
Science of 
Computer 

ELSEVIER Science of Computer Programming 26 (I 996) 59-78 
Programming 

Massive parallelization of divide-and-conquer algorithms 
over powerlists 

Klaus Achatz, Wolfram Schulte 
Fakultiit fiir Imformatik, Unicersitiit Ulm, D-89069 Urn, Germany 

Abstract 

We present transformation rules to parallelize divide-and-conquer (DC) algorithms over pow- 
erlists. These rules convert the parallel control structure of DC into a sequential control flow, 
thereby making the implicit massive data parallelism in a DC scheme explicit. The results given 
here are illustrated by many examples including Fast Fourier Transform and Batcher’s bitonic 
sort. 

1. Introduction 

It is well known that the main problem in exploiting the power of modern parallel 
systems is the development of correct, efficient and portable programs [8,14]. The most 
promising way to treat these problems seems to be a systematic, formal, top-down 
development of parallel software. 

In this article we choose transj~rmational programming to develop parallel pro- 
grams, which is a methodology for constructing correct and efficient programs from 
formal specifications by applying meaning-preserving rules [13]. Starting with an oper- 
ational specification, we derive programs for the massively datu parallel model, which 
assumes a large data collection that needs to be processed by a number of processor 
elements (PEs), one for each member in the collection. The same set of instructions 
is concurrently applied to multiple data elements (SIMD), i.e., a single control flow 
guides the computation on all PEs. 

As the problem adequate structure, we restrict ourselves to powerlists [lo]. Many 
important data parallel algorithms, e.g., Fast Fourier Transform, Batcher’s bitonic sort, 
and prefix-sum algorithms, have surprisingly concise recursive descriptions using pow- 
erlists. Moreover, simple algebraic properties of powerlists support a formal reasoning 
about these algorithms. Besides the usual functions over powerlists, certain high-level 
operations are introduced, which can be interpreted as communication operations on 
the machine level. 

0167-6423/96/$15.00 @ 1996 Elsevier Science B.V. All rights reserved 
SSDZO167-6423(95)00022-4 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82414129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


60 K. Achatz, W. SchultelScience of Computer Programming 26 (1996) 59-78 

As the starting point of our strategy, we choose a very successful tactic for design- 
ing parallel algorithms: divide-and-conquer [ 171. DC algorithms are particularly suited 
for parallel implementation, because the emerging subproblems can be solved indepen- 
dently and thus in parallel. Obviously, DC algorithms have explicit control parallelism, 
i.e., separate independent parts can be processed simultaneously by distinct CPUs. 
However, the SIMD model of computation does not allow concurrent control flows. 
Therefore, we aim at exploiting the inherent data parallelism. So, we present a set of 
semantics preserving transformation rules, which make the implicit data parallelism 
in a DC scheme over powerlists explicit and, by that, introduce topology independent 
communication operations on powerlists. 

The rest of this article is organized as follows. Section 2 briefly presents the concept 
of powerlists. The new transformation rules towards a massively parallel computation 
are introduced in Section 3. In Section 4, we show the applicability of our approach 
with several examples. Finally, some remarks are given in Section 5. 

2. Powerlists 

Generally, lists can be used to express data parallelism in an abstract way [5]. Each 
element of the list resides on a particular PE. Data-parallel operations are defined 
as functions over lists, which are either abstractions of elementary communication- 
independent computations on all PEs or communication operations, which exchange 
values using the interconnection network. In this section we explore this approach. In 
particular, we introduce powerlists as defined by Misra [lo], which permit succinct 
descriptions of DC algorithms. 

2.1. Data structure 

The basic data structure - suitable for describing DC algorithms - is the powerlist. 
A powerlist is either a list of one element or constructed by two powerlists of the 
same type and the same length. This always results in powerlists of length 2”, for 
some n 30, which restricts our theory but is appropriate, since all known massively 
parallel machines work with 2” PEs. 

Powerlists are joined in two different ways to create longer powerlists. If p,q are 
powerlists of the same length, then 
_ plq is the powerlist concatenating p and q, and 
_ pwq is the powerlist formed by successively taking elements from p and q, starting 

with p. 
Using two constructor sets allows us to formulate many algorithms on powerlists 

in a natural way. Algorithms over powerlists follow the DC paradigm, where each 
division yields two halves that can be processed in parallel. 

In our examples, the sequence of elements of a powerlist is enclosed within angular 
brackets, thus (1) is the singleton containing the item 1, and ([ 11, [2,3]) is a powerlist 



K. Achatz, W. Schultei Science of Computer Programming 26 (1996) 59-78 61 

of length 2 containing two linear lists, which are enclosed in square brackets. The 
operation 1 is called tie, and w is called zip. Examples of their use are: 

(0) I (1) = (%I) 
(0) w (1) = ((21) 

(O,l) I (~3) = (0, ~3) 

(O,l) w (2,3) = (0~ ~3) 

Powerlists obey several laws, which are described in detail in [lo]. 

2.2. Parallel operations over powerlists 

In notation we follow the standard of lazy functional programming languages, like 
Haskell or Miranda. For example, we write function application in curried form, as 
in f x y, which is equivalent to ( f x) y. The binding power of infix operations is 
lower than that of function applications. We define functions using pattern matching to 
decompose the argument list into its component parts. Decomposition uses 1 and ca. If, 
in addition, assertions on parameters are used, they are given in the surrounding text. 

The following functions over powerlists are used to specify programs. They will be 
removed during program development: the operator # returns the length of a powerlist. 
The first-order functions first and lust extract the first and last element from a powerlist, 
respectively. A powerlist of n copies of identical elements is created by the function 
copy. Likewise, the fnnction dup creates a powerlist of n identical powerlists. 

As elementary data parallel operations, we provide the parallel application * and 
the parallel conditional join. The apply-to-all operator * applies a scalar function f to 
every element of a powerlist independently, and therefore reflects the massively data 
parallel programming paradigm in the most obvious way. Its definition is 

f * (4 = (f 4 

f*(PIq)=f*Plf*q 
(1) 

Also, it can be shown that 

f*(pwq)=f*pwf*q (2) 

To shorten the presentation, the operator * is also used to take an n-tuple of pow- 
erlists, having equal length, into a new powerlist in which corresponding elements are 
combined using any given n-ary scalar function. 

In a data parallel environment, conditionals are different from their sequential coun- 
terparts. The action of a parallel conditional can be summarized this way: on every PE 
the condition is evaluated; in components where the condition is true, the then-branch 
is executed, otherwise the else-branch. A specialization of a parallel conditional is the 



62 K. Achatz, W Schulte I Science of Computer Programming 26 (1996) 59-78 

PO - 0 PO 

PI - 0 Ql 

P2 0 - Q2 

P3 0 - Q3 

P4 - 0 Q4 

P5 - 0 q5 

P6 0 - 46 

P? 0 - 47 

PO 
PI 

P2 

P3 
P4 
P5 

P6 

P7 

PO 

Pl 

P2 

P3 
P4 

P.5 

P6 

P7 

PO 

Pl 

P2 

P3 
P4 

P5 

P6 

P7 

PO00 - PO00 
PO01 PI00 
PO10 PO10 

PO11 PI10 
PlOO PO01 
PI01 PI01 

PllO PO11 
PI11 o--*0 Plll 

(a) join 2 (b) corn 2 (c) d&L 2 (d) inv 

Fig. 1. Powerlist Operations: (a) join 2 p q, (b) corr 2 p, (c) distL 2 p, (d) inu p 

operation join (see Fig. l(a)). It takes a pair of powerlists p, q, having equal length, 
into a new powerlist, which consists of alternate slices of p and q each of length 
n = 2’, Odi < log,(#p). We define join by 

join n (P 14) (r 1s) = P I s if n=#p 

join n (p 1 q) (r I s) = join n p r 1 join n q s if n < #p 
(3) 

Like the functions defined in the next subsection, join is a partial operation. Since 
these functions are introduced during program development, definedness of the resulting 
programs must be guaranteed by the appropriate transformation rules (cf. Section 3). 

2.3. Communication oriented powerlist operations 

A very wide range of scientific problems on powerlists can be computed under the 
DC scheme using a regular communication pattern. Naturally, some communication 
patterns are better suited than others for developing parallel algorithms. Essentially, they 
have structural properties that make it easier to describe the data movement operations 
necessary for parallel computations. The following communication operations may be 
the most suitable ones. 
Correspondent communication - modeled by function corr n p - exhibits a butterfly- 
like communication pattern: for a particular value of n, each PE communicates with 
each PE whose index differs in the nth bit from the right. An example is depicted in 
Fig. l(b). Its definition is straightforward: 

corr n (P I 4) = 4 I P if n = #p 

corr n (p I q) = corr n p I corr n q if n < #p 
(4) 

First or last communication can be realized using a correspondent communication 
followed by a directed broadcast. A directed broadcast operates from right to left, 
where the value of the rightmost element is distributed to the left, e.g., distL n p 
copies the value of the last element of each slice of length n to its left neighbors (see 
Fig. l(c)). The function distR operates from left to right. Directed broadcast is related 



K. Achatz, W. SchulteIScience of Computer Programming 26 (1996) 59-78 63 

to copy by the following definition: 

distL n p = copy n (last p) if n=#p 

distL n (p(q) = d&L n p 1 distL n q if n<#p 
(5) 

The powerlist operations corr, distl, distR and join, mirror the need of our DC 
scheme to exchange data among PEs and to select different data elements on each PE, 
respectively. They were defined using I. We have decided to take this representation 
as the natural one, because it reflects the row-major indexing on 2- and 3-dimensional 
array computers and also the indexing scheme on hypercubes, which are the most 
important data parallel architectures. Using 1, construction and decomposition do not 
change the elements’ order and therefore cause no communication costs. 
Inversion exhibits a communication pattern induced by the construction or decomposi- 
tion of a powerlist using w. The effect of inversion inv on the indices of p is depicted 
in Fig. l(d): an element with index b in p has the reversal of bit string b in inv p. 
We have 

inv (x) = (x) 

inv (plq) = invpwinv q 

or, alternatively 

inv (x) = (x) 

inv (pwq) = invplinv q 

(6) 

(7) 

Operation inv is often used to permute the input or output of a computation that uses w, 
e.g., in the Fast Fourier Transform (cf. Section 4.6). Note that inv is rather expensive 
on array computers or hypercubes and therefore, should be avoided if possible. 

2.4. Properties 

Powerlists fulfill many properties, where especially the following two are needed in 
our parallelization rules (cf. Section 3): Let f denote a function, which maps powerlists 
to powerlists. The function is said to be length preserving, if the length of the output 
powerlist is equal to the length of the input powerlist: #( f p) G #p. It is said to be 
distributive, if it distributes through concatenation of powerlists: f ( p 1 q) E f p / f q. 
The generalization to functions taking a tuple of powerlists yielding a single powerlist is 
straightforward. Another generalization concerns the distributivity of functions like corr 
or distl, which work on slices of length n. This time, let f n denote a function, which 
maps powerlists to powerlists. If it distributes through a powerlist p I q, where n ,<#p, 
then the function is said to be distributive module n, also called slice-distributive. 

The family of apply-to-all operators are distributive, the family of apply-to-slices 
operators, corr, distl, distR and join are slice-distributive, and all previously mentioned 
operators and functions, mapping powerlists to powerlists, are length preserving. 



64 K. Achatz, W SchulteiScience of Computer Programming 26 (1996) 59-78 

3. Parallelization 

The recursive structure of powerlists naturally leads to divide-and-conquer algo- 
rithms. In this section, we discuss the idea and assumption of our DC paralleliza- 
tion rules followed by their formal account. Finally, we formulate our parallelization 
strategy. 

3.1. Idea 

DC is a well-known tactic for designing parallel algorithms. It consists of three 
steps: 

(i) If the input is primitive, solve it trivially. 
(ii) Otherwise, recursively solve the subproblems, defined by each partition of the 

input. 
(iii) Finally, compose the solutions of the different subproblems into a solution for the 

overall problem. 
A typical instance of this pattern is the merge of two bitonic powerlists. A pow- 

erlist is said to be bitonic if it either monotonically increases and then monotonically 
decreases, or else monotonically decreases and then monotonically increases. For ex- 
ample, the powerlists (5,7,6,4) and (8,3,2,5) are both bitonic. 

The function bmJ merges two bitonic sequences by applying the minimum and 
maximum function pointwise to the halves of the given powerlist and then sorting the 
results recursively. 

W W = (x) 

bml(p 14) = bml(min* P 4) I bml(max* P 4) 

(5, 7, 6, 4) (5, 7, 6, 4) 

min max 

(6, 4) (6, 4) 
= = 

(5, 4) 03, 7) 

1 
’ (5, 7, ‘3, 4) (6, 4, 5, 7) 

( min ) join 2 ( max ) 

(f% 4, 5, 7) (5, 7, 6, 4) 

(5, 4:6, 7) 

(5) (5) (6) (6) (5, 4, 6, 7) (4, 5, 7, 6) 

min max min ma.x ( min ) join 1 ( m= ) 

(4) (4) (7) (7) (4, 5, 7, 6) (5, 4, 6, 7) 
= = = zz = 

(4) (5) (6) (7) (4, 5, 6, 7) 

(4 (b) 

Fig. 2. (a) DC computation of brnl (5,7,6,4), (b) data parallel computation of bmJJ 4 (5,7,6,4). 



K. Achatz, W. SchultelScience of‘ Computer Programming 26 (1996) 59-78 65 

Fig. 2(a) shows the computation for the expression bml(5,7,6,4), where the arrows 
represent recursive calls. Obviously, bmJ, exhibits cascading recursion and explicit data 
decomposition using I. However, this pattern is not suitable for massively parallel 
execution, since it has multiple control flows. In order to transform this scheme into 
a corresponding data parallel program, we have to introduce a sequential control flow, 
i.e., we must transform the cascading recursion into linear, or - even better - tail 
recursion, and we have to make the explicit data decomposition implicit. 

To this end, we transform bml p into the equivalent function bmlJ (#p) p. Fig. 2(b) 
shows the data parallel computation of bmJ,l 4 (5,7,6,4). The result of each call of 
bm.!,L is the same as the result of the parallel calls of bml, shown in the same row - 
modulo concatenation. However, the “way” the result is computed differs. 

Contrary to the DC tactic, of which brnl is a typical instance, the data parallel 
computation of bml,L proceeds as follows: 

(i) If the termination condition is reached, the problem is trivially solved. 
(ii) Otherwise, one minimum and maximum computation on all data elements is per- 

formed, where correspondent slices are provided using cot-r, and the solutions of 
the different computations are composed into a partial solution for the overall 
problem using join. 

(iii) Finally, the remaining subproblem is recursively solved. 
The result of the transformation, whose rules are described below, yields the follow- 

ing computation: 

bml,L 1 p = p 

bm-U_ (2n) p = bmJJ. n (join n (min * p q) (max * q p)) 

where q = cow n p 

bml,L includes an additional parameter n, which determines the recursion depth. Thus, it 
is not necessary anymore to decompose the powerlist p - its length remains constant. 
On the other hand, the pointwise applications of min and max have to be performed 
on the appropriate slices of length n. This is achieved by introducing correspondent 
communication q = COYY n p. The scalar operations min and max are applied pointwise 
to p and q, and the resulting two powerlists are joined by successively taking alternate 
slices of length n from the minimum and maximum list, starting with the former. A 
detailed description of the parallelization of Batcher’s bitonic sort can be found in [l]. 

The function bml computes the result in a top-down fashion. Alternatively, DC 
algorithms can compute the result during the bottom-up phase, or even in both phases. 
In the following subsection, we will explore the different ways in which DC algorithms 
operate and present a set of transformation rules for their parallelization. 

3.2. Rules 

The parallelization rules will be represented as conditional equations between higher- 
order functions. 



66 K. Achatz. W SchulteiScience of Computer Programming 26 (1996) 59-78 

3.2.1. Input patterns 
We define the DC input patterns as the following higher-order functions: FJ. exhibits 

a top-down, and F’/’ a bottom-up computation. The arguments - and - stand for the 
destructor and constructor, respectively, and can either be 1 or w. FL has the following 
form: 

Fl -- stIr=fJ 

where fl s (4 = (t s 4 

fl s (P - 4) =fl (6 s) (I 3 P 4) -fL (6 3) (y s P 4) 

(8) 

If the input is a singleton list, the problem is solved trivially by t, otherwise the input is 
decomposed using -, the subproblems are preadjusted by 1 and r, solved recursively, 
and then constructed using -. Additionally, the scalar s is updated by applying the 
function 6. It is used as an additional parameter for the trivial and preadjust functions 
(cf. below). 

The function bmJ can be expressed as an instance of FL. However, bml does not 
use the scalar s and consequently does not need the function 6. So, we choose as 
arbitrary value . for s and use the identity function id for 6: 

bmlzFJ[Iidtlr . 

where tsx=x 

1 s p q=min* p q 

r s p q=max* p q 

The functional FT has the same parameter list as FL: 

FT -- Jtlr=fT 
where f?‘ s (4 = (t s 4 

J’Ts(p-q)=lsuw-rrvw 

where (0,~) = (fT (6 s) p,fT (6 s) q) 

(9) 

As in the top-down case, if the input is a singleton list, the problem is solved trivially 
by t. Otherwise the input is decomposed, the scalar s is computed using 6 and the 
subproblems are recursively solved. During the bottom-up phase the subsolutions are 
postadjusted by 1 and Y and the powerlist is (re)constructed. 

The update function 6 in FJ and FT is computed before the recursive calls take 
place and thus cannot be merged with the bottom-up computation of (9) - the additional 
parameter s and 6 increase the power of the input patterns. Additionally, to exploit full 
parallelism, the same update function 6 must be applied to s in both recursive calls. 

In FL and FT it is assumed that the preadjust and postadjust functions are length 
preserving. This is a perfectly reasonable assumption, since every element of a powerlist 
resides on a particular PE and we can neither create nor delete PEs. 

These patterns are powerful because the preadjust and postadjust functions receive 
the complete input and output sequence, respectively. Since the adjust functions must 



K. Achutz, W SchultelScience of’ Computer Programming 26 (1996) 59-78 67 

be length preserving, only “balanced” algorithms can be derived. These assumptions 
rule out certain important non-balanced algorithms, as for instance Quicksort. However, 
algorithms that are either not balanced or depend on particular values of the powerlist 
are not suitable for massively data parallel computation. They require - in contrast to 
our adjust functions - irregular communication patterns to get things in the right place, 
which normally causes high communication costs. Therefore, such algorithms are not 
considered relevant for our current study. 

3.2.2. Rules: Replacing zip by tie 
Many algorithms can be expressed quite nicely using w as constructor or destructor. 

However, we already observed in Section 2.3 that w is often unnatural when used 
as a basis for parallelism. Thus, we should transform w to I. This is the task of the 
communication primitive inv. 

If in FL and FT the constructor and destructor, respectively, is w, we replace it by 
1 and permute the output and input, respectively, into the right order using inv. 

Fl - wdtlrsp=inv(FJ - IStlrsp) 
F;t w - dtlrsp=FTI - 6 t I r s (inv p) (10) 

Moreover, if the adjust functions 1 and Y are distributive, similar equations hold for 
FJ. and Ff using w as their destructor and constructor, respectively, 

FJ w - dtlrsp=FLI - 6 t 1 r s (inv p) 

F1‘ - wdtlrsp-inv(FT - ldtlrsp) (11) 

If constructor and destructor are both formulated using w, we can apply the rules from 
above. However, we can specialize the derived rules under the assumption, that the 
adjust functions are distributive. If this condition holds, the adjust functions do not 
exchange values and thus can be computed using either I or W, (cf. (1) and (2)). If, in 
addition, we reverse the computation order, i.e., from top-down to bottom-up or vice 
versa, we can eliminate the pre- and postprocessing by inv, since inv o inv E id. Thus, 
a top-down (bottom-up) computation using w is equivalent to a bottom-up (top-down) 
computation using 1, provided 6 is bijective. We have for a powerlist p of length 2” 
with n > 0: 

FJ, w wfitlrsp s (t(Ps))*(FT / 16-‘t’lr(P’s)p) 
Fj’ w wdtlrsp 5 Fj, I Id-‘t’lr(Z-‘s)((t(Ys))*p) (12) 

where t’ s = id. When the computation changes from FJ, to FT, we have to apply 
the trivial function t, which is performed in the base case of FL, to the result of FT. 
The actual parameter of t must be the value of s at termination of FL, i.e., 6” s. 
FT is started with the actual value 8-l s, which is the last value of s in FL before 
termination. Since the direction of the computation is swapped, the sequence of actual 
values of s is reversed by applying 6-l to s. The corresponding fact holds for the dual 
case, changing the bottom-up computation into a top-down one. 



68 K. Achatz, W. Schultel Science of Computer Programming 26 (1996) 59-78 

This equivalence is used quite often. For instance, the bitonic merge algorithm is 
typically presented as a bottom-up computation using W, see e.g. [3]. 

The rules (10) and (11) can be proved using structural induction on the argument 
powerlist, whereas (12) is proved by computational induction (cf. [2]). 

3.2.3. Output patterns 
After having eliminated w, we now present the output patterns of our parallelization 

rules, which implicitly use / as their basic constructor. 
The function FJ,l describes the tail-recursive top-down computation with pre- 

adjustment, while Ffi is the tail-recursive bottom-up computation with post-adjustment. 
F.lJ is defined by 

FI,L6tIrsp=f$#psp 
where 

fUlsp =(tS)*P 
f4 (2n) s P = f4 n (6s) (bin n ((1 s> *n P 4) (CT 3) *n 4 P) 

where q = corr n p 

(13) 

In the base case, where n = 1, the trivial function t is mapped over p. In the recursive 
case, where n 22, the preadjust functions 1 and r are applied over slices of length n of 
the argument powerlist p and the permuted powerlist q = corr n p. Then the different 
subsolutions are combined using join n. 

Mapping the adjust functions over slices is done by the auxiliary apply-to-slices 
operator *n. It is a variation of the apply-to-all operator and takes a powerlist, in 
which corresponding slices of fixed length are combined using any length preserving 
function, into a new powerlist, i.e.: 

f*n P=fP ifn=#p 

f *n (p14) = f +k Plf *n 4 ifnd#P 
(14) 

This operator is only used during intermediate steps of the development and is elim- 
inated, if the adjust functions are slice-distributive (cf. Section 3.3). A generalization 
to operators taking n-tuples of powerlists is straightforward. 

The function bmAJ can be expressed as an instance of FJJ-, namely, 

bmA,t#pp-FJJidtIr .p 
where tsx =x 

lspq=min*pq 
r s p q = max* p q 

The functional Ffi has the following form: 



K. Achatz, W. SchultelScience of’ Computer Programming 26 (1996) 59-78 69 

F*6zrsp=ffi#plsp 
where 

ffilnsp=p 
fh Pm) n s P = ffi m (2n) (6s) (join n ((I s) *n P 4) 

((r s> *n 4 P)) 
where q = corr n p 

(15) 

Contrary to FJJ, Ffi starts the iteration with slice length 1 and duplicates the slice 
length n in each step. The additional argument m solely controls termination. 

3.2.4. Rules: Parallelization 
As already apparent from the running example, we have the following correspon- 

dence between FL and FJJ: 

FL I I =F4 (16) 

The cascading recursion of Fj, 1 1 is equivalent to the tail-recursive computation of FAJ 
suitable for massively parallel processing. 

The correlation of the bottom-up computation Ff and the tail-recursive computation 
Ffi is more complicated due to the scalar function 6. In FT the scalar s is computed 
during the top-down phase, but used during the bottom-up phase. However, in Ffi 
there is only a single pass. This problem can be overcome, by calling Fq with the 
value P’s, where #p = 2”, which is the last value of s in Fr before termination, 
and by computing the actual parameter s in reverse order, i.e., by applying 6-l to s. 
In addition, p is preprocessed by t, using as its actual parameter 6” s, i.e., the value 
of s at termination of FT. We have 

FT ( I 6 t 1 r s p E F$ 6-l I r (~5’~’ s) ((t (bn s)) *p) (17) 

Note that the above transformation rules can considerably be simplified for particular 
instances of the parameters. For example, if the parameter s is not needed, function 6 
and all applications of s can be eliminated. 

The rules of this subsection can be proved by computational induction, provided that 
the adjust functions are length preserving (cf. [2]). 

3.3. Strategy 

The overall goal of our approach is to transform a given DC algorithm on powerlists 
to an efficient tail-recursive computation suitable for massively parallel processing. Let 
f be a given DC algorithm on powerlists, fl and f$ the according DC functions of 
the input and output patterns for our transformation rules, where I and $ indicate either 
a top-down or bottom-up computation. The strategy consists of five steps, which are 
discussed in detail below: 

(i) Modify f, to match the input fl. 
(ii) Rewrite fI, to replace w by I. 



70 K. Achatz, W. SchultelScience of Computer Programming 26 (1996) 59-78 

(iii) Parallelize J’I to f‘$. 
(iv) Specialize f$, to eliminate *n. 
(v) Optimize f$, to increase parallelism. 

Ad (i). Many algorithms on powerlists do not a priori match the input pattern fI, 
either because they only compute a scalar instead of a powerlist, or they take only 
scalar arguments instead of scalars and a powerlist. These algorithms can simply be 
reformulated. If the result of f is a scalar, distribute the result to all PEs, i.e., f 1 p s 
copy #p (f p). If the input off is only a scalar s instead of a powerlist, two cases can 
be distinguished. First, ifs only controls termination, it can be replaced by a powerlist 
of appropriate length, i.e., fI (copy #(f s) .) E f s, where . denotes an arbitrary value. 
Second, if s contributes to the computation, an additional powerlist parameter must be 
introduced, i.e., f 1 s (copy #(f s) .) E f s. Finally, note that matching requires the 
adjust functions to be length preserving. 
Ad (ii). Powerlist algorithms can nicely be expressed using either 1 or W. However, 
we decided to take the former as the primitive one (cf. Section 2.3). Therefore, the w 
operations offI are transformed into 1 using the rules of Section 3.2.2. 
Ad (iii). Having eliminated W, we can apply our parallelization rules (16) and (17), 
which make the implicit parallelism in f 1 explicit, by transforming the cascading re- 
cursion into tail-recursion and by introducing topology independent communication 
operations in f$. 
Ad (iv). To apply the adjust function concurrently on all PEs inf@, the apply-to-slices 
operator *n should be eliminated. Let f be a length preserving adjust function. Two 
cases can be distinguished: if f is distributive, then f an p E f * p holds. If f has 
a slice-distributive generalization f', with property f' #p p E f p, then we have: 
f *,, p E f’ n p. The generalization to functions taking a tuple of powerlists and 
yielding a single powerlist is straightforward. Note that by definition the derived func- 
tions f 0 off 2 are slice-distributive. We have f-U_ #p p E f I p and fh #p 1 p E f T p. 

Sometimes the adjust functions have to be rewritten, so that they become either dis- 
tributive or slice-distributive. If the adjust function f uses first or last communication, 
e.g., is defined by f p q = ((last p)@) * q, then f has the following slice-distributive 
generalization using broadcast: ,f’ n p q = @ * (distL n p) q. If f with body e only 
depends on the length of its argument powerlists, then we define a new functioni, 
where f^ n = e[n for #p] such that f^ #p z f p. The slice-distributive generalization 
f' of f then reads: f' n p = dup (%) (f" n). 
Ad (v). Finally, the adjust functions 1 and r of the output pattern off $ may share 
computations that will be processed sequentially, although they could be merged and 
processed concurrently. This is the aim of our horizontal fusion tactic. Using the “for- 
get” property of join n p q, which only takes half the elements of p and q, respectively, 
we can transform the output pattern off 0, to increase parallelism further. If p and q 

are equal then join has no effect, i.e., join n p p E p. If p and q are preprocessed by the 
same slice-distributive function h, then these two preprocessing steps can be merged 
into one: join n (h n p) (h n q) E h IZ (join n p q). If p and q are processed by 



K. Achatz, W. SchultelScience of Computer Programming 26 (1996) 59-78 71 

distinct slice-distributive functions g and h, then by applying join n (g IZ p) (h n q) E 

join n (g n (join n p q)) (h n (join y1 p q)), we can try to merge the computations 
of p and q. Again, the last two equations can be generalized to adjust functions taking 
tuples of powerlists. Note that horizontal fusion leads to an optimization only if the 
shared computations are more expensive than the operation join. 

This strategy is powerful, although it is not complete, i.e., we cannot prove that it 
always succeeds. However, we did not find a useful function where the strategy has 
failed. 

4. Examples 

We show the usefulness of the presented strategy by several algorithms on powerlists, 
which will be parallelized to work on massively parallel computers. As input, we mainly 
choose the examples given in [lo]. These include such well-known examples as the 
Parallel Prefix and the Fast Fourier Transform. A more complex example, namely the 
construction of a convex hull is treated in [I]. 

To shorten the presentation, superfluous parameters of the input and output patterns, 
given in Section 3.2, are omitted and input and output instances are presented in a 
simplified form. Only in the first example, the derivation is carried out in detail. In 
later subsections, the strategy is applied without explicitly being mentioned. 

4.1. PreJix sum 

One of the simplest and most useful building blocks for parallel algorithms is the 
parallel pre$x function [4,6], which takes a binary, associative operator @, a powerlist 
p of IZ scalar elements (PO,. . , p,_l) and returns the powerlist (~0, po $ ~1,. . . , p,-, 8 
PI e... f3 Pn-I ). 

The following function ~$7 defines a scheme for computing the prefix sum of a 
powerlist p: 

PST @ (4 = (4 
PST @(P I q) = v I ((last v)@) *w 

where (v, W) = (psT @p,psT CB q) 

We follow the five steps of our strategy (cf. Section 3.3) to derive a massively parallel 
prefix sum computation. 
Step (i): Apart from the missing parameter s, PST @ matches the input pattern (9) 
with the following instantiation: 

tx-x 

lPq=P 
r p q = ((last p>@> *q 



72 K. Achatz, W. SchulteiScience of Computer Programming 26 (1996) 59-78 

Step (ii): Since there is no w-constructor or -destructor in ps?, we can immediately 
proceed with the next step. 
Step (iii): The cascading bottom-up computation of PST @ is replaced by a tail- 
recursion using (17) which results in: 

PsT@P=Psll #P 1 P 
where PSI? 1 n P = P 

psh @ml n P = PS* m WI (join n (I *n P 4) (r *n 4 P)> 
where q = corr n p 

Step (iv): The post-adjust function 1 as the projection on the first argument is obviously 
distributive. Thus, we obtain 1 *,, p q E I* p q = p. A closer inspection of r reveals 
that it is neither distributive nor slice-distributive. According to our strategy, a slice- 
distributive generalization of Y is: Y’ n p q = @ * (d&L n p) q. Thus, we have 
Y *n p q = Y’ n p q. 

Step (v): I and Y have no computation in common. Therefore, a further optimization 
using horizontal fusion has no effect. The final version reads: 

PSI? 1 n P = P 
psQ (2m) n p = psfi m (2~2) (join n p (@ * (d&L n q) p)) 

where q = corr n p 

4.2. Reversal 

We continue with a most simple function revj,, which reverses the order of elements 
of the argument powerlist. The input scheme 

revl (x) = (x) 

revl (p I 4) = 4 4 I rev1 P 

is transformed to a parallel version by applying (16) which, after horizontal fusion, 
results in: 

revJ p = rev& #p p 

where rev.& 1 p = p 

rev& (2n) p = rev.& n (corr 12 p) 

4.3. Reduction 

Reduction is a higher-order function that takes a binary, associative operator @ and 
a powerlist p = (PO,. . . , pn_1) yielding (PO @ . . . @ pn_ 1). Its definition over powerlists 
is 

red @ (x) = x 

red@(pIq) = (red@p) @ (red@q) 



K. Achatz, W. SchultelScience of Computer Programming 26 (1996) 59-78 73 

This scheme does not quite fit our pattern, because the result is a single element 
instead of a whole powerlist. According to our strategy, we start with redT @p = 

copy #p (red@p), which easily can be shown to have the following recursive definition: 

redt @ (x) = (x) 

red?‘ @(P 14) = u I u 
where u = CB * (redt @p)(redt $ q) 

Applying (17) in addition with horizontal fusion, we obtain the parallel version 

redt $ p = red* 63 #p 1 p 

where 
vedfi@ 1 np = p 

redo @ (2~) it p = red* @m (2n) (@ * (join n p q) (join n q p)) 

where q = corr n p 

which is a useful building block for many parallel algorithms. 
Alternatively, reduction can be implemented using pst followed by a directed broad- 

cast: redt $p E d&L #p (pst @p). 

4.4. Gray code 

A Gray code sequence for n 30 is a sequence of 2” n-bit strings, where consec- 
utive strings in the sequence differ in exactly one bit position. For example, a Gray 
code sequence for n = 2 reads: ([00], [Ol], [ll], [lo]). The last and the first strings 
in the sequence are also considered consecutive. The respective powerlist algorithm is 
computed by function G, for any n: 

G 0 = 0 I) 
G (n + 1) = (0 :) * (G n) I(1 :) * (reuJ, (G n)) 

Here, (0 :) and (1 :) are functions over strings that take a string as argument and 
append 0 or 1, respectively, as its prefix. Again, this algorithm must be modified to 
fit the input pattern of our transformation rules (see Section 3.3). Since the parameter 
n is only used for termination, we substitute n by a powerlist of length 2”: G n = 
Gt (copy 2” .). We get the following definition: 

GT(x) = 0 I) 
Gt (P I q) = (0 :) * ((3’ P) I(1 :) * (reGL (Gt 4)) 

By (17), this algorithms is equivalent to: 

Gt P = G’r #/I 1 (COPY #P [ I) 
where Gtr 1 np = P, 

G$ (2m) n p = Gfi m (2n) (join n ((0 :) *p) ((1 :) * (rev& n p)) 

Note that copy #p [ ] initializes all PEs with the empty string [ 1. 



74 K. Achatz, W SchultelScience of Computer Programming 26 (1996) 59-78 

4.5. Polynomial 

A polynomial P(w) = cfli’ pi x wi, where n > 0, can be represented by a powerlist 
p whose ith element is pi. For n > 0, the evaluation of P at some point w is equivalent 
to 

2”~‘-1 y-1 

,g p2i XW2’+ C PZiflXW 
2i+ I 

i=O 

The following function ep uses this strategy to evaluate P(w). 

ep w (x) = x 

According to our strategy, we distribute the result among all PEs, i.e., epT w p = 
copy #p (ep w p), yielding: 

epT w (4 = (4 

ePT w (P w 4) = + * (epl‘ d p) ((wx) * (epT J,? 4)) I 

+ * (epT 12 P> ((wx> * (ePT w2 4)) 

Different from the parameter n in the previous subsection, w does not guide the flow 
of control, but is needed for computation. To obtain a parallel version of the above 
algorithm, we first eliminate w using (10). The final parallel algorithm is derived with 

(17) and subsequent horizontal fusion: 

epT w p = epfi #p 1 I~J’~~~(#~)-‘) (inu p) 

where 
epfi 1 n wp = p 

ep* (2m) n w p = epfi m (2n) JG (+* (join n p q) 
((wx) * (join n 4 p)) 

where q = corr n p 

The scalar w as part of the postadjust functions is needed to compute the values on al: 
PEs. Thus, it should not be calculated on the control unit but concurrently on all PEs. 
This can easily be established by embedding w into a powerlist with the same length 
as p. Note that due to the simplicity of the elementary operations + and x, horizontal 
fusion may have no optimization effect. 

4.6. Fast Fourier transform 

A continuous function f(x) is discretized into a sequence (f&), f(xo + Ax), . . . , 
f(xo + (N - l)aX)) by taking N samples eX units apart. For N = 2”, this sequence 
can be represented as a powerlist p = (PO,. . . , P~_~), where pi = f(xo + ih), 



K. Achatz, W. SchultelScience of Computer Programming 26 (1996) 59-78 15 

i = 0,. , N - 1. The discrete Fourier transform of p is given by the powerlist q, 
where 

1 N/2-1 

+ z C p2jfl X W$i+"k 
I-0 

for k = 0,. . . , N - 1 and WN = exp( -js ) is the Nth principal root of 1. The Fast 
Fourier transform algorithm depends on the method of successive doubling, which can 
be summarized by the following DC algorithm on powerlists: 

FFT p = 

where 
FFT1‘ (x) = (x) 

FFTf (P w 4) = + * (FFTI‘ PI (x * (power-~ PI (FFTT 4)) I 
- * (FFTI‘ PI (x * (powers 4) (FFTT 4)) 

powers p = (i k.exp (-j$)) * (O,...,#p- 1) 

A detailed description of the Fast Fourier Transform can be found, e.g., in [ 181. 
To get a parallel version of FFTT, we first eliminate the w-destructor by means 

of (10) and then apply (17). After optimization, the final version is 

FFTT p = FFTfi #p 1 (inv p) 
where 

FFTfi 1 n p = p 
FFTq (2m) n p = FFT$ m (2n) (join n (+ * c d) (- * c d)) 
where q = corr n p 

c =joinnpq 
d = x t w (join n q p) 

w = dup - (powers’ n) 

powers’ n = ((L!exp c-j:)) * (O,...,n - 1)) 

Since dup $ (powers’ n) E (1, k. exp(-jw )) * (0,. ,#p - l), powerlist w can 
be computed locally on every PE using its local processor index k. 

The inverse of the Fourier transform, ZFT, can be defined similarly to the FFT. [lo] 
derives a definition of ZFT from that of FFT. The solution of this derivation yields 
the following algorithm: 

ZFT p = (#px) * (ZFTI p) 
where ZFTL (x) = (x) 

ZFTl (P I q) = ZFTl ((0.5~) * (+ *P q)) w 
ZFTJ ((0.5x)*(x * (- *p q) (powers-’ p))) 

powers-’ p = (I k.exp(j$)) *(O,...,#p-1) 



76 K. Achatz, WI SchultelScience of Computer Programming 26 (1996) 59-78 

Similar to the development of a parallel version for FFT, we first eliminate the 
w-constructor with (10). Afterwards, the final massively parallel solution is obtained 
by applying (16): 

ZFT p = inu((#px) * (ZFTJJ. #p p)) 
where IFT$ 1 p = p 

ZFTA,l (2n) p = ZFTJJ. n ((0.5x) * (join n a b)) 
where q = COW n p 

(a,b) = (+ * P 97 x * (- * 4 P> WI 

j 
n(k mod n) 

It 
* (O,...,#p- 1) 

5. Remarks 

5.1. Related work 

Massively data parallel algorithms apply the same set of operations to a huge collec- 
tion of data. Among the first, who recognized this programming paradigm, although in 
an imperative setting, were Preparata and Vullemin [15]. They show that this paradigm 
can be used to express many known algorithms and present their implementation on 
Cube Connected Cycle topologies. 

Mou and Houdak describe DC in an algebraic model called Divacon [ll]. They 
recognize that the original DC model is too restrictive with respect to decomposition 
and communication. For the latter, they introduce the so-called premorphisms and post- 
morphisms, which correspond to our ‘adjust’ functions. This algebraic model was later 
picked up by Carpentiery and Mou, who study communication issues in the model [7]. 
They present hypercube specific rules to optimize communication by introducing new 
storage levels. 

Still more abstract is the work on investigating parallelism within the Bird-Meertens 
formalism, which has recently gained much attention (cf. [16]). In this context we 
picked up the work of Misra on powerlists [lo]. His emphasis is on the develop- 
ment of DC algorithms on powerlists, whereas we have presented their massive data 
parallelization. 

Based on [lo], Kornerup derives a strategy for mapping most powerlist functions to 
efficient programs for hypercubic architectures [9]. 

5.2. Mapping powerlists onto specljic architectures 

The important problem of how to map powerlists, i.e., the powerlist primitives 
*, join, COYY, etc., onto a specific architecture is not handled in this article. In [l], 
we propose to use skeletons. Skeletons are architecture specific higher-order functions, 
which are either abstractions of elementary communication-independent computations 
on all PEs or communication operations, which pass values along the network connec- 



K Achatz, W. SchultelScience of Computer Programming 26 (1996) 59-78 17 

tions. Those powerlist primitives each have a straightforward implementation as skele- 
tons. In particular, it turns out that even the communication oriented primitives can be 
implemented on arrays, meshes and hypercubes equally well. The resulting (skeleton 
based) programs have a straightforward implementation in an imperative programming 
language. Additionally, the derived programs are efficient and can - due to the trans- 
formational programming paradigm - be ported across several architectures. 

5.3. Conclusion 

In this article, we have presented a transformation strategy to parallelize powerlist 
algorithms using transformation rules. The main advantage of making the rules explicit 
lies in their reuseability. Similar problems can be solved in a similar way, which is 
demonstrated by the examples. In fact, the presented transformation strategy has been 
automated using an extended compilation approach, where the user gives hints in the 
form of laws to the compiler. 

Acknowledgements 

We would like to thank Bernhard MGller, Helmuth A. Partsch and Ton Vullinghs 
for their helpful comments. 

References 

[I] K. Achatz and W. Schulte, Architecture independent massive parallelization of divide-and-conquer 
algorithms, in: B. Moller, ed., Mathematics of Program Construction, Lecture Notes in Computer 
Science, Vol. 947 (Springer, Berlin, 1995) 977 127. 

[2] K. Achatz and W. Schulte, Massive parallelization of divide-and-conquer algorithms over powerlists, 
Tech. Report 95-12, Universitiit Ulm, Fakultlt fur Informatik, 1995. 

[3] K.E. Batcher, Sorting networks and their applications, AFIPS Spring Joint Computer Conf (1968) 
307-314. 

[4] R. Bird, Lectures on constructive functional programming, in: M. Broy, ed., Constructive Methods in 
Computing Science, NATO ASI Series. Series F: Computer and Systems Sciences, Vol. 55 (Springer, 
Berlin, 1989) 151-216. 

[5] G.E. Blelloch, NESL: A nested data-parallel language (version 2.0) Tech. Report CMU-CS-93-129, 
School of Computer Science, Carnegie Mellon University, April 1992. 

[6] G.E. Blelloch, Prefix sums and their applications, in: J. Reif, ed., Synthesis of Parallel Algorithms, 
(Morgan Kaufmann Los Altos, CA, 1993) Chapter 1, 35560. 

[7] B. Carpentieri and G. Mou, Compile-time transformations and optimizations of parallel divide-and- 
conquer algorithms, ACM SZGPLAN Notices 20 (1991) 19928. 

[8] G.C. Fox, Parallel computing comes of age: supercomputer level parallel computations at caltech, 
Concurrency: Practice Experience 1 (1989) 63-103. 

[9] J. Kornerup, Mapping a functional notation for parallel programs onto hypercubes, Inform. Process. 
Lett. 53 (1995) 153-158. 

[lo] J. Misra, Powerlist: a structure for parallel recursion, ACM Trans. Programming Languages Systems 
16 (1994) 1737-1767. 

[ 1 l] Z.G. Mou and M. Hudak, An algebraic model for divide-and-conquer algorithms and its parallelism, J. 
Supercomputing 2 (1988) 257-278. 



78 K. Achatz, W. SchultelScience of Computer Programminy 26 (1996) 59-78 

[12] R. Paige, .I. Reif and R. Wachter, eds., Parallel Algorithm Derivation and Program Transformation 
(Kluwer Academic Publishers, Dordrecht, 1993). 

[13] H.A. Partsch. Spec$cation and Transformation of Programs (Springer, Berlin, 1990). 
[14] P. Pepper, Deductive derivation of parallel programs, in: Paige et al. [12]. 
[ 151 F.P. Preparata and J. Vuillemin, The cube-connected cycles: A versatile network for parallel computation, 

Commun. ACM 24 (1981) 300-309. 
[16] D.B. Skillicom, The Bird-Meet-tens formalism as a parallel model, in: J. S. Kowalik and L. Grandinetti, 

eds., Software for Parallel Computation (Springer, Berlin, 1992). 
[17] D.R. Smith, Derivation of parallel sorting algorithms, in: Paige et al. [12]. 
[18] J.R. Smith, The Design and Analysis of Parallel Algorithms (Oxford Univ. Press, Oxford, 1993). 


