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Abstract

Perturbative QCD relates the single transverse-spin asymmetries (SSAs) for hard processes at large transverse-momentum of produced particle
to partonic matrix elements that describe interference between scattering from a coherent quark–gluon pair and from a single quark, generated
through twist-3 quark–gluon correlations inside a hadron. When the coherent gluon is soft at the gluonic poles, its coupling to partonic subprocess
can be systematically disentangled, so that the relevant interfering amplitude can be derived entirely from the Born diagrams for the scattering
from a single quark. We establish a new formula that represents the exact rules to derive the SSA due to soft-gluon poles from the knowledge of
the twist-2 cross-section formula for unpolarized processes. This single master formula is applicable to a range of processes like Drell–Yan and
direct-photon production, and semi-inclusive deep inelastic scattering, and is also useful to manifest the gauge invariance of the results.
© 2007 Elsevier B.V.

There have been two systematic frameworks to study single spin asymmetries (SSAs) observed in a variety of high energy
semi-inclusive reactions. One is based on the so-called “T -odd” distribution and fragmentation functions with parton’s intrinsic
transverse momentum [1,2]. It describes SSAs in the region of the small transverse momentum pT of the final hadrons as a leading
twist effect. Its factorization property and the universality of “T -odd” functions have been extensively studied [3]. The other one is
the twist-3 mechanism based on the collinear factorization, and is suited to describe SSAs in the large pT region [4–6]. It relates
the SSA to certain quark–gluon correlation functions in the hadrons. Recently it has been shown that these two mechanisms give
the identical SSA in the intermediate pT region for Drell–Yan and semi-inclusive deep inelastic scatterings, i.e., describe the same
physics in QCD [7,8].

In the present work, we shall focus on the twist-3 mechanism. A systematic study on this mechanism was first performed in [5]
for the direct photon production p↑p → γX, and the method has been applied to many other processes such as pion production in
pp-collision, p↑p → πX [9–12], hyperon polarization pp → Λ↑X [13,14], Drell–Yan lepton-pair production p↑p → �+�−X [7],
pion production in semi-inclusive deep inelastic scattering (SIDIS), ep↑ → eπX [6,8,15]. In our recent work [6], we reexamined the
formalism for the twist-3 mechanism and gave a proof for the factorization property and the gauge invariance of the corresponding
single-spin-dependent cross sections, which was missing in the previous literature. Through this development, the cross-section
formula derived in the previous studies [5–15] have been given a solid theoretical basis.

In the twist-3 mechanism, the strong interaction phase necessary for SSA is provided by the partonic hard scattering: Owing to
the insertion of a “coherent gluon” emanating from the twist-3 quark–gluon correlation inside e.g. the polarized nucleon, an internal
propagator of the partonic hard part can be on-shell, and its imaginary part (pole contribution) can give rise to the interfering phase
that leads eventually to the real single-spin-dependent cross section. Depending on the resulting value of the coherent-gluon’s

* Corresponding author.
E-mail address: tanakak@sakura.juntendo.ac.jp (K. Tanaka).

Open access under CC BY license.
0370-2693 © 2007 Elsevier B.V.
doi:10.1016/j.physletb.2007.01.044

Open access under CC BY license.

https://core.ac.uk/display/82414084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/physletb
mailto:tanakak@sakura.juntendo.ac.jp
http://dx.doi.org/10.1016/j.physletb.2007.01.044
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Y. Koike, K. Tanaka / Physics Letters B 646 (2007) 232–241 233
momentum fraction at such poles, those poles are classified as soft-gluon-pole (SGP), soft-fermion-pole (SFP) and the hard-pole
(HP). In [6], we have given a formula which expresses all these pole contributions in terms of the twist-3 distributions associated
with the gluon’s field strength tensor (see (1), (3) below). There we have also given a general proof that the SGP contribution
appears as both “derivative” and “non-derivative” terms of the twist-3 correlation functions, while the SFP and HP contributions
appear only as the non-derivative terms. Since the derivative of the “SGP function”, a twist-3 correlation function at the SGP, causes
enhancement compared with the non-derivative term in a certain kinematic region, and also one may expect that the soft gluons are
more ample in the hadrons, phenomenology based on the SGP contribution only has often been performed in the literature [9–15].

Another peculiar feature of the SGP contribution is that the partonic hard cross section associated with the “derivative term”,
arising from the twist-3 soft-gluon mechanism, is directly proportional to some twist-2 partonic cross section as noticed for direct
photon production [5], Drell–Yan pair production [7], SIDIS [15], p↑p → πX [9–11] and pp → Λ↑X [13,14].

In this Letter we propose a new systematic approach to treat the SGPs, which allows us to reveal the novel structure behind
the soft-gluon mechanism to the SSA. We disentangle the coupling of the coherent gluon and the associated pole structure from
the partonic subprocess, by reorganizing the relevant diagrams using Ward identities and certain decomposition identities for the
interacting parton propagators. We find that the many Feynman diagrams can be eventually united into certain derivative of the Born
diagrams without the coherent-gluon insertion, which shows that the entire contributions from the SGPs, not only the derivative
term but also the non-derivative term, can be derived from the knowledge of the twist-2 cross section formula for the unpolarized
process. We establish the corresponding “master formula” that is applicable to a range of processes like SIDIS, Drell–Yan and
direct-photon production.

To illustrate our approach, we consider the SIDIS, e(�)+p(p,S⊥) → e(�′)+π(Ph)+X, following the convention of our recent
work [6]: We use the kinematic variables, Sep = (p + �)2, q = � − �′, Q2 = −q2, xbj = Q2/(2p · q), and zf = p · Ph/p · q . All
momenta p,Ph, �, and �′ of the particles in the initial and the final states can be regarded as light-like in the twist-3 accuracy, p2 =
P 2

h = �2 = �′2 = 0. As usual, we define another light-like vector as nμ = (qμ + xbjp
μ)/p · q , and the projector onto the transverse

direction as g
μν
⊥ = gμν − pμnν − pνnμ. We also define a space-like vector, q

μ
t = qμ − (Ph · q/p · Ph)p

μ − (p · q/p · Ph)P
μ
h ,

which is orthogonal to both p and Ph, and its magnitude as qT =
√

−q2
t . Then, in a frame where the 3-momenta �q and �p of the

virtual photon and the initial nucleon are collinear along the z-axis, like the so-called hadron frame [16], the magnitude of the

transverse momentum of the pion is given by
√

−P 2
h⊥ = zf qT .

In the present study we are interested in the SSA for the large-Ph⊥ pion production, in particular, the contribution from the
twist-3 quark–gluon correlation functions for the transversely polarized nucleon, which are defined as [5,17]

M
β
Fij (x1, x2) =

∫
dλ

2π

∫
dμ

2π
eiλx1eiμ(x2−x1)〈pS⊥|ψ̄j (0)[0,μn]gFβρ(μn)nρ[μn,λn]ψi(λn)|pS⊥〉

(1)= MN

4
(/p)ij ε

βpnS⊥GF (x1, x2) + i
MN

4
(γ5/p)ij S

β
⊥G̃F (x1, x2) + · · · ,

where the spinor indices i and j associated with the quark field ψ are shown explicitly, Fβρ is the gluon field strength ten-
sor, and the spin vector for the transversely polarized nucleon satisfies Sα⊥ = g

αβ
⊥ S⊥β , S2⊥ = −1. The path-ordered gauge-link,

[μn,λn] = P exp[ig ∫ μ

λ
dt n ·A(tn)], guarantees gauge invariance of the nonlocal lightcone operator. The second line of (1) defines

two dimensionless functions GF (x1, x2) and G̃F (x1, x2) through the Lorentz decomposition of the matrix element; here MN is the
nucleon mass representing typical mass scale generated by nonperturbative effects, and “· · ·” denotes Lorentz structures of twist
higher than three. These two functions GF (x1, x2) and G̃F (x1, x2) constitute a complete set of the twist-3 quark–gluon correlation
functions for the transversely polarized nucleon [15,17].

The relevant contributions to the hadronic tensor Wμν arise from the process where the partons from the nucleon in the initial
state undergoes the hard interaction with the virtual photon, followed by the fragmentation into the final state with π + anything,
as illustrated in Fig. 1. The twist-3 distribution functions contribute to ep↑ → eπX in combination with the twist-2 fragmentation
function for the pion, which is immediately factorized from the hadronic tensor as

(2)Wμν(p,q,Ph) =
∑

j=q,g

∫
dz

z2
Dj(z)w

j
μν

(
p,q,

Ph

z

)
,

where Dj(z) (j = q,g) is the quark and gluon fragmentation functions for the pion, with z being the momentum fraction. We

consider the case for the quark fragmentation in detail and omit the index j from w
j
μν below. Modifications necessary for the

gluon-fragmentation case will be discussed later. The lower blobs in Fig. 1 can be written as Fourier transform of the correlation
functions for the nucleon, i.e., schematically, M(0)(k) ∼ 〈pS⊥|ψ̄ψ |pS⊥〉 and M(1)σ (k1, k2) ∼ 〈pS⊥|ψ̄Aσ ψ |pS⊥〉, with the upper
indices (0) and (1) representing the number of gluon lines connecting the middle and lower blobs. (See Eqs. (23), (24) of [6] for the
explicit definitions.) The momenta of the partons, k and k1,2, are assigned as in Fig. 1.
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Fig. 1. Generic diagrams for the hadronic tensor of ep↑ → eπX, decomposed into the three blobs as nucleon matrix element (lower), pion matrix element (upper),
and partonic hard scattering by the virtual photon (middle). The first two terms, (a) and (b), in the expansion by the number of partons connecting the middle and
lower blobs are relevant to the twist-3 effect induced by the nucleon.

In the leading-order perturbation theory for the partonic hard scattering, we have shown [6] that the twist-3 contribution to wμν

arises solely from Fig. 1(b), and the entire twist-3 contribution can be written as

(3)wμν

(
p,q,

Ph

z

)
=

∫
dx1

∫
dx2 Tr

[
igα⊥βM

β
F (x1, x2)

∂S(1)(k1, k2,Ph/z)

∂kα
2⊥

∣∣∣∣
ki=xip

]
,

where M
β
F (x1, x2) is defined in (1), and S(1)(k1, k2,Ph/z) ≡ S

(1)
σ (k1, k2,Ph/z)p

σ represents the middle blob in Fig. 1(b), which de-
notes the hard scattering function for the partons off the virtual photon, corresponding to the nucleon matrix element M(1)σ (k1, k2).
For simplicity, we suppress momentum q and the Lorentz indices μ, ν for the virtual photon in S

(1)
σ (k1, k2,Ph/z). In (3),

S(1)(k1, k2,Ph/z) and M
β
F (x1, x2) are matrices in spinor space, and Tr[· · ·] indicates the trace over Dirac-spinor indices while

the color trace is implicit. Here we recall from [6] that, although the straightforward collinear expansion to the twist-3 accuracy
produces many other complicated terms, it has been proved that the hard parts associated with those terms vanish in the leading order
in QCD perturbation theory, using Ward identities for color gauge invariance. Note that (3) guarantees the factorization property for
the twist-3 single-spin-dependent cross section in manifestly gauge-invariant form, which was assumed in the previous literature [8,
15] (see also [5,7]). We should also mention that, for the HP and SFP contributions, one can calculate the partonic hard scattering
function via S

(1)
α (x1p,x2p,Ph/z) by using the relation ∂S(1)(k1, k2,Ph/z)/∂kα

2⊥|ki=xip = S
(1)
α (x1p,x2p,Ph/z)/(x1 −x2) obtained

from the Ward identity, while, for the SGP contribution, one has to calculate the “derivative”, ∂S(1)(k1, k2,Ph/z)/∂kα
2⊥|ki=xip , as

shown in (3) [6].
Based on (3), our task is to identify the SGP contribution to S(1)(k1, k2,Ph/z) and compute its deviation arising linearly in the

quark’s transverse momentum k2⊥ from the value in the collinear limit k1,2 → x1,2p. For this purpose, we work in the Feynman
gauge and with ki⊥ � xip in ki = xip+(ki ·p)n+ki⊥ (i = 1,2). In the leading order in QCD perturbation theory, S(1)(k1, k2,Ph/z)

stands for a set of cut Feynman diagrams which are obtained by attaching the additional gluon to the 2-to-2 partonic Born sub-
process, where the large transverse momentum Ph⊥/z of the “fragmenting quark” is provided by the recoil from the emission of
a hard gluon into the final state. When the coherent gluon couples to an on-shell parton line, the parton propagator adjacent to
the coherent gluon produces a pole for the vanishing gluon momentum, k2 − k1 → 0. Only those arising from the diagrams in
Fig. 2, where the coherent gluon couples to the final-state quark line fragmenting into π + anything, survive as the SGP contri-
butions [6,8,15], while the other pole contributions cancel out combined with those from the “mirror” diagrams. We denote the
contributions of the diagrams in Fig. 2, where the coherent gluon is attached to the LHS of the cut, as S(1)L(k1, k2,Ph/z), and those
of the mirror diagrams as S(1)R(k1, k2,Ph/z), so that S(1)(k1, k2,Ph/z) = S(1)L(k1, k2,Ph/z) + S(1)R(k1, k2,Ph/z). Explicit form
of S(1)L(k1, k2,Ph/z) is given as

(4)S(1)L

(
k1, k2,

Ph

z

)
= −1

2Nc

Γ̄α

(
k2,

Ph

z

)
/P h

z
iγσ pσ i

/P h

z
+ /k1 − /k2 + iε

Γβ

(
k1,

Ph

z
+ k1 − k2

)
Dαβ

+
(

k2 + q − Ph

z

)
,

where Γ̄α(k2,Ph/z) ≡ γ 0Γ †
α (k2,Ph/z)γ

0 denotes the photon–quark–gluon vertex function of Fig. 3 which appears in the RHS of
the cut in the diagrams of Fig. 2. In Γ̄α(k2,Ph/z), the factors for the external lines are amputated. With this Γα , the photon–quark–
gluon vertex function appearing in the LHS of the cut in Fig. 2 is given by Γβ(k1,Ph/z + k1 − k2). The structure /P h/z projects
the final-state quark onto the twist-2 fragmentation process to produce the pion (see (2)), and iγσ pσ is the quark–coherent-gluon
vertex. Dαβ

+ (k) = 2πδ(k2)θ(k0)
∑

λ εα
(λ)(k)ε

∗β

(λ)(k) is the cut propagator for the final-state hard gluon with the polarization vector
εα
(λ)

(k). Note that we have already worked out the color structure associated with (3), simplifying the color matrices contained in

Fig. 2 as tatbta = (−1/2Nc)t
b and performing the color trace to obtain the gauge-invariant matrix element (1). We also note the

relation S(1)R(k1, k2,Ph/z) = S̄(1)L(k2, k1,Ph/z) ≡ γ 0S(1)L†
(k2, k1,Ph/z)γ

0.
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Fig. 2. Feynman diagrams which give rise to the SGP contributions in the quark fragmentation channel, where the hard quark fragments into the final-state with pion
and the hard gluon goes into unobserved final state. The cross × denotes the quark propagator which gives the SGP contribution. Mirror diagrams also contribute.

Fig. 3. The definition of the photon–quark–gluon vertex function Γ̄α(k2,Ph/z), as the sum of two types of diagrams which appear in the RHS of the cut in Fig. 2.
The amputated lines are identified by bars at their ends.

To proceed further, one may employ direct evaluation of each diagram of Fig. 2, substituting the explicit form corresponding
to Fig. 3 into the vertex functions Γ̄α(k2,Ph/z) and Γβ(k1,Ph/z + k1 − k2) of (4), and working out the necessary Dirac algebra.
Such calculation has been done in [6,8,15]. Here we employ another approach to disentangle the coherent-gluon vertex and the
corresponding SGP structure from the diagrams of Fig. 2. An earlier attempt in the same spirit investigated decoupling property of
the soft-gluon vertex in the collinear limit, k1⊥ = k2⊥ = 0, for the SGP contribution in hadron–hadron scattering, using the helicity
basis technique [20]; but fully consistent evaluation of the SGP contribution following [6] requires to treat the deviation of the
hard part due to nonzero k2⊥, as noted above, and in this case straightforward application of the helicity basis technique would be
useless. Our new systematic approach uses Ward identities and decomposition identities for the parton propagators interacting with
the coherent gluon, which allows us to disentangle the coherent-gluon vertex from the derivative ∂S(1)(k1, k2,Ph/z)/∂kα

2⊥|ki=xip

in (3). A key idea is to reorganize the terms that contribute to this derivative by rewriting pσ contracted with the quark–gluon vertex
in (4) as

(5)pσ = 1

x2 − x1 − iε

(
kσ

2 − kσ
1

) − 1

x2 − x1 − iε

(
kσ

2⊥ − kσ
1⊥

)
,

up to the irrelevant O((k2⊥ − k1⊥)2) correction. Correspondingly, S(1)L(k1, k2,Ph/z) can be decomposed as

(6)S(1)L

(
k1, k2,

Ph

z

)
= S(1·)L

(
k1, k2,

Ph

z

)
+ S(1⊥)L

(
k1, k2,

Ph

z

)
,

where the first and second terms in the RHS correspond to those in (5), respectively. In (5), “−iε” in the denominator is chosen
such that each term in (6) does not produce pinch singularity at x1 = x2.

We can exploit an elementary Ward identity in S(1·)L(k1, k2,Ph/z) in order to disentangle the scalar-polarized gluon vertex,
/k2 − /k1, as well as the quark propagator adjacent to it, as (/P h/z)(/k2 − /k1)[1/(/P h/z + /k1 − /k2 + iε)] = (/P h/z)(/k2 − /k1 −
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Fig. 4. Diagrammatic representation of Ward identity for the coupling of the scalar-polarized gluon to the final-state quark line.

/P h/z)[1/(/P h/z + /k1 − /k2 + iε)] = −/P h/z, as illustrated in Fig. 4, and get

(7)S(1·)L
(

k1, k2,
Ph

z

)
= −1

2Nc

1

x2 − x1 − iε
Γ̄α

(
k2,

Ph

z

)
/P h

z
Γβ

(
k1,

Ph

z
+ k1 − k2

)
Dαβ

+
(

k2 + q − Ph

z

)
.

This exhibits the SGP only as the single pole, so that we can put x2 = x1 except for the factor 1/(x2 − x1 − iε), without affecting
the results for the SGP contribution. Combining this with the corresponding result for S(1·)R(k1, k2,Ph/z) = S̄(1·)L(k2, k1,Ph/z)

and Taylor expanding the total result S(1·)(k1, k2,Ph/z) = S(1·)L(k1, k2,Ph/z) +S(1·)R(k1, k2,Ph/z) in terms of k1⊥ and k2⊥, we
get

(8)S(1·)
(

k1, k2,
Ph

z

)
= 1

2Nc

kσ
2⊥ − kσ

1⊥
x2 − x1 − iε

∂

∂rσ⊥
Γ̄α(x1p, r)

/P h

z
Γβ(x1p, r)Dαβ

+ (x1p + q − r)

∣∣∣∣
r→ Ph

z

,

up to the irrelevant terms of the second or higher order in k1⊥, k2⊥. Here r denotes a four-vector not restricted to being light-like,
r2 
= 0.

Next we consider the contribution from S(1⊥)L(k1, k2,Ph/z) of the second term of (6). Because the coherent gluon vertex
associated with S(1⊥)L(k1, k2,Ph/z) is proportional to kσ

2⊥ − kσ
1⊥ (see (4), (5)), we can set k1⊥ = k2⊥ = 0 in S(1⊥)L(k1, k2,Ph/z)

except for this vertex factor, up to irrelevant corrections. One thus obtains

S(1⊥)L

(
k1, k2,

Ph

z

)
= −1

2Nc

kσ
2⊥ − kσ

1⊥
x2 − x1 − iε

Γ̄α

(
x2p,

Ph

z

)

(9)× /P h

z
γσ

1
/P h

z
+ (x1 − x2)/p + iε

Γβ

(
x1p,

Ph

z
+ x1p − x2p

)
Dαβ

+
(

x2p + q − Ph

z

)
.

In this result we decompose the product of the quark–gluon vertex and the quark propagator, adjacent to the fragmentation insertion
/P h/z, as

(10)
/P h

z
γσ

/P h/z + (x1 − x2)/p

(
Ph

z
+ (x1 − x2)p)2 + iε

= /P h

z

(
− Phσ

Ph · p
1

x2 − x1 − iε
+ γσ

z/p

2Ph · p
)

,

where the first term in the parentheses is given by the eikonal vertex and eikonal propagator, and the second term is the “contact
term”. Combining the result obtained from (9), (10) with the corresponding result for S(1⊥)R(k1, k2,Ph/z) = S̄(1⊥)L(k2, k1,Ph/z),
we find that the double pole term in S(1⊥)L(k1, k2,Ph/z), which originates from the eikonal propagator in (10) and gives the
contribution proportional to δ′(x1 − x2), cancels the corresponding double-pole term in S(1⊥)R(k1, k2,Ph/z), and the remaining
single-pole contributions eventually give, for S(1⊥)(k1, k2,Ph/z) = S(1⊥)L(k1, k2,Ph/z) + S(1⊥)R(k1, k2,Ph/z),

S(1⊥)

(
k1, k2,

Ph

z

)
= 1

2Nc

kσ
2⊥ − kσ

1⊥
x2 − x1 − iε

∂

∂rρ

{
gσρΓ̄α

(
x1p,

Ph

z

)
/rΓβ

(
x1p,

Ph

z

)
Dαβ

+
(

x1p + q − Ph

z

)

(11)− Phσ pρ

Ph · p Γ̄α(x1p, r)/rΓβ(x1p, r)Dαβ
+ (x1p + q − r)

}∣∣∣∣
r→ Ph

z

.

Combining (8) and (11), the entire SGP contribution for (3) reads1

(12)
∂S(1)(k1, k2,Ph/z)

∂kσ
2⊥

∣∣∣∣
ki=xip

= 1

2NcCF

z

x2 − x1 − iε

∂S(0)(x1p,
Ph

z
)

∂P σ
h⊥

,

1 We also obtain (∂/∂k
ρ
1⊥ + ∂/∂k

ρ
2⊥)S(1)(k1, k2,Ph/z)|ki=xip

= 0 for the SGP contribution, which has been proved in [6] by the detailed inspection of the
diagrams in Fig. 2. This holds for the gluon fragmentation channel, too (see (19)).
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Fig. 5. Same as Fig. 2, but for the gluon fragmentation channel where the hard gluon fragments into the final-state with pion and the hard quark goes into unobserved
final state.

where CF = (N2
c − 1)/(2Nc) and

(13)S(0)

(
x1p,

Ph

z

)
= CF Γ̄α

(
x1p,

Ph

z

)
/P h

z
Γβ

(
x1p,

Ph

z

)
Dαβ

+
(

x1p + q − Ph

z

)

is exactly the leading-order hard scattering function in the collinear limit k → xp, which is represented as the middle blob in
Fig. 1(a). In (12), we have used the relation,

(14)

(
gσρ − Phσ pρ

Ph · p
)

∂ϕ(r)

∂rρ

∣∣∣∣
r→ Ph

z

= z
∂ϕ(Ph/z)

∂P σ
h

,

for Ph = −(P 2
h⊥/2Ph · p)p + (Ph · p)n + Ph⊥, which holds for an arbitrary function ϕ(r). Note that Ph · n is not an independent

variable to perform the derivative in the RHS of (14), corresponding to that the LHS vanishes when contracted by pσ . Substituting
(1) and (12) into (3), and integrating over x2 to get the imaginary phase from the SGP of (12), one gets for wμν as

(15)wμν = 1

2NcCF

(−πMNz

4

)
εσpnS⊥ ∂

∂P σ
h⊥

∫
dx GF (x, x)Tr

[
S(0)

(
xp,

Ph

z

)
/p

]
+ · · · ,

where the ellipses stand for the contribution from the second term in the RHS of (1), which does not contribute to the cross section
when contracted with the symmetric leptonic tensor for the unpolarized electron. We recall the similar formula for the leading-order
twist-2 hadronic tensor,

(16)wtw-2
μν = 1

2

∫
dx fq(x)Tr

[
S(0)

(
xp,

Ph

z

)
/p

]
+ · · · ,

where S(0)(xp,Ph/z) in (15) appears and fq(x) is the unpolarized quark distribution.
It is straightforward to extend the above results to the gluon fragmentation case by mostly trivial substitutions, noting that

essential part of our above derivation is based on diagrammatic manipulation. The diagrams for the SGP contribution in this case
are shown in Fig. 5 [6,15]. The corresponding hard scattering function is given by

S(1)L
g

(
k1, k2,

Ph

z

)
= iNc

2
Λ̄α

(
k2,

Ph

z

)
S+

(
k2 + q − Ph

z

)
Λβ

(
k1,

Ph

z
+ k1 − k2

)[−ĝ
αη
t (Ph)

]

(17)× Vσηβ

(
k2 − k1,−Ph

z
,
Ph

z
+ k1 − k2

)
pσ −i

(
Ph

z
+ k1 − k2)2 + iε

,

where the relevant photon–quark–gluon vertex functions Λ̄α(k2,Ph/z) and Λβ(k1,Ph/z + k1 − k2) can be expressed using
that of Fig. 3 by appropriate substitutions of the momenta, Λα(k2,Ph/z) = Γα(k2, k2 + q − Ph/z). Vμ1μ2μ3(q1, q2, q3) =
(q1 − q2)μ3gμ1μ2+ (cyclic permutation) denotes the ordinary three-gluon vertex except for the color structure that has been used
as f cabtatb = (iNc/2)tc to obtain the prefactor iNc/2, the structure −ĝ

αη
t (Ph) = −gαη + (P α

h pη + P
η
h pα)/(Ph · p) projects the

final-state gluon onto the twist-2 fragmentation process to produce the pion (see (2)), and S+(k) = 2πδ(k2)θ(k0)/k is the cut propa-
gator for the final-state hard quark. The mirror diagrams of Fig. 5 gives S

(1)R
g (k1, k2,Ph/z) = S̄

(1)L
g (k2, k1,Ph/z). Similarly to (6),
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S
(1)L
g can be decomposed as

(18)S(1)L
g

(
k1, k2,

Ph

z

)
= S(1·)L

g

(
k1, k2,

Ph

z

)
+ S(1⊥)L

g

(
k1, k2,

Ph

z

)
,

by using (5). The three-gluon vertex coupling to the scalar-polarized coherent gluon in S
(1·)L
g (k1, k2,Ph/z) can be disentangled

using Ward identity similarly to (7), but this time we also obtain some additional ghost-like gauge terms. It is indeed not difficult
to show that those gauge terms drop in the final result applying Ward identities further. Alternatively, one may employ background
field gauge [21]: In the Feynman gauge under the background coherent-gluon field, the three-gluon vertex in (17) is replaced
as Vσηβ(k2 − k1,−Ph/z,Ph/z + k1 − k2) → V BG

σηβ(k2 − k1,−Ph/z,Ph/z + k1 − k2) ≡ Vσηβ(k2 − k1,−Ph/z,Ph/z + k1 − k2) −
(Ph/z)ηgσβ − (Ph/z + k1 − k2)βgση, and the resulting S

(1·)L
g (k1, k2,Ph/z) obeys simple Ward identity without unwanted gauge

terms, which is analogous to Fig. 4 for the quark–gluon vertex. As a result, we get for S
(1·)
g (k1, k2,Ph/z) = S

(1·)L
g (k1, k2,Ph/z) +

S
(1·)R
g (k1, k2,Ph/z)

(19)S(1·)
g

(
k1, k2,

Ph

z

)
= Nc

2

kσ
2⊥ − kσ

1⊥
x2 − x1 − iε

∂

∂rσ⊥
Λ̄α(x1p, r)S+(x1p + q − r)Λβ(x1p, r)ĝ

αβ
t (Ph)

∣∣∣∣
r→ Ph

z

,

similarly to (8), up to the irrelevant higher order terms.
The contribution S

(1⊥)L
g (k1, k2,Ph/z) in (18) can be also reduced similarly to (9): We can use the decomposition of the product

of the three-gluon vertex and the gluon propagator, adjacent to the fragmentation insertion ĝ
αη
t (Ph), into the eikonal propagator

term and the contact term as

ĝ
αη
t (Ph)V

BG
σηβ

(
x2p − x1p,−Ph

z
,
Ph

z
+ x1p − x2p

) −1

(
Ph

z
+ (x1 − x2)p)2 + iε

(20)= ĝ
αη
t (Ph)

(
−Phσ gηβ

Ph · p
1

x2 − x1 − iε
+ gσηpβ

z

Ph · p
)

,

for σ = ⊥. This simple formula analogous to (10) holds in the background field gauge mentioned above. Again, only the single
pole terms eventually survive in the total contribution, S

(1⊥)
g (k1, k2,Ph/z) = S

(1⊥)L
g (k1, k2,Ph/z) + S

(1⊥)R
g (k1, k2,Ph/z), and the

result is given by the RHS of (11) with the substitutions necessary for “translating” (8) into (19). Combining this result with (19)
and taking the similar steps as those in (12)–(15), we find that wμν for the gluon fragmentation channel is given by (15) with the

replacement 1/Nc → −Nc and S(0)(xp,Ph/z) → S
(0)
g (xp,Ph/z), where

(21)S(0)
g

(
xp,

Ph

z

)
= CF Λ̄α

(
xp,

Ph

z

)
S+

(
xp + q − Ph

z

)
Λβ

(
xp,

Ph

z

)[−ĝ
αβ
t (Ph)

]
.

This S
(0)
g (xp,Ph/z) is the hard scattering function for the 2-to-2 partonic Born subprocess leading to the gluon fragmentation, and

participates in the twist-2 contribution for the unpolarized SIDIS as (16) with S(0)(xp,Ph/z) → S
(0)
g (xp,Ph/z).

Substituting (13)–(16) and (21) into (2), we contract the result with the leptonic tensor for the unpolarized electron,
Lμν(�, �

′) = 2(�μ�′
ν + �ν�

′
μ) − gμνQ

2. Working out the phase space factor corresponding to the differential elements, [dω] =
dxbj dQ2 dzf dq2

T dφ, with the kinematical variables introduced above (1) and the azimuthal angle φ for the observed final-state
pion (see [6,15]), we immediately obtain the formula for the single-spin-dependent cross section in SIDIS, ep↑ → eπX, associated
with the soft-gluon mechanism induced by the twist-3 effects inside the nucleon, as

(22)
dσ SGP

tw-3

[dω] = πMN

2CF

εσpnS⊥
∑

j=q,g

Cj

∫
dz

z

∫
dx

x
Dj (z)

∂Hjq(x, z, q2
T )

∂(P σ
h⊥/z)

G
q
F (x, x),

where the sum over all quark and antiquark flavors q = u, ū, d, d̄, . . . is implicit for the index q , and G
q
F (x, x) denotes the “soft-

gluon-pole function” from (1) for the flavor q . The color factors are introduced as Cq = −1/(2Nc) and 1/(2Nc) for quark and
antiquark flavors, respectively,2 and Cg = Nc/2. Hjq(x, z, q2

T ) for j = q and g are, respectively, equal to Tr[S(0)(xp,Ph/z)/p] and

Tr[S(0)
g (xp,Ph/z)/p], up to the kinematical factor. They are exactly the partonic hard scattering cross sections which participate in

the twist-2 factorization formula of the unpolarized cross section for ep → eπX as

(23)
dσ

unpol
tw-2

[dω] =
∑

j=q,g

∫
dz

z

∫
dx

x
Dj (z)Hjq

(
x, z, q2

T

)
fq(x).

2 The relative minus sign in Cq between quark and antiquark is due to that of the color charge between them, to which the coherent gluon couples.
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Our results (22) and (23) represent the SGP contribution as the response of 2-to-2 partonic Born subprocess to the change of the
transverse momentum carried by the “fragmenting parton”. It is worth noting that our results (22) and (23) hold in any Lorentz
frame with p⊥ = 0, as is seen from the above derivation. In particular, we recall that the derivative with respect to the transverse
momentum in (22) was introduced merely as a formal recipe via the relation (14), so that one can freely move to any frame even
with Ph⊥ = 0 after performing the derivative.

In the hadron frame mentioned above (1), P σ
h is parameterized as

√
−P 2

h⊥ = zf qT , P −
h = zf Q/

√
2 and P +

h = −P 2
h⊥/2P −

h =
zf q2

T /
√

2Q, and thus the derivative on the Lorentz-scalar functions Hjq(x, z, q2
T ) with respect to P σ

h⊥ can be performed through
qT that is indicated explicitly in their argument. Therefore the results (22) and (23) can be expressed as

(24)
dσ SGP

tw-3

[dω] = πMN

CF z2
f

εpnS⊥Ph⊥ ∂

∂q2
T

dσ
unpol
tw-2

[dω]
∣∣∣∣
fq(x)→G

q
F (x,x), Dj (z)→Cj zDj (z)

.

The partonic Born cross section in (23) was derived as [16,18,19]

(25)Hjq

(
x, z, q2

T

) = α2
emαse

2
q

8πx2
bj S

2
epQ2

4∑
k=1

Akσ̂
jq
k δ

(
q2
T

Q2
−

(
1

x̂
− 1

)(
1

ẑ
− 1

))
,

where A1 = 1 + cosh2 ψ,A2 = −2,A3 = − cosφ sinh 2ψ , and A4 = cos 2φ sinh2 ψ , with coshψ = 2xbjSep/Q2 − 1, parameterize

different azimuthal dependence, and we introduced auxiliary variables x̂ = xbj /x and ẑ = zf /z. σ̂
jq
k are the functions of x̂, ẑ, q2

T ,
and Q2, whose explicit form can be found in Eqs. (57) and (59) of [6]. Therefore, the derivative ∂/∂q2

T of (24) can act on either

σ̂
jq
k or the delta-function δ(q2

T /Q2 − (1/x̂ − 1)(1/ẑ − 1)), and the latter contribution produces the “derivative term” proportional
to dG

q
F (x, x)/dx as well as the “non-derivative term” with G

q
F (x, x), after the partial integration with respect to x. We get

dσ SGP
tw-3

dxbj dQ2 dzf dq2
T dφ

= α2
emαse

2
q

8πx2
bj S

2
epQ2

πMN

CF zf Q2
εpnS⊥Ph⊥

4∑
k=1

Ak

∑
j=q,g

Cj

×
∫

dz

z

∫
dx

x
Dj (z)

{
x̂

1 − ẑ
σ̂

jq
k x

dG
q
F (x, x)

dx
+

[
1

ẑ
Q2 ∂σ̂

jq
k

∂q2
T

− x̂

1 − ẑ

∂(x̂σ̂
jq
k )

∂x̂

]
G

q
F (x, x)

}

(26)× δ

(
q2
T

Q2
−

(
1

x̂
− 1

)(
1

ẑ
− 1

))
.

Substituting the explicit formulae for σ̂
jq
k , it is straightforward to see that this result completely coincides with that obtained

recently in [6] by direct evaluation of each Feynman diagram in Figs. 2 and 5, for all azimuthal dependence, where A1,2 give the
same azimuthal dependence as the Sivers effect [1] while A3 and A4 give additional terms beyond the Sivers effect. Our result
reveals that not only the derivative term of the SGP cross section but the whole partonic hard scattering functions for the SGP
contributions are completely determined from σ̂

jq
k .

We emphasize that our result (24), and its immediate consequence (26), show extremely nontrivial structure behind the SGP
contribution, which would not be unveiled without using our new approach discussed above. Indeed it is completely hopeless to
infer from the complicated formulae (82) and (87) of [6] for the non-derivative term as a function of x̂, ẑ, q2

T , and Q2 that the non-

derivative term can be expressed in terms of σ̂
jq
k as in (26) with a form common to all channel (j = q,g; k = 1, . . . ,4). We also

note an important point which is most clearly indicated by the compact form (24): Apparently the cross section (25) for the 2-to-2
partonic Born subprocess is gauge-independent, and so is its derivative with respect to a kinematical variable qT . Combined with
(24), this fact guarantees the gauge invariance of the hard-scattering function for the twist-3 SGP contribution. In this connection
we recall that a straightforward check of gauge invariance is hampered for the SGP contribution, in contrast to the case for the SFP
and HP contributions, because Ward identities are useless to the coupling of the zero-momentum coherent gluon.

The above results (22) and (23) that lead to (24), (26) have been derived using only the properties satisfied by the partonic
subprocess in QCD perturbation theory. Therefore, by analytically continuing the external momenta, the same formula represents
the exact relations associated with other hard processes. In fact, the corresponding formula for the Drell–Yan process can be obtained
by switching the final-state “fragmenting parton” into the initial-state parton, and the initial-state photon with space-like momentum
into the final-state photon with time-like momentum. This crossing transformation, as illustrated in Fig. 6, is accomplished by the
corresponding substitutions: Ph → −p′, 1/z → x′, Dq(z) → fq̄(x′), Dg(z) → fg(x

′), and qμ → −qμ in (22) and (23), where
fq̄(x′) and fg(x

′) denote the twist-2 parton distributions for the unpolarized initial hadron with momentum p′, and the new qμ

denotes the momentum of the virtual photon which is produced by the hard interaction of the partons and goes into the lepton pair
�+�− with the invariant mass squared, q2 ≡ Q2, in the final state. With this replacement, our “master formula” (22) also describes
the single-spin-dependent cross section for the Drell–Yan process p↑p → �+�−X, relating it to (23) for the spin-averaged case
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Fig. 6. Diagrammatic representation of the crossing transformation of SIDIS into Drell–Yan process.

pp → �+�−X. The partonic hard scattering cross sections are now expressed by the variables, s = (p + p′)2, ŝ = (xp + x′p′)2,
t̂ = (xp − q)2, and û = (x′p′ − q)2, as (see [7])

(27)Hjq(ŝ, t̂ , û) = α2
emαse

2
q

3πNcsQ2
σ̂DY

jq (ŝ, t̂ , û)δ
(
ŝ + t̂ + û − Q2),

with (TR = 1/2)

(28)σ̂DY
q̄q (ŝ, t̂ , û) = 2CF

(
û

t̂
+ t̂

û
+ 2Q2ŝ

ût̂

)
, σ̂DY

gq (ŝ, t̂ , û) = 2TR

(
ŝ

−t̂
+ −t̂

ŝ
− 2Q2û

ŝ t̂

)
.

Thus the derivative in (22), which is now with respect to −x′p′σ⊥ instead of P σ
h⊥/z,3 can be performed through that for û (see the

discussion below (23)). After performing the derivative, one can go over to a frame where the two colliding nucleons are collinear
along the z-axis, and the produced virtual photon has large transverse momentum q⊥, which is provided by the recoil from the hard
parton going into the unobserved final state. We thus obtains, similarly to (24) and (26),

dσ
SGP,DY
tw-3

dQ2 dy d2q⊥
= α2

emαse
2
q

3πNcsQ2

πMN

CF

εpnS⊥q⊥
∑

j=q̄,g

Cj̄

∫
dx′

x′

∫
dx

x
δ
(
ŝ + t̂ + û − Q2)fj (x

′)

(29)×
{

σ̂ DY
jq

−û
x

dG
q
F (x, x)

dx
+

[
σ̂DY

jq

û
− ∂σ̂DY

jq

∂û
− ŝ

û

∂σ̂DY
jq

∂ŝ
− t̂ − Q2

û

∂σ̂DY
jq

∂t̂

]
G

q
F (x, x)

}
,

where y is the rapidity of the virtual photon, and Cḡ ≡ Cg . This obeys exactly the same pattern as (26) for both derivative and non-
derivative terms. Substituting (28), this formula completely coincides with the result of [7] which was obtained by direct evaluation
of the Feynman diagrams.

We can also derive the single-spin-dependent cross section for the direct-photon production, p↑p → γX, immediately: We make
the formal replacement αem/(3πQ2) → δ(Q2) in (29), corresponding to the real photon in the final state, and define σ̂ DP

jq as the

Q2 → 0 limit of σ̂DY
jq of (28). Because σ̂DP

jq are invariant under the scale transformation of the partonic variables ŝ, t̂ and û, we

have (û∂/∂û+ ŝ∂/∂ŝ + t̂ ∂/∂t̂)σ̂ DP
jq = 0. Accordingly, the single-spin-dependent cross section for the direct-photon (DP) production

reads

(30)Eq

dσ
SGP,DP
tw-3

d3q
= αemαse

2
q

Ncs

πMN

CF

εpnS⊥q⊥
∑

j=q̄,g

Cj̄

∫
dx′

x′

∫
dx

x
δ(ŝ + t̂ + û)fj (x

′)
σ̂DP

jq

−û

(
x

dG
q
F (x, x)

dx
− G

q
F (x, x)

)
,

with Eq = |�q|. Note the same twist-2 unpolarized hard cross section appears both for derivative and non-derivative terms, as the
coefficient for the combination, x dG

q
F (x, x)/dx − G

q
F (x, x). This remarkably compact result does not agree with that of [5],4 but

is reminiscent of the recent result for p↑p → πX [12], where a similar compact formula was obtained for the SGP cross section.
One can extend the present approach to other processes such as p↑p → πX and show that the compact result found in [12] is also
a consequence of the simplification due to the scale invariance of the 2-to-2 Born subprocess among massless partons, similarly to
the present case (30) [22].

To summarize, we have studied the SGP contribution in the twist-3 mechanism for the SSA. We have developed a new approach
that allows systematic reduction of the coupling of the soft coherent-gluon and the associated pole contribution, using Ward iden-
tities and decomposition identities for the interacting parton propagator, and derived the master formula which gives the twist-3

3 This corresponds to the fact that the SGP in Drell–Yan comes from the initial-state interaction, while that in SIDIS is from the final-state interaction.
4 This is because our result (29) for the Drell–Yan process agrees with that in [7] which is different from the result in [5] in the Q2 → 0 limit.
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SGP contributions to the SSA entirely in terms of the knowledge of the twist-2 factorization formula for the unpolarized cross
section. We find that this novel result is also useful for establishing the gauge invariance of the hard-scattering function for the SGP
contribution. So far this master formula was derived for Drell–Yan process, direct γ production and SIDIS. Since our diagrammatic
manipulation technique uses only elementary identities which hold for any diagram with the gluon insertion to cause the SGP, it is
applicable to other processes such as p↑p → πX and pp → Λ↑X, etc., and may lead to a similar relation between the twist-3 SGP
contribution and the twist-2 cross section, which allows us to reveal the corresponding gauge-invariant structure.
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