) j (u"(x + w)y,y) ddy) ds. 

Hence by dominated convergence, 

E c-1 j’ j (1 - 4 W’(X)Y,Y) +W ds = (&) j W(X)Y,Y) 4W 
0 

=$WW~ (+4r,r>4t~) = ~~u"(~)Y,Y) Lo 

= trace [u”(x) 1 H] 

by Remark 3.7. 

4. REGULARITY OF POTENTIALS 

We recall (cf. [II]) that if h is an element of H* then there is a 
measurable function on B which may be denoted by y + (h, y) 
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and which is defined first for h in B* as the linear functional h itself 
and then defined for other h in H* as follows. One observes that the 
map h + h from B* into L2(B, pt) satisfies Je (h, y)“pt(dy) = t 1 h Ia 
so that it is continuous as a densely defined linear map from H* into 
L2(B, p,). Consequently it extends uniquely to a continuous linear 
map from H* into L2(B, p J which assigns to h the function y -+ (h, y) 
in question. 

Thus (h, *) is defined only up to a set of p t measure zero when h is 
not in B*. Since the measures p, are mutually singular for different 
values of t the choice of a representative function for the element 
(h, *) of L2(pf) may depend significantly on t. Actually it is possible 
to find a Bore1 measurable function f on B which simultaneously 
defines the correct element of L2(B, pt) for all t, i.e., a function f 
with the property that if h, is in B* for n = 1, 2,... and h, -+ h in 
H* norm then h, -+ f in L2(B, p,) for all t > 0. Such a function f 
may be constructed, for example, by defining fi to be any measurable 
function satisfying h, + fi in L2(B, pi), setting f I(y) = t’l”fi(t”l”y), 
and putting f (y) = fq(l/)(y) where y is the function defined in Eq. (29). 
However we shall not need to consider more than one value of t at a 
time so we omit further details and simply allow (h, l ) to depend on t. 

For any h in H there is also a function y -+ (h, y) defined a.e. 
IpJ, obtainable from the preceding discussion by identifying H with 
H* in the usual way. 

In the remainder of this section we shall identify H* with H. Thus 
the three spaces B *, H, B are related by B* C H C B. 

DEFINITION 6. A test operator is a bounded operator T of finite 
rank from B to B whose range is contained in B*. 

If T is a test operator then its restriction to H is a bounded operator 
on H. We shall denote this operator on H by T 1 H. If A is a bounded 
operator on H then for such a test operator T we shall write “trace 
[TA]” instead of trace [(T / H) A] since there is no danger of con- 
fusion. In particular we shall write “trace [T]” instead of trace [T 1 H]. 
It is easily verified that if T is a test operator then T has the form 

Tx= 2 (ej,x>fj 
j=l 

where {ej}~=r is an orthonormal (o.n.) basis of the annihilator (in B*) / 
of the null space of T and fj = Tej . The span M of er ,..., e, , fi ,..., fn ~ 
is called the carrier of T. Note that M depends only on T and that : 
MCB”. 
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R’e recall that a bounded operator A on H is said to be of tiilhert- 
Schmidt type or simply a Hilbert-Schmidt operator if 

I/ A jle2 y= trace [A*A] < co, 

(cf. [21].) The Hilbert-Schmidt operators form a Hilbert space with 
the norm // * II2 and inner product (A, C) = trace [PA]. A bounded 
operator A on H is said to be of trace class if 

!j A /I1 = trace [(A*A)lp] < co. 

The trace class operators form a Banach space in this norm dual to 
the space of completely continuous operators on H under the pairing 
(:A, C> = trace [C*A] where A is trace class [21, Theorem 5.111. 

The set of restrictions of test operators to H is dense in the space of 
completely continuous operators as well as in the space of Hilbert- 
Schmidt operators. In fact if e, , e2 ,... is an o.n. basis of H lying in 
B* and P, is the orthogonal projection onto span (e, ,..., e,J then P, 
is the restriction to H of the test operator Qn given by 

for x in B. If A is a bounded operator on H then T, = P,AQ, is 
easily seen to be a test operator and T, 1 H = P,AP, . r\rrow if A is 
completely continuous then since the sequence / (I - P,) x / decreases 
to zero uniformly on compact sets the sequence / (A -- P,A) x I de- 
creases to zero uniformly on the unit ball in H, i.e., I/ A - Pni4 !j -+ 0. 
Hence the operator norm of 

A - P,;aP, = (A - PJ) + P&4* - P&4*)* 

approaches zero as n + co. Finally if A is of Hilbert-Schmidt type 
and has matrix (aij) on the basis e, , e2 ,... then 

which converges to zero as n + co. 
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PROPOSITION 9. Let f be a bounded measurable function on B and 
let t be a jixed number greater than zero. The function x --f (pt f) (x) 
is infinitely H difJerentiable on B with$rst and second derivatives given by 

((Wtf) (4, h) = t-l jBf(x + Y> (4 y)f4+)> (8) 

(P2Ptf) (4 4 h) = t-l j/(X + Y> (t-vb Y) 6 Y) - (k 4lPtMYh (9) 

where h and k are in H. If T is a test operator then 

trace [T(D2ptf) (x)1 = t-l lBf(x + y){t-Vy, Y> - trace TM!.). (10) 

Moreover, (Dzpsf) (x) is of Hilbert-Schmidt type and 

II (D2Ptf) (4 112 G t-l (jp + Y)2Pt(du))1’2. (11) 

Finally for each x in B the functions t + Dptf (x) and t + D2ptf (x) 
from (0, 00) into H and into the Hilbert space of Hilbert-Schmidt 
operators respectively are Borel-measurable. 

Proof. Put g(x) = (p,f) (x). Then for all h in H 

Now p,(h, *) is absolutely continuous with respect to p, by Theorem 3 I 
of [22]. This also follows in the present context directly from the) 
construction of p 1 which may be used to verify that for a bounded 1 
tame function v on B there holds 

jB +I MT dr) = J‘, W(Y) exp [ - ’ h I2 2: 2(hs ‘)I AVY). 

This equation remains valid under the passage boundedly to pointwise 
limits and therefore holds for all bounded Bore1 measurable functions I 
v on B. In particular we have 

g(x + 4 = jBfcx + Y) exp [ - I h I2 i&2@Jy) ] P,(~Y) (12): 

for all h in H. All the derivatives of g may be obtained by differentiating i 
(12) under the integral sign with respect to h. We show that the expres- i 
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sions so obtained actually represent the Frechet derivatives. Let 

](A, y) = exp [- ’ A ” :t2(h,y) ] . 

Then 

( ) $- w, Y) = t-y@> Y> - s I h I”} I@, Y) 

and 

!+ + h) - ‘44 = S, j)b + Y) t-WY) - s I h I”) JW,Y) dSP,(dY) 

so that 

1 dx + h) - &4 - jBfb + Y) t-Y4 Y)Pt(dY) j 

l s IS t-l If@ + Y> I I @YY) WhY) - 1) I PddY) ds 0 B 

+ t-l ,: s I h I” j, I.@ i- Y) I P@, 4) ds 

< t-l llf IL (j B (~~y)“pt(4))1p j’ (j I IW, Y> - 1 l‘%bi~f~ ds 
0 B 

1 
+ 5 I h I2 llf IL * 

Since (h, y) is normally distributed with respect to p, with mean zero 
and variance t / h j2, both integrals in the last line may be evaluated 
explicitly with the result 

j, 1 J(s~,Y) - 1 12ft(dy) = exp rf] -- 1. 

Consequently, 

/ & + h) - g(x) - f,f(x + Y) t-l@, y)My) 1 

< t-l / h ’ ilf llco [t1i2 ,: (exp [+I - 1)1’2 ds + (;) I h I/ 

= 4 h I) 
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This.establishes that the first Frechet derivative of g is given by (8). 
We note that 

For the second-order derivative we have 

(@do + 4, h) = t-l 1, fb + k + Y> @I Y) P@Y) 
= t-1 s f@ + Y) (h, Y - 4 J(k Y> MY) B 

for k in H. Now the function y -+ (h, y) is not linear unless h is in B*. 
Nevertheless, 

(&7(x + k), h) = t-l 1, f@ + Y) {@,Y) - (4 4) l(k,Y)Pt(dY) (13) 

because this equation holds when h is in B” and both sides are 
continuous in h in the H norm. Thus replacing k by sk in (13) one 
obtains 

< t-l llf IL (JB{Wh’Y) (W - Vb k))2Pt(dr))1’2 J: (exp rq] - 1)1’2 dsi 

+ c2 llf Ilm J: s (s,w 4 [s I h I2 - (kY)l - I k I2 @,Y)12PtvY))1’2 

x exp ry] dj 

= O(l h I> 4 k I)* 
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It follows that the Frechet derivative of Dg is given by (9). That (9) 
actually represents a bounded operator on H is a consequence of the 
fact that (h, y) and (k, y) are jointly Gaussianly distributed with 
respect to p, with covariance t(h, k). The operator norm may be 
estimated easily by performing a suitable two-dimensional integral. 

The existence of the higher-order Frechet derivatives may be 
established in the same way. The validity of the necessary estimates 
reflect the integrability with respect to p, of all polynomials in the 
functions (h, l ) for several vectors h. It is not hard to see that the 
method used above for first and second derivatives yields estimates 
of the form 

i (D-g) (x i k) (h ,..., h) - (Dng) (x) (h, ,..., h,) - P+lg(x) (h, ,..., h, , k) ] 
= O(l 4 I I h, I --* I hn I) 41 k I), 

where (Dng) (x) (h, ,..., h,) is the multilinear form associated with 
the nth Frechet derivative of g. This estimate ensures the existence 
of the (n + 1)st H-derivative in the Frechet sense. 

Now if T is a test operator whose restriction to H is sym- 
metric then for some o.n. set e, ,..., e, lying in B* T is given by 
TX = z Ai x) ej for x in B. Then 

trace [ TD2g(x)] = i (TPg(x) ej , ej) 
.i=l 

= gl W”g(4 e5 ,e5> 

= t-1 s .I+ + Y){~-VY, Y> - trace l?llPt(49. B 
Since D2g(x) is symmetric both sides of (10) depend only on the sym- 
metric part of T 1 H and consequently Eq. (10) is established. 

It remains to prove that D2g(x) is of Hilbert-Schmidt type. The 
space of symmetric Hilbert-Schmidt operators is a Hilbert space in 
the inner product (A, C) = trace [AC] and to prove that D2g(x) 
is of Hilbert-Schmidt type, it suffices to establish an inequality of the 
form I trace [T(D2g) (x)] 1 < a 11 T I H /I2 for test operators T with 
symmetric restrictions since the restrictions of these to H are dense 

.580/I/2-3 
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in the space of symmetric Hilbert-Schmidt operators on H. But 
from (10) there follows 

I trace [V2g) WI I 

< t-1 [I, f(x +YF%O]~‘~ [/Jt-V..J+ - trace [W”P@Y~J~‘~. 

But 

s B@-V..9y) - trace E~l)2~t(49 = II T I H II: . 

This may be derived by writing Ty = C$‘=, Aj(ej , y) ej where the ej 
are o.n. and lie in B*, observing that 

t-l(Ty, y) - trace [T] = i hj[t-l(ei , y)* - 11, 
j=l 

and that this is a sum of independent functions with respect to p, 
with mean zero and variance Aj2. This establishes (11). 

Finally if h is in B* then from (8) we have 

mJtf(x),~) = t-1'2 1, f(x + t1'24 <k~)AV4, 

which is a measurable function of t. Hence since B* is dense in H 
(Dp rf(x), h) is measurable for all h in H. Since H is separable Dp J(x) 
is a strongly measurable function of t. Similarly Eq. (10) together with 
the denseness of test operators in the space of Hilbert-Schmidt 
operators establishes first weak measurability of D2pff(x) and there- 
fore strong measurability as a function of t into the space of Hilbert- 
Schmidt operators. 

DEFINITION 7. A bounded measurable function f on B will be 
said to satisfy a Dini condition of order p > 1 at x if 

/;t-‘(j-, If@ +A -fW IpMy))llPdt < 00. 

A Dini condition of order p will be said to hold uniformly on a set 
UCBif 

Jjg J: t-l [I, If@ +Y) --f(x) IpPtwf’p fit = 0 

uniformly for x in U. 
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Remark 4.1. In n dimensions, a Dini condition of order 1 in the 
above sense at x is easily seen to be equivalent to the condition 

s ,y,<l If@ + Y) -f(x) I I Y I+ dr < oz. 

This is a condition which is slightly weaker than that actually used by 
Dini (for n = 2) [3, p. 2001. 

Remark 4.2. If f is a bounded measurable function on B and 
satisfies a Holder condition at x, i.e., 1 f (x + y) -f(x) / < C I/y /I~, 
0 < 01 < 1 for ally in a B neighborhood of x (and therefore for all y), 
then f satisfies a Dini condition at x of order p provided 
JB 11 y /I@ p,(dy) < co. If the Holder condition holds uniformly for x 
in a set U then the Dini condition also holds uniformly in U. 

THEOREM 2. Let f be a bounded measurable function on B with 
bounded support and let u = Gf. Let x be a point in B. Assume that for 
some p > 1 one of the following two conditions holds: 

(a) f satis$es a Dini condition of order p uniformly on some 
H-neighborhood U of x; 

(b) f satisjes a Dini condition of order p at x and f is B-continuous 
at x. 

Then D%(x) exists and is of Hilbert-Schmidt type. It is given by 

Wx) = jm (D2~tJ) (4 dt, 
0 

(14) 

where the integral converges in Hilbert-Schmidt norm. 
There exists a bounded uniformly continuous function f on B with 

bounded support which is zero in a B-neighborhood of the origin and such 
that D2Gf (0) is not a trace class operator. 

LEMMA 2.1. Let f be a bounded measurable real-valued function 
on B. Let X be a nonnegative real number and assume that either h > 0 
or that f has bounded support. Let 

Then 

e-W4 (4 dt. 
Du(x) = jr e--At Dpt f (x) dt, (15) 

where the integral converges in H norm. 
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If in addition f satisjies hypothesis (a) of the theorem then 

D2u(x) = Cm ehAt D”p, f (x) dt, 
JO 

where the integral converges in Hilbert-Schmidt norm. 

Proof. To justify the differentiation under the integral sign in (15) 
it suffices to show that exp [- At] / Dptf (x) 1 is dominated by an 
integrable function of t on (0, co) uniformly in X. Now from Proposi- 
tion 9, 

I (Dptf(@,h) I G t-l [j-, fk +r)“pt@3fi2 [~BVw)2Me~~]1’2 

= I h I t-1’2 [s, f(x + y)2 pt(dy)]1’2. 

Hence 

I DPL%) I < t-1’2 [I, f(z + d2 s’t(4)]1’2. 

This is bounded for large t and for small t it is O(t-li2). Thus if 
h > Othen(15) is established. If h = 0 and f has bounded support in B 
we show that 

s fk + Y)2My) = IV II: W-‘“1, t-+cc (17) 
B 

for all positive integers n, uniformly in x. Let yi ,..., yn be orthonormal 
vectors in H* which lie in B*. Let A be a bounded closed set in B 
outside of which f is zero. Thenf(x + a) is supported in A - z and 
.fBf@ f y)2pf(dy) < Ilfll!,P@ - x). Nowy, ,...,h arebounded on 
A so that A is contained in a tame set C based on the subspace 
K = span (yi ,-.., yn) d h an w ose base is a bounded set C,, in K*. Thus 

uniformly in x where n(z) denotes the natural projection of z into K*. 
This establishes (15) in all cases. 

Now let g,(z) = J,” e-A’ DpJ(x) dt. Then for E > 0 it follows 
from (11) and from the preceding argument that Dg,(z) is given by 
Dgd4 = s,” e-a f D2p J(z) dt where the integral converges in Hilbert- 
Schmidt norm and that Dg,(z) is a Hilbert-Schmidt operator. 
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We estimate 11 D”p,f(x) iI2 f or small t under assumption (a) of the 
theorem. Let T be a test operator. Then since 

s B{t-1(5,y) - trace [Tl)Pd4) z 0, 

Eq. (10) yields 

---: / t-l j, [fb + y) -.I+)] {t-V.., y> - trace T)p&v) / 

< t-’ 1 j, lf(x + Y> -fW I”p,(dy)y 

where q = p/(p - 1). 

X 11 
B 

I t-l(Ty,y:) - trace T lqp,(dy)ll" 

Now assume that T restricted to H is symmetric. We shall show 
that the last factor in the last inequality is dominated by C I/ T [I2 
where C depends only on q. 

As noted in the proof of Proposition 9, (Ty, y) - trace [T] may 
be written ‘& x&j where the ~j are the nonzero eigenvalues of T 
and [j = (ej , *)” - 1. Thus the tj are independent random variables 
with respect to p, with mean zero and finite moments of all orders. 
Moreover they are identically distributed. If n is the smallest even 
integer satisfying n > q then 

[I,i t-‘(Ty,y) -trace T I’Jpl(dy)/“*= /j, 1 (TV, v) - trace T Ippl(dv)/l’Y 

d IS B 
1 (TV, v) - trace T lnp,(&~)l~‘~ = [E [I A~(~]~[“~‘. 

j 

Now 

If any subscript occurs only once among the subscripts jl ,..., j, , 
then E(& .a* cjm) = 0 since the t* have zero mean and are indepen- 
dent. Hence we may write 
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where the sum is carried out over all partitions of n, i.e., cik,r ni = n 
satisfying 2 < n, < n2 < a** < nk and each ji runs from 1 to m with 
no two ji equal for a given partition. The numbers 

are bounded and therefore 

for some constant K, the sum being carried out over the same set as 
before. For all j there holds ( Ai 1 < I( T iI2 . Hence for any one of the 
above partitions n, ,..., nk there holds 

= (c 1 m A,2 k II T IKak 
j=l 

= II T II;. 

Since there are only a finite number of such partitions, there is a 
constant C such that E((Cy!“=, A&$) < C 11 T $j. 

Thus 

I trace W3kfC41 I G a-l IS, Lfk + r> --fC41p~t(dy)111g It T II2 

for all symmetric test operators T. Hence 

II wm II2 =G (3-l is, Lfh +Y) -fwPtMY~~‘/p. 

Thus by assumption (a) of the theorem, 

I ’ e-A’ 11 D2p,f(z) II2 dt --f 0 as E-+0 
0 

uniformly for x in an H-neighborhood U of x. Consequently Dg,(x) 
converges uniformly on U in Hilbert-Schmidt norm and therefore 
also in operator norm. By Proposition 9 and the dominated conver- 
gence theorem Dg,(z) is H-differentiable and hence continuous ‘on U 
with the operator norm on the range. Hence Jr exp [- At] Dzprf(x) dt 
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is continuous on U in operator norm and represents the Frechet 
derivative of Du(x) on U. 

LEMMA 2.2. Iff is a bounded measurable function on B with bounded 
support and satisfies hypothesis (b) of the theorem then D2u(x) exists 
and is given by the integral (14) which converges in Hilbert-Schmidt 
norm. 

Proof. The proof in Lemma 2.1 that the integral on the right of 
(16) converges in Hilbert-Schmidt norm (with X = 0) is applicable 
also under the present hypothesis. It must be shown that the operator 
so obtained actually represents D%(x). We use an adaptation of 
methods of H. Petrini [19]. 

Let h be an arbitrary vector in H and k a unit vector in H. For E f 0 
consider the difference quotient l [(DU(X + ek), h) - (Du(x), h)] 
which by (8) and (13) is given by 

E- 1 jr j, f&x + Y> t-l I[(h,Y) - 4,41 
x exp 

[ 
w, Y) - c2 

2t ] - (h,Y)l Pt(dY) dt. 

Put y = EZ and t = e2s. Then p ,(dy) = p,(dx) by (3), and the dif- 
ference quotient may therefore be written 

E-qDu(x + Ek), h) - p(x), h)] 

== cjB.f@ i- ex) s-l III@, 4 - @, A)1 exp [ 2(K7 tji - ’ ] - (4 a)/ p,(Wds 

= j: If@ + 4 S(s> ~3 h, k)%(W ds + j; s,f(x + 4 #(s, x, h, k)p&) ds 
(19) 

where 

#(s, z, h, k) = s-1 I[(k, z) - (k, k)] exp [ 2(k’ ;i - ’ ] - (h, a)/ . 

We assert that 

is 1 B I #(s, z, 4 4 I p,(4 ds -=c ~0 

and 
1 

lim 
r+m ss I #(s, 2, h, k) I M4 ds = 0 

0 IlM>r 

(20) 
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uniformly for 1 k 1 = 1 /J 1 = 1. Indeed, 

z 2 11 s-1/2 / 
Ils%ll>r-1 

I (h Y) I~MY) QTS 

~2~~~-1~2d~~,,Yll>r--lI(~.~)l~l(dy) , 

< 4 h(llr II 2 r - 1)l”” [I, (W2~ddy)]1’2. 

We have used here the fact that the exponential factor in the second 
line is the Radon-Nikodym derivative of p,(k, dz) with respect to 
%(dx). The third line is then obtained from the second by translating 
by k, while the fifth line follows from the fourth by making the sub- 
stitution z = sllzy. The last line is independent of the unit vector 12 
and goes to zero as r -+ co. Equation (20) follows by putting r = 0. 
Moreover, J” JB #( s, a, h, k) p,(dz) ds = 0 follows from again replacing 
z by z + k” in the terms involving the exponential factor. Con- 
sequently, 
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Thus if 6 > 0 is given and if r is chosen large enough then for all 
sufficiently small j E ; the continuity off at x implies that both of the 
last terms are less than 6 uniformly for j h I = / k j =:: I. Hence 

l lim 
11 4 o. B 

f(x + 4 a s, z, h, k) p,(dz) ds = 0 (21) 

uniformly over the set 1 h ( = 1 K 1 = 1. 
We now consider the last member on the right of Eq. (19). Let 

&, z, h, k) = $(s, z, h, k) - S-l[s-l(h, z) (k, z) -. (h, k)]. 

Thus 

q(s, z, h, k) =: s-1 I(k, x) [q ( 2(ky ; - * ) _ 1 _ 2(k, “2’s - 1 _. $j 

+ (h, k) [l -. exp ( 2(ky ;i - ’ i] I- 

From the mean value theorem it follows that, for any real number a, 
/ ea - 1 1 < / a 1 eia’ and from the equation 

it follows that 

ea = 1 -k a + 1: (u - t) et dt 

Upon putting a = (2(K, z) - 1)/(2s) in these two inequalities we 
obtain for v the estimate 

1 ea - 1 - a 1 < u2elal. 

I F(S, z, h, k) I < s-l 11 (h, Z) 1 [I 2(k9 J’s - ’ I2 exp (‘1 2(kY ;i - ’ 1) + --&I 

+ 1 (h, k) 1 1 2(k9 “2’5 - ’ / exp / 2(k’ J’, - ’ 11 . 

We assert that, for all numbers r > 0, 

is finite and goes to zero as r + cc uniformly over the set 
! h / = / K / = 1. Upon making the substitution x = s112~ and then 
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estimating the exponential factors by setting s = 1 in them we obtain 

m 

< 
I$ 

I cp(s, slb h, k) I My) ds 
1 IlS"~YII~ r 

+lwl~(k~Y)+& 1 exp (I VW I + 111 M..) ds. 

Since (h, y) and (k, y) are jointly normally distributed with respect to 
p,(u’y), it is clear that Jsl,~,,v,,~ r {***)p,(dy) is bounded as a function of 
s on [I, co) uniformly over the set ( h 1 = ( K 1 = 1. In fact the 
expression in braces is dominated by 

xh h, k) = {I (ky) I [(I (k,y) I + 1J2 exp (I (ky) I + 1) + 11 

+ I (h 4 I exp (I (ky) I + 1)) 

which is square-integrable with respect to p,(dy). Thus 
co 

IS 
I ds, 2, h, 4 I p&W ds 

1 I!4l>l 

<* s 1 ~-~‘~1p,(ll Y II 2 +‘2111’2 [IB xb’, 4 AI2 $+j9]1’2 & 

which approaches zero as I + co uniformly over the set 
1 h 1 = 1 K 1 = 1. It follows from the boundedness of f and its con- 
tinuity at x just as before that 

uniformly on the set 1 h I = I k I = 1. It is clear from the definition of 
q that J’B ~(s, x, h, R) p,(dz) = 0 so that the limit in (22) is zero, 

Thus from (19) we have 

+ j-- 1 s-lf(x + 4 [s-V, 4 (k, 2) - (h, k)] p,(dz) ds. (23) 
1B 
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Denoting the last term in (23) by K, we have established that 

5% [c-l(Du(x $- Ek) - Du(x), h) - K,] = 0 (24) 

uniformly over the set 1 h 1 = / K 1 = 1. But upon substituting 
y = EZ and t = c2s into K, we have 

K(,S;t-l j f@ + Y> [t-Yk Y) (h Y> - (h, 41 P&Y) cff 
B 

Since, as noted at the beginning of this proof, Jm t-l D2pJ(x) dt 
converges to Jr t-r D”pJ(x) dt in Hilbert-Schmidt norm and, 
a fortiori, in operator norm, as E -+ 0, it follows that the last integral 
represents the Frechet derivative of DU at X. 

Proof of Theorem. It follows from Lemmas 2.1 and 2.2 that, 
under either condition (a) or (b) of the theorem, D2u(x) is given by 
(14) which converges in Hilbert-Schmidt norm. 

Let %? be the Banach space consisting of all bounded real- 
valued uniformly continuous functions on B vanishing outside 
(X : 1 < /I x // < 2). We shall show that there exists a function f in %’ 
such that (D2Gf) (0) is not a trace class operator. Any f in V satisfies a 
Dini condition of order 2 at the origin because 

11 t.-’ (S, if(~) -f(O) I2 ~t(dr))“~ dt G llf IL J: t-lPt(ll y I/ > 1Y” dt 

< constant ljf jlrn (26) 

since Pt(/l y 11) > 1) = o(t) (see Remark 2.3). 
Since f is continuous at 0, (DGf) (0) exists, is a Hilbert-Schmidt 

operator, and is given by (14). 
Moreover, from (1 I), 

II P2W (0) 112 G [ t-l (I, f02My))1’2 dt 

and from (26) and (17) it follows that 

II (D2W (0) II2 < consmt Ilf IL 

for all f in %. Thus the map f --+ (D2Gf) (0) from % into the space of 
Hilbert-Schmidt operators is continuous. Now suppose that for 
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every function f in V (D2Gf) (0) is a trace class operator. The map 

f -+ P2Gf) (0) f rom %? into the Banach space of trace class operators 
on H is a closed operator for if f, -+ f in %’ and the sequence 
(D2Gfn) (0) converges in trace class norm to an operator L then since 
it also converges to L in Hilbert-Schmidt norm and converges also 
to (D2Gf) (0) in Hilbert-Schmidt norm it follows that (D2Gf) (0) = L. 
Thus by the closed-graph theorem there is a constant K such that 
ll/af~~‘ff~~L< Kllf Iloo for f in v where IIL II1 denotes the trace 

Hence for any bounded operator T on H, 

I trace [W2W (ON I G K II T II Ilf IL , 

where 11 T 11 denotes the operator norm. In particular, if T is a test 
operator, then by (14) and (lo), 

1 [t-l 1, .f(r){t-V~,~) - trace P”~)P&!Y) & ) < K II 0” I H) II Ilf IL 
(27) 

for all f in % where A = {X E B : 1 < 11 x 11 < 2). Consider a fixed 
test operator T on B. Then 

r s t-1 I t-V.‘., Y> - trace PI I AMY) tit 
0 A 

O” zz.z 
ss tp1XA(tli2z) 1 (Tz, z) - trace [T] I p,(dz) dt 

0 B 

= 
s (S 

O3 t-lxA(N2z) dt) 1 (Tz, z) - trace [T] I p,(dz) 
B o 

= (In 4) lB 1 (TX, z) - trace [T] 1 p,(u!.z) < a. (28) 

Thus by dominated convergence the set d of real Bore1 measurable 
functions f on A satisfying both If(y) 1 < 1 on A and 

1 [t--l IA fW{t-Vy9y> - trace [TIIP&!Y) dt 1 d K II T I H II 

is closed under the operation of taking pointwise limit of sequences. 
By (27), I includes the restrictions to A of all elements of V of norm 
at most one. It follows from standard arguments that d consists of all 
Bore1 functions on A with sup norm at most one. By positive homo- 
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genity, (27) now holds for all bounded Bore1 functions on A. We shall 
show that this already implies that (27) also holds when f depends on t 
as well as y. We use a method applicable only to the case of an infinite- 
dimensional space H. Let e, , e2 ,... be an orthonormal basis of H* 
lying in R*. Let 

9;(y) = lim n-l 2 (ej ,yY, n-m 
j=l 

(29) 

wherever the limit exists and is finite, and put rp equal to zero every- 
where else. Then g, is a Bore1 function in B. Since the functions 
(ej ,*)2 are identically distributed with respect to p, and have mean t 
with respect to p, the strong law of large numbers implies that 
pt({y : y(y) = t}) = 1 for all t > 0. Now let f(t, y) be a bounded 
measurable function on [0, co) x B which is zero off [0, co) x A. 
Thenf(g?(y), y) =f(t, y) a.e. with respect to p, . Thus 

m 

IS [S 
f(4 Y) t-‘{t-YTy, Y> - t 

o B 
race VIIP&Y)] dt j 

= / jm [j f(dyhY) ~-Y~-YTY,Y) - trace [TljI~ddy)] dt / 
o B 

G K II T I H II zp Ifb(r),~) I 

~~llTIHIIs~~lf(t,y)/. (30) 

Now put f(t, y) = sgn {t-l< Ty, y) - trace [T]) for y in A and 
zero otherwise. Thus (30) implies 

ss m t-llt-l(Ty,y)-trace[T]Ip,(dy)dt~KI/TjHl/. 
o A 

Thus by (28) we have 

(In 4) 1, I (Tz, z> - trace PI I P&W < K II T I H II 

for every test operator T. Now let T, be the operator on B defined by 
T,x = CEXI (ek , x) ek . Then I] T, I H II= 1 for all n and we have 
(T,z, x) - trace [T] = CFzI [(ek , x)” - 11. Thus 

(In 4) j, / jYl [(ek ’ 2y - 11 p&q G K 1 
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for all n. We show that this is impossible by showing that 
I CL Kek , 2)” - I] 1 diverges to + co in probability with respect 
to p, . The functions ek = (ek , a)” - 1 are identically distributed, 
have mean zero and possess finite moments of all orders with respect 
to p, . They are independent and the central limit theorem is clearly 
applicable. Thus, putting 

we have, for any number N and real number 01 > 0 and for sufficiently1 
large n, 

which converges as n + co to 

(24-l/a j exP 
14 ‘- 

[- $1 dx. 

The last expression can be made arbitrarily close to one by choosing old 
sufficiently small. This concludes the proof of Theorem 2. 

Remark 4.3. Other regularity properties may be established similar 
to those due to Petrini [19]. For example if f is bounded, has bounded 
support and u is its potential then each of the following statements is 
an immediate consequence of Eq. (23). K, is given by (25); 

(a) B, E E-l(Du(x + ek) - Du(x), h) - K, remains bounded 
asc+O 

(b) If lim,&, f(x + EX) exists for almost all x with respect to 
p1 then’lim,,, B, exists for each h and k in H. 

We note that lim,,, f(x + CZ) exists a.e. LpJ if and only if it 
exists a.e. [ps] for every s. 

(c) Iff(x + l Z) is continuous at l = 0 for almost all z&] then 
lim,$, B, = 0 for each h, k in H. If f is B-continuous at x 
then lim,,, B, = 0 uniformly over the set 1 h 1 = 1 k 1 = 1 

(4 If f(x + 4 is continuous in E at E = 0 for almost all 
a[pJ and f satisfies a Dini condition at x of order greater than one, 
then D2u(x) exists as a Gateaux differential and is given by (14) which 
converges in Hilbert-Schmidt norm. 

Remark 4.4. By Theorem 2 there exists a function f on B which 
is bounded and uniformly continuous on B, has bounded support, 
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vanishes in a neighborhood V of the origin and whose potential u 
does not have a trace-class second Frechet derivative at zero. By 
Remark 3.5 the generalized Laplacian of u exists everywhere on B and 
has the value zero in V, i.e., u is harmonic in V in a generalized sense. 
Thus although the eigenvalues of the Hilbert-Schmidt operator 
D%(O) do not converge absolutely the generalized Laplacian appears 
to provide some (orthogonally invariant) summability method to 
sum them to zero. 

Remark 4.5. Unlike in finite dimensions, a Dini condition of 
order one at x is not sufficient in the infinite-dimensional case- 
even in the presence of continuity of f-to establish the existence of 
D%(x) as a bounded operator. 

DEFINITION 8. A function f on B is Lip 1 on B if there is a con- 
stant C such that 1 f(x) --f(y) 1 < C 11 x - y /I for all x and y in B. 

THEOREM 3. Assume I/ * )I is inL2(p,). Iff is a boundedLip 1 function 
on B then D2(p,f) ( x is a trace class operator for each x and each ) 
t > 0. For each strictly positive number a the map (t, x) --+ D2(prf) (x) 
is uniformly continuous on [a, co) x B into the Banach space of trace 
class operators on H. The function v( t, x) = (p I f) (x) is jointly unzformly 
continuous on [0, a) x B and satisJies 

a-i7 

at= 2 ( ) 
J- trace [D2v(t, x)] 

In particular (&/at) is bounded and unsformly continuous on [a, co) x B 
for each number a > 0. For each t > 0 the derivative &/at exists uni- 
formly in x. 

If in addition f has bounded support then (D2Gf) (x) is a trace class 
operator for each x and 

(49 trace [P2Gf) WI = -f(x). 
LEMMA 3.1. Let t > 0. Let S be a test operator on B. Let T : H -+ H 

be the restriction of S to H and let L, = (I + et-lS)lle be defined for 
all suficiently small real E by a power series. If f is a bounded measurable 
function on I3 then 

trace FV2hf) WI = 2 $ S, f@ +&A P&N, (32) 

where the derivative on the right is to be evaluated at E = 0. Moreover 
the derivative exists uniformly with respect to x. 
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Proof. The measure E -+p,(L;lE) is absolutely continuous with 
respect to pt . This is a very special case of Theorem 3 of [22] since 
the operator T is of finite rank and it may be derived directly along 
with the Radon-Nikodym derivative as follows. Let M be the carrier 
of S. Then as noted after Definition 6 M C B”. Let P be the ortho- 
gonal projection of H onto M. Then P is continuous in B norm as 
may be seen by writing Px = CT=, (ej , x) ej where e, ,..., e, is an 
o.n. basis of M. Let Q be the continuous extension of P to B. Then 
the function 

R(E, x> = [&t (I+ ct-1~)~-1/2 exp [ _ 1 (I + •'-'T)-l~tQ~ I2 - I Qx I"] 

is a continuous tame function on B and is defined for all sufficiently 
small real E. Consider the Cartesian product decomposition 
B=Mx(I-Q)B.Th e measure p, is a product measure relative 
to this decomposition as noted in Remark 2.2. Since TX = 0 for all xi 
in H orthogonal to M the transformation L, acts as the identity on 
the factor (I - Q) B and acts as (I + •t-lT)l/~ in M. Moreover, L, 
leaves M invariant. A straightforward transformation of Gauss meas- 
ure ps in M by the transformation (I + ~t-lT)l/~ shows that the1 
Radon-Nikodym derivative dp ,o(l + et-l T)-‘/“/dp t is the restriction 
of R(E, x) to M and consequently the derivative dp,oLyl/dp, is R(E, x).. 

Thus 

= s B f(x + Y) NC, Y> Pt(dY)* (33) 

By choosing a basis of M on which T is triangular one readily 
computes 

dR 
de -( ) + t-l{t-l(T(I + •t-lT)-~ Qy, Qy) - trace [Z’(I + et-lT)-l]} R(E, y). 

For sufficiently small B this is easily seen to be dominated by an 
integrable function of the form constant times exp [a 1 Qy 12/2t] for 
some (31 < 1. Consequently, differentiation under the integral on the 
right in (33) is permissible and one obtains 

z. d j f(x +L~)zW39 lr4 
1 =- ( )I 2 B 

f(x + Y) t-l{t-l<s~, Y> - trace T)pttdy) 

which in view of (10) yields (32). 
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Moreover the uniform existence of the derivative follows from the 
inequalities 

I 
hmf(~) - (Af) (4 

E - (-+) trace PV2Ptf) C-41 / 

=: ([Bf(“+Y)[R(cpyj-- - (+) t-l{t-lMv,y) - trace T)] NY) 1 

< llf llm [,I Ry) - l - ($ t-l(t-l(sy, y) - trace T) p,(dy), 

which approaches zero with E, by virtue of the above remarks on the 
form of dR/dc 

Proof of Theorem. Suppose f is a bounded real valued function 
on B and satisfies If(x) -f(y) 1 < C I/ x - y j] for all x and y in B. 
Let S be a test operator on B and T its restriction to H. Then, car- 
rying over the notation from Lemma 3.1, we have from (32) 

Now the square root of I + l t@S on B is given by a power series 

I + 2-l d-1s + f C,(&lS)k 
k=2 

for small E. Thus 

I E I-’ II L,y - y j/ < $ 11 Sy I/ + f Ckek--lt--lr jj Sky /! . 
k=2 

Since II Sky II < II Sk II II y II < II 8 Ilk II y II , and II Y II is integrable 
with respect to p,(dy), it follows from dominated convergence that 

I trace [W2Ptf) WI I < 0-l 1, II Sy II I&W (35) 

Now we wish to estimate the right side of the last inequality in terms 
of the operator norm of T (which is an operator on II) instead of the 
operator norm of S (which is an operator on B.) Since I( Sy 11 is a 

580/x/2-4 
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tame function based on the carrier, M, of S we have, for any finite 
number p 3 1, 

s, II SY II"P&Y) = s, II TY II"P@Y), 

where pI is Gauss measure in M with variance parameter t. Let 
m(h)=~l,((y~M:IlyII>~}). Let n(h)=~FLA(y~M:llTyll>X}). 
Then, by Theorem 5 of [9] applied to the finite-dimensional Hilbert 
space M, there holds n(A) < m(h/ll T II) where 11 T II denotes the norm 
of T as an operator on H, i.e., 

But 

= II T lip s, II Y IF’ rt(dy)- 

Thus2 

1, II SY IP’P,(~Y) < II T IP’ s, IIY II”P&‘Y)~ (36) 

In particular, since 

s, II Y II Pt(dY) = w s, II 2 II PIW), 

I trace P”PW) Ml I < Ct+ IB II z Il~d~4 II T II . (37) 

Since the dual space of the space of completely continuous 
operators is the space of trace class operators under the pairing 
(R, S) = trace [RSJ and since the restrictions of test operators to H 
are dense in the space of completely continuous operators, it follows 

’ The inequality 1) Ty II < 1) T II 1) y II is false in general when )( T 11 denotes the norm 
of T aa an operator on H. 



POTENTIAL THEORY ON HILBERT SPACE 173 

from (37) that (D2Ptf) ( ) x is a trace class operator with trace class 
norm 

We shall show that, for a > 0, the function (D”PJ) (x) is uniformly 
continuous from [a, co) x B into the Banach space of trace class 
operators on H. Let e, , e2 ,... be an o.n. basis of H lying in B* and 
let P, be the projection of H onto span (e, ,..., e,). By Lemma 3.2 
of [9] the sequence Pn(D2pp,f) ( x converges to the operator (D2P if) (x) ) 
in trace class norm for each x and t. Now from (10) there follows 

I trace FW%f) 64 - (~2~sf) (~‘)>I i 

zzz 
ll Bwtx + t’ks) - s-lf(x’ + slPz)}((Tz, 2) -- t race TIPIW / 

< (1 Jt-lf(X + P&z) - - s If@ + ~‘~~4]~~1(4)~‘~ I/ T l/z > 

and consequently, 

II (~2Ptf) (4 - PPsf) (4 112 

< 
(S 

B{t-‘f(x + Wz) - - s lf(x’ + s1i2z)}2p~(dz))!1’2. (39) 

Using the boundedness and Lip 1 character of f and the square- 
integrability of (I x ]I with respect to p, , one establishes easily that 
the right side of (39) g oes to zero uniformly as ]I x - x’ /I and j t - s 1 
go to zero for t and s bounded away from zero. Thus the 
map (t, 4 -+ (~“Prf) ( x is uniformly continuous on [a, co) x B into ) 
the Hilbert space of Hilbert-Schmidt operators on H. Hence so also 
is the map (t, X) - Pn(D2ptf) (x) for each n. Now, on the space of 
bounded operators on H with ranges contained in span (e, ,..., err), 
the Hilbert-Schmidt norm and trace class norm are equivalent for 
each it, because if A has rank at most ?t, one readily verifies by dia- 
gonalization of (A*A)i12 that 

/I A /jr = trace [(A*A)1/2] < n1j2[trace (A*A)]l12 =I: 7.A2 /i A II2 

while /I A [I2 < /I A I/i always holds. Thus for each t2, the 
map (4 4 - PG2PJ) ( x is uniformly continuous on [a, co) x B ) 
into the Banach space of trace class operators on H. It suffices to 
prove therefore that Pn(D2p,f) (x) converges to (D”pJ) (x) in trace 
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class norm uniformly on [a, co) x B. Let S be a test operator on B 
and T its restriction to H. Then, if Qn is the continuous extension of 

Pn to B, S(Qn - Qm) is also a test operator and, replacing S by 
S(Qn - Qm) in (35), one obtains 

I trace i?Vn - Pm) PW) (41 I G a-l 1, II S(Qn - QAY II P&W. (40) 

Now the same argument which produced (36), when applied to the 

seminorm II Y IL = I I (Qn - Q3 Y II yields 

I trace FV’, - Pm) P2hf) (41 I G Ct-l jB II IQn - QAY IIP~VY) II T II 

and therefore it follows as before that 

II Pn - Pm) P2~tf) (4 IL< Ct-l” I II (Qn - Qm) z II PAW (41) 
B 

Now, by Corollary 5.2 of [9], ]I (Qn. - Qm) z 11 goes to zero in prob- 
ability3 with respect to p, . Hence, if 

Fn.m(4 = A(@ : II (Qn - Qm> z II > 3, 

then F,,,(h)‘-A 0 as n, m -+ co for each A > 0. Let 

F(h) = A(-$ : II z II > A)). 

If n > m then I] P, - Pm II = 1 and, by Theorem 5 of [9], 
F,,,(h) <F(h) for all p > 0. Thus 

and since 

it follows by dominated convergence that 

s Note that I! (Q,, - Q&Y II may be identified with 11 (P, - P,Jz jlN by Corollary 3 
of [II]. 
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Thus the right side of (41) app roaches zero uniformly on [a, CO) x B 
and the uniform continuity of (D2ptf) (x) is established. 

In order to show that (p,f) ( x is a differentiable function of t at ) 
each t we choose a number S > 0 and a finite-dimensional projection P 
on N with range contained in B* such that, for all x in B, there holds 

as well as 
I trace C(Z - P> P%f) (41 I d 3 

where Q is the continuous extension of P to B. Such a projection P 
always exists for any positive number S by the preceding paragraph. 
B is the direct sum of QB and (I - Q) B and relative to the Cartesian 
product decomposition B = (QB) x (I - Q) B the measure p, is 
for any s > 0 a product p, = pi x pl where pi is Gauss measure in 
QB and p,” is Wiener measure in (I - Q) B. Let s > 0 and put 
e=s-t. Define (pipp’lf) (4 to be JJf<x + u + u) pi(4 p’I(4, 
where the u integral is over QB and the ~1 integral is over (I - Q) B. 
Then, on the one hand, 

(Pi,p’lf) (4 = jj j (z + (f)li2 u + v) PX4PW4 

= j,f (x + (f)“” QY + v -- Q) Y) PtWY) 

where 

= s Bf(x + LCY) PGY), (42) 

L, = (+)1’2 Q + (I - Q) = ((4) Q + (I - Q))“’ = (I + ,t-1Q)1/2. 

On the other hand, 

(P.iPLf) (4 = jjr (x + 24. + (f)lP v) Pw)P:(w 
= j,f b + QY + (+)1’2 (I- B)r) PddY)- (43) 

Consequently, writing 

/ (P&f) (4 - (PJ) (4 - (4) trace (Pp,f) (x) 1 < Z + ZZ + ZZZ (4-4 E 
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where 

I = I ~TpXf) (4 -PJM - G> trace FV2ptf) WI I , 
II = I l ?,f) (4 - MP’lf) (41 I 7 

and 

III = (6) I trace [(I - P> (Wf) (41 I , 

we have first of all III < 6/2. Secondly, from (42) there follows 

I < c-1 
I I B [f(x + LY) -f(x + 391 P&W - (4) trace [W%f) WI j , 

and, by Lemma 3.1, lim,,l I = 0 uniformly in x. 
Moreover, using (43) we have 

II = I~-‘~s[f(x+~)-f(x+]Q+(~~‘2(I-Q)~~)]~,(dy)I 

< C I E 1-l I2 11~ - ]Q + (+)1’2 (I - Q,l Y /(P@Y) 

= C I c 1-l j 1 - (+)l” j 1, II (I - Q) Y II P@Y) 

$m - tv = c s-t II II (I - Q> 2 II P&W B 

Hence 

Thus the lim SUP,,~ of the left side of (44) does not exceed 8 and in 
view of the arbitrariness of 6, Eq. (31) is established as well as the 
uniform differentiability of p, f. 

Finally we assume that, in addition to being uniformly Lip 1 on B, 
f has bounded support. From Theorem 2, Eq. (14) we have 

II P2Gf) (4 Ill < 1; II P”p,f> (4 Ill cit. 

From the estimate (38) it follows that 

I 
1 

II (~2Ptf) (4 III tit < cQ* o 
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Now returning to the equality in (34) we note that, since L, -+ I in 
B-operator norm as E --+ 0, I] L;l I/ < 2 for all sufficiently small E 
so that if the function y +f(x + y) vanishes for Ij y I] > N then 
f(x + L,y) vanishes for II y jl > 2N when E is sufficiently small. Thus 

I trace [T(Pp,f) (x)] 1 = 2 ljz 1 c-1 1 ,,v,,<2NIf(S +-LY) -0 +Y)lPt(dY) 1 

< 2c li+i c-1 
I s, ,,y,l<2N Ilk -Y II PtVY) 1 - 

The discussion following (34) applies without change to yield 

instead of (35). 
Now 

s. ,(u,,<2N II SY IIPtVY) G h(llY II < 2W”” (S, II sy /12P&$p, 

and from (36) this is dominated by 

[IMY II < 2W11’a [I, II Y II%@Y)]~‘~ II T I/ . 

Thus in view of the degree of arbitrariness of T we have 

II P2Ptf) (4 III < Ct-1’2r$411Y II < 2W”” [j, II x llv*w)]1’2. (45) 

By (18) the right side of (45) g oes to zero faster than t+/* for all n. 
Hence Jy ]I (D2plf) (x) II1 dt < co. Thus (PGf) (x) is a trace class 
operator. Moreover, 

trace (D2Gf) (x) = ,y trace [(DYJ) (x)] dt 

= 2 f$&m[(PRf) @) - hf) @)I 

= - 2f(x). 

This concludes the proof of Theorem 3. 
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We have already pointed out that the semigroup of measures p, 
are strongly continuous when acting in the Banach space a of bounded 
uniformly continuous functions on B. The following corollary is 
merely a restatement of part of the preceding theorem. 

COROLLARY 3.1. Assume 11 . 11 is in L2(p,). Iff is a bounded uniformly 
Lip 1 function on B then, for any s > 0, the function p, f is in the domain 
of the infinitesimal generator A of the semigroup p, when the semigroup 
acts in the space 171. Moreover, 

(APL0 (4 = w trace W2Psf) Ml. (46) 

COROLLARY 3.2. Assume 11 . II is in L2(p,). The set of functions u 
satisfying the following four conditions is dense in the domain of A in the 
graph norm. 

(i) u is in the domain of A, 

(ii) D2u(x) is trace class for each x in B, 

(iii) (Au) (x) = (+) trace [D2u(x)], 

(iv) the map x --+ D2u(x) from B into the Banach space of trace 
class operators is bounded and unaformly continuous. 

The proof relies on the following lemma. 

LEMMA 3.2.1. A bounded unsformly continuous real-valued function 
f on a metric space (M, p) can be unsformly approximated by bounded 
Lip 1 functions with supports contained in the support off. 

Proof. By considering max (f, 0) and - min (f, 0), it suffices 
to consider only nonnegative functions. Given E > 0 let at;, be the 
collection of all nonnegative uniformly continuous functions f on M 
such that sup {f(x) : x E M} < nc. We shall show by induction on n 
that for every function f in I!&, n = 2, 3,... there is a Lip 1 
function g such that supr 1 f(x) - g(x) I < 2~, and support of g is 
contained in support of f. The assertion is clearly true if n = 2 for 
then one can take g = 0. Assuming the assertion is true for all n < k 
we prove it is true for n = k + 1 where k 3 2. Let f be in cplk+r but 
not in 6Tk. Iff - (infzf( x )) is in GIk we are done. Thus we may assume 
inf,f (x) = 0. Let A = (y : f (y) < (k - 1) E}. Then A is not empty. 
There exists a number 6 > 0 such that 1 f(x) -f(y) I < E whenever 
p(x, y) < 6. Thus if C = (x : f (x) > ke} then p(x, A) > 6 for all x 
in C. Let v(x) = &F min (6, p(x, A)). Then 0 < v(x) < E and 
v(x) = 0 on A and v(x) = E on C. v is a Lip 1 function and 
O<f-v<kE. Thusf- v is in GZk and support (f - v) is con- 
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tained in support f. By the induction hypothesis there is a Lip I 
function g such that supz /f(x) - (V(X) + g(x)) / < 26, while support 
g is contained in support (f - u). Thus z’ + g is the desired Lip 1 
function with support contained in support f. 

Proof of Corollary 3.2. Let ZI be a function in the domain of A. 
Put g ==: Ao .- 7:. Then v = (A - I)-lg, i.e., 

n(x) = - 1; e-%u> (4 dt. (47) 

g is a bounded uniformly continuous function on B. Given E > 0, let f 
be a bounded Lip 1 function on B such that supz 1 f(x) - g(x) j < E. 
Let u = (A - I)-lf, i.e., 

U(X) = - 1; e-“(hf) (4 dt. (48) 

Now /I (A - I)-’ /j < 1 so that 11 u - v llco < E. Moreover, 

II Au - A I/m < II (A -4 (u - 4 l/m + II u - 7J l/m 

< Ilf - g II00 + II u - v /ICC -=c k 

Hence functions of the form (48) where f is a bounded Lip 1 function 
are dense in the domain of A in the graph norm. It remains to show 
that u satisfies (ii)-( By Lemma 2.1, 

where the integral converges in Hilbert-Schmidt norm. By Theorem 3 
the integrand is a trace class operator for each t and is moreover 
continuous as a function of t on (0, co) into the space of trace class 
operators. The estimate (38) shows that 

Hence u satisfies (ii). Moreover by Theorem 3 the map 
(4 4 - (D"Ptf) (4 is uniformly continuous on [a, co) x B into 
the space of trace class operators for each a > 0 and, since 
S” e-W2Ptf) (x) dt approaches D2u(x) in trace class norm uniformly 
0; B by (38), it follows that D%(x) satisfies (iv). 



180 

Finally, 

(&) trace [D%(x)] = - 1: emt ($) trace [(PPJ) (x)] dt 

=- 
s 

m e-ta(hf> @> & 
0 at 

= - F%tf> 641; - [e-w) (4 dt 

= f(x) + 44 

aed since f = (A - I) u, (iii) now follows. 
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