View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Electronic Notes in Theoretical Computer Science 10 (1998)
URL: http://www.elsevier.nl/locate/entcs/volumelO.html 19 pages

An Introduction to

History Dependent Automata !

Ugo Montanari and Marco Pistore

Computer Science Department
University of Pisa
Corso Italia 40, 56100 Pisa, Italy
{ugo,pistore}@di.unipi.it

Abstract

Automata (or labeled transition systems) are widely used as operational models in
the field of process description languages like CCS [13]. There are however classes
of formalisms that are not modelled adequately by the automata. This is the case,
for instance, of the m-calculus [15,14], an extension of CCS where channels can be
used as values in the communications and new channels can be created dynamically.
Due to the necessity to represent the creation of new channels, infinite automata
are obtained in this case also for very simple agents and a non-standard definition
of bisimulation is required.

In this paper we present an enhanced version of automata, called history de-
pendent automata, that are adequate to represent the operational semantics of 7-
calculus and of other history dependent formalisms. We also define a bisimulation
equivalence on history dependent automata, that captures m-calculus bisimulation.
The results presented here are discussed in more detail in [21].

1 Introduction

In the context of process algebras (e.g., Milner’s CCS [13]), automata (or la-
beled transition systems) are often used as operational models. They allow for
a simple representation of process behavior and many concepts and theoretical
results for these process algebras are independent from the particular syntax
of the languages, and can be formulated directly on automata. In particular,
this is true for the behavioral equivalences and preorders which have been

1 Research supported in part by CNR Integrated Project Metodi e Strumenti per la Proget-
tazione e la Verifica di Sistemi Eterogenei Connessi mediante Reti di Comunicazione and
Esprit Working Group CONFER2.

©1998 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

https://core.ac.uk/display/82414059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

MONTANARI AND PISTORE

defined for these languages, like bisimulation equivalence [13,22]: in fact they
take into account just the labeled actions an agent can perform.

Automata are also important from an algorithmic point of view: efficient
and practical techniques and tools for verification [9,12] have been developed
for finite-state automata. Finite state verification is successful here, differently
than in ordinary programming, since the control part and the data part of
protocols and hardware components can be often cleanly separated, and the
control part is usually both quite complex and finite state.

There are classes of process description languages, however, whose opera-
tional semantics is not described in a satisfactory way by ordinary automata.
A paradigmatic example is provided by m-calculus [15,14]. This calculus can
be considered as a foundational calculus for concurrent functional languages,
as A-calculus for sequential functional languages. In m-calculus channel names
can be used as messages in the communications, thus allowing for a dynamic
reconfiguration of process acquaintances. More importantly, m-calculus names
can model objects (in the sense of object oriented programming [24]) and name
sending thus models higher order communication [23]. New channels between
the process and the environment can be created at run-time and referred to
in subsequent communications.

The operational semantics of m-calculus is given via a labeled transition
system. This is not completely adequate to deal with the peculiar features of
the calculus and complications arise in the representation of the creation of
new channels. Consider process p = (vy) Zy.q; it communicates name y on
channel x and then behaves like ¢. Channel y is initially a local, restricted
channel for process p, however the restriction is removed when the commu-
nication takes place, since it makes name y known also outside the process.
This communication represents the creation of a new channel. In the ordinary
semantics of the m-calculus it is modelled by means of an infinite bunch of

transitions of the form p o qg{w/y}, where w is any name that is not already
in use in p. This way to represent the creation of new names has some dis-
advantages: first of all, also very simple m-calculus agents, like p, give rise to
infinite-state and infinite-branching transition systems. Moreover, equivalent
processes do not necessarily have the same sets of channel names; so, there are
processes ¢ equivalent to p which cannot use y as the name for the newly cre-
ated channel. Special rules are hence needed in the definition of bisimulation,
which is not the standard one for transition systems, and, as a consequence,
standard theories and algorithms do not apply to m-calculus.

This is a general problem for the class of history-dependent calculi. A
calculus is history dependent if the observations labeling the transitions of
an agent may refer to informations — names in the case of w-calculus —
generated in previous transitions of the agent.

In [21] history-dependent automata (HD-automata in brief) are proposed
as a general model for history-dependent calculi. As ordinary automata, they
are composed of states and of transitions between states. To deal with the

2

MONTANARI AND PISTORE

peculiar problems of history-dependent calculi, however, states and transition
are enriched with sets of local names: in particular, each transition can refer
to the names associated to its source state but can also generate new names,
which can then appear in the destination state. In this manner, the names are
not global and static, as in ordinary labeled transition systems, but they are
explicitly represented within states and transitions and can be dynamically
created.

This permits to represent adequately the behavior of history-dependent
processes. In particular, m-calculus agents can be translated into HD-au-
tomata and a first sign of the adequacy of HD-automata for dealing with
m-calculus is that a large class of finitary m-calculus agents can be represented
by finite-state HD-automata.

In [21] a general definition of bisimulation for HD-automata is also given.
An important result is that this general bisimulation equates the HD-automata
obtained from two m-calculus agents if and only if the agents are bisimilar
according to the ordinary (strong, early) m-calculus bisimilarity relation.

These results do not hold only for the m-calculus: similar mappings ex-
ist also for other history-dependent calculi. In previous papers [20,18,19] we
defined mappings to HD-automata for CCS with localities [4], for CCS with
causality [7,6,11], and, to consider an example outside the field of process
algebras, for the history-preserving semantics of Petri nets [2].

Papers [20,18,19] introduce the applications of HD-automata without re-
sorting to categories. Report [21] defines HD-automata and HD-bisimulation
both in a set theoretical style and following the uniform categorical approach
of [10] based on spans of open maps.

In this paper we summarize some of the results of [21]. In particular, we
define HD-automata in a categorical framework, by exploiting a classical cat-
egorical definition of ordinary automata. We also show that m-calculus agents
can be translated into HD-automata. Finally, we introduce HD-bisimulation
by applying to HD-automata the approach of open maps. We refer to [21] for
the proof of the results presented here and for a deeper study of the properties
of HD-automata.

2 The m-calculus

The w-calculus [15,14] is an extension of CCS in which channel names can be
used as values in the communications, i.e., channels are first-order values. This
possibility of communicating names gives to the m-calculus a richer expressive
power that CCS: in fact it allows to generate dynamically new channels and to
change the interconnection structure of the processes. The 7-calculus has been
successfully used to model object oriented languages [24], and also higher-order
communications can be easily encoded in the 7-calculus [23], thus allowing for
code migration.

Many versions of w-calculus have appeared in the literature. The 7-calculus

3

MONTANARI AND PISTORE

we present here is early and monadic; it was first introduced in [16], but we
present a slightly simplified version, following in part the style proposed in
[23,14] for the polyadic 7-calculus.

Let O be an infinite, denumerable set of names, ranged over by a, ..., z,
and let Var be a finite set of agent identifiers, denoted by A, B,...; the 7-
calculus agents, ranged over by p,q, ..., are defined by the syntax

pi=0 | mp | plp | php | wo)p | o=yl | Alwr,..sw0)
where the prefizes m are defined by the syntax
Tou=T ‘ Ty ‘ z(y).

The occurrences of y in x(y).p and (vy) p are bound; free names of agent p are
defined as usual and we denote them with fn(p). For each identifier A there is a

definition A(y1, ..., yn) o (with y; all distinct and fn(pa) € {y1,-.-,Yn});
we assume that, whenever A is used, its arity n is respected. Finally we require
that each agent identifier in p, is in the scope of a prefix (guarded recursion).

If o : M — N, we denote with po the agent p whose free names have
been replaced according to substitution o (possibly with changes in the bound
names); we denote with {y;/x;---y,/x,} the substitution that maps z; into
y; for . =1,...,n and which is the identity on the other names.

Notice that, with some abuse of notation, we can see substitution ¢ in
po as a function on fn(p) rather than on N; in fact, po and po’ coincide
whenever o and ¢’ coincide on fn(p). So, we say that substitution o is injective
for p if o : fn(p) — M is an injective function. We also say that agents p
and ¢ differ for a bijective substitution if there exists some bijective function
o : fn(p) — fn(g) such that ¢ = po.

We define m-calculus agents up to a structural congruence =, in the style
of the Chemical Abstract Machine [1]. This structural congruence allows to
identify all the agents which represent essentially the same system and which
differ just for syntactical details; moreover it simplifies the presentation of the
operational semantics. The structural congruence = is the smallest congruence
that respects the following rules.

(alpha) (vz)p = (vy) (ply/x}) if y & £n(p)
(sum) p+0=p prg=q+p p+(g+r) = (p+q)+r

(par) plo=p ple=qlp pllglr) = lo)lr

(res) (vz)0=0 (vz)(wy)p= (vy) (vz)p
(vz) (plg) = pl(ve) q if = & £n(p)
(match) [r=zp=p [zr=y]0=0
By exploiting the structural congruence =, each 7-calculus agent can be seen

as a set of sequential processes that act in parallel, sharing a set of chan-
nels, some of which are global (unrestricted) whereas some other are local

4

MONTANARI AND PISTORE

D 5 p Typ 2 p z(y).p =5 plz/y}
oy 2, p
P1 O%) - P - p} if bn(a) N fn(p2) =0
p1+p2 = p pilp2 = pilp2
T Z(y
pL=t Py P2 = ph 0B py S ¢ £n(ps)
T / / T !/ ! y p2
p1lp2 — pi|ps pilp2 — (vy) (p1|p2)
p>p : p =y :
2P it gn(a) it fnl))
(va)p = (vz)p () p =3 p'{z/y}
Q.
palinfes o S g e

AW, yn) = p
Table 1
Early operational semantics.

(restricted). Each sequential process is a term of the form

p+p ‘ A(ajla H '7xn)

that can be considered as a “program” describing all the possible behaviors
of the sequential process. These sequential processes are then connected by
means of the operators of parallel composition and restriction, that allow to
describe the structure of the system in which the processes act.

The actions an agent can perform are defined by the syntax

§ = T.p

a:::T‘xy‘fy‘j(z)

and are called respectively synchronization, input, free output and bound out-
put actions; = and y are free names of o (fn(«)), whereas z is a bound name
(bn(ar)); moreover n(«) = fn(a) Ubn(a). Name z is called the subject and y
or z the object of the action.

The transitions for the early operational semantics are defined by the axiom
schemata and the inference rules of Table 1.

Some comments on the syntax and on the operational semantics of -
calculus are now in order. The syntax of m-calculus is similar to that of
CCS: the most important difference is in the prefixes. The output prefix Ty.p
specifies not just the channel x for the communication, but also the value y
that is sent on xz; in the input prefixes z(y).p, name x represents still the
channel, whereas y represents a formal variable in p, that is instantiated by
the effectively received value when the input transition takes place.

The matching [x=y|p represents a guard for agent p: agent p can act only
if and y coincide; this behavior is obtained by exploiting the structural
congruence: in fact [x=z]p = p; no transition can be derived from [z=y]p if
T F£ .

Notice that, in the case of the 7w-calculus, the actions a process can perform
are different from the prefixes. This happens due to the input and to the bound
output. In the case of the input, the prefix has the form z(y), while the

5

MONTANARI AND PISTORE

action has the form zz; in fact, y represent a formal variable, whereas z is the
effectively received value?. The bound output transitions are specific of the
m-calculus; they represent the communication of a name that was previously
restricted, i.e., it corresponds to the generation of a new channel between the
agent and the environment.

Now we present, the definition of the early bisimulation for the m-calculus.

Definition 2.1 (early bisimulation) A relation R over agents is an early
simulation if whenever p R ¢ then:

for each p = p' with bn(a) N £n(p,q) = O there is some ¢ = ¢’ such that
PR
A relation R is an early bisimulation if both R and R~ are early simulations.

Two agents p and q are early bisimilar, written p ~, ¢, if p R ¢ for some early
bisimulation R.

As for CCS-like calculi, a labeled transition system is used to give an
operational semantics to the m-calculus. However, this way to present the op-
erational semantics has some disadvantages. For instance, an infinite number
of transitions correspond even to very simple agents, like p = z(y).7z.0: in
fact, this agent can perform an infinite number of different input transitions
p =8 2.0, corresponding to all the possible choices of w € M. It is clear that,
except for z and z, which are the free names of p, all the other names are
indistinguishable as input values for the future behavior of p. However, this
fact is not reflected in the operational semantics.

Also consider process ¢ = (vy) Zy.y(z).0. It is able to generate a new
channel by communicating name y in a bound output. The creation of a new
name is represented in the transition system by means of an infinite bunch of

transitions ¢) w(z).0, where, in this case, w is any name different from x:
the creation of a new channel is modelled by using all the names which are not
already in use to represent it. As a consequence, the definition of bisimulation
is not the ordinary one: in general two bisimilar process can have different
sets free names, and the clause “bn(a) N fn(p,q) = (” has to be added in
Definition 2.1 to deal with those bound output transitions which use a name
that is used only in one of the two processes. The presence of this clause
makes it difficult to reuse standard theory and algorithms for bisimulation on
the m-calculus — see for instance [5].

3 History-dependent automata

As explained in the Introduction, ordinary automata are insufficient to deal
with history-dependent calculi. To address this problem, in this section we

2 This is not true in all the versions of the m-calculus; in the case of the late and open
versions, for instance, also the input actions have formal variables rather than values.

6

MONTANARI AND PISTORE

describe a richer structure, the history-dependent automata (HD-automata in
brief), which are obtained by allowing names to appear explicitly in states,
transitions and labels. As we will see, it is convenient to assume that the
names which appear in a state, a transition or a label of a HD-automaton are
local names and do not have a global identity. In this way, for instance, a
single state of the HD-automaton can be used to represent all the states of
a system that differ just for a bijective renaming. In this way, however, each
transition is required to represent explicitly the correspondences between the
names of source, target and label.

In this section we show that HD-automata can be defined in a categor-
ical framework by extending the classical categorical definition of ordinary
automata.

An ordinary automaton can be defined as a diagram

LéTQQ\#{*}

in the category Set of sets. Sets Q, T" and L represent respectively the states,
the transitions and the labels of the automaton. Functions s, d and [associate
to each transition respectively its source, its destination state and its label. If
t € T is such that s(t) = ¢, d(t) = ¢’ and [(t) = A, then we write in brief
t:q 2> ¢. The initial state of the automaton is designated by i(x).

Given two automata A; and A, on the same set L of labels, a morphism
m : Ay — Ay is a pair of arrows mg : ¢y — Q2 and my : Ty — 15 that
respect sources, destinations, labels, and initial state, i.e., such that the two
overlapped diagrams

commute in the obvious way.

The category Aut; of the automata on labels L is defined by using au-
tomata with labels L as objects and morphisms between such automata as
arrows; identity arrow and composition between arrows are defined in the
obvious way.

HD-automata can be defined in a similar way: we have just to replace the
category Set with a category of named sets.

Definition 3.1 (named sets) A named set E is a set denoted by E, and a
family of name sets indexed by E, namely {Ele] € Set}ccp (i-e., E[] is a map
form E to Set).

Given two named sets E and E’, a named function m : E — E’ is a function
on the sets m : E — E’ and a family of name embeddings (i.e., of injective

7

MONTANARI AND PISTORE

functions) indexed by m, namely {m[e, '] : E'le'] < E[e]}(c.eyem-

E > e Ele]
Lm lm K]\m[e,e’}
El > ¢ EI[(Z,]

A named set E is finitely named if Ele] is finite for each e € E. A named set
E' is finite if it is finitely named and set F is finite.

The category NSet of named sets has named sets as objects and named
functions as arrows; in particular:

e if E is a named set, then idg is the named function such that, for each e € F,
idg(e) = e and idgle, €] = idg;

e ifm:E; — E; and m' : E; — E3 are two named functions, then m;m’ : E; —
E3 is the named function such that, for each e € E;, m;m/(e) = m/(m(e))
and, if m(e) = €' and m/(e') = €” then m;m'[e, "] = m'[¢/, €"]; m[e, €'].

Definition 3.2 (HD-automata) Let Start be the named set with * as sin-
gleton element and Start[x] = M. A HD-automaton is a diagram

s ,

L——TZ ~Q-—"—Start

d
in the category NSet of named sets.
A HD-automaton is finitely named if L, Q and T are finitely named; it is finite
if, in addition, Q and T are finite.
Given two HD-automata A; and A; on the same named set L of labels, a
morphism m : Ay — Aj is a pair of arrows mg : Q1 = Qx and mp : Ty — T
that respects sources, destinations, labels, and initial state, i.e., such that the
two overlapped diagrams

i

commute in the obvious way.

The category HD| of the HD-automata on labels L is defined as the full
subcategory of HD whose objects have L as the set of labels and respect the
following condition:

T[t] = cod(s[t, s(t)]) U cod(l[t,(t)]) for each t € T.

Let ¢t be a transition of a HD-automaton such that s(t) = ¢, d(t) = ¢’ and

[(t) = A (in this case we write in brief ¢ : ¢ 2 ¢'). Then s[t,q] embeds the
names of ¢ into the names of ¢, whereas d[t, ¢'| embeds the names of ¢’ into the
names of ¢; in this way, a partial correspondence is defined between the names

8

MONTANARI AND PISTORE

of the source state and those of the target; the names which appear in the
source and not in the target are discarded, or forgotten, during the transitions,
whereas the names that appear in the target but not in the source are created
during the transition. Condition “T[t] = cod(s[t, s(t)]) U cod(l]t, (t)])” corre-
sponds to require that all the names that are created in the transition must
appear explicitly in the label (name discarding, instead, can appear silently).

The initial state qy of a HD-automaton is designated by i(x), whereas
i[*, qo] is the initial embedding that maps the names of the initial state into
the set 91 of global names.

3.1 Well-sorted HD-automata

The HD-automata we have defined above are satisfactory for representing the
operational semantics of many history dependent formalisms, like CCS with
localities [20] and Petri nets with history-preserving bisimulation [19]. They
are not completely adequate for the m-calculus.

In fact, let p(a, b, ¢) and g(a, b) be equivalent w-calculus agents with differ-
ent sets of free names® and suppose the two agents perform a bound output.
According to Definition 2.1, in checking bisimilarity we require that the object
of the bound output is a new name for both agents. On the HD-automata this
can be achieved by representing the bound output with an unique transition
that introduces a new name.

If the two agents perform an input, however, all the names must be con-
sidered as possible input values. To represent the input on a HD-automaton,
we have to consider a transition for each of the names which are present in the
source state, and a transition corresponding to the input of a fresh name. In
both the HD-automata corresponding to p and ¢, hence, there are transitions
corresponding to the input of names a and b and to the input of a fresh name.
The transition for name ¢ appears only in the HD-automaton of p, since ¢ is
not free in ¢: this transition of p is matched in ¢ by the transition for the fresh
name.

This shows that the objects of bound outputs and of inputs have different
meanings: in the case of bound outputs they are new names, whereas the
objects of inputs are either already present in the source state or universal
names (i.e., they represent all the other names, including the names which
are free only in the other agent). In the HD-automata, however, there is
only one way to introduce fresh names in a transition; so we need to add a
new component to the HD-automata to distinguish between bound-output-
like transitions and fresh-input-like transitions. This new component, called
sorting, allows to distinguish the names of a label that must appear in the
source (the old names), those that cannot appear in the source (the new
names) and those that may appear in the source (the both names).

3 This can be easily obtained, for instance by getting p(a, b, c) = q(a,b) + (vx) Zc.0, where
the component (vz) Zc.0 is deadlocked.

MONTANARI AND PISTORE

Definition 3.3 (well-sorted HD-automata) Let L be a named set of la-
bels. A sorting T for L associates to each label A € L a function T’y : L[A] —
{new, 01d, both}.

The category HDy 1 of the well-sorted HD-automata on labels L and sorting
[' is defined as the full subcategory of HD| whose objects respect following
condition:

for each t € T and n € L[I(t)], if I[t,1(t)](n) € cod(s[t, s(t)]) then [y (n) #
new and if I[t, 1(2)](n) & cod(s[t, s(t)]) then 'y (n) # old.

According to the previous considerations, the names of a transition ¢ : ¢ LN q
are classified as follows:

¢ Tltluew = {n | n' € L[A], TA(n') = new, I[t, \](n') = n} are the new names of
transition £, i.e., the names which correspond to names of the label of sort
new;

o T[t]sze = cod(s[t, q]) are the names of transition ¢ that are already present
in the source state;

o T[tluniv = T[tlbotn ~ T[t]sze are the universal names of transition ¢, i.e., the
names which correspond to names of the label of sort both and which are
not present in the source state.

Notice that T[t]sre, T[t]new and T[t]unis are a partition of T[t], i.e., they are
disjoint and their union contains all the names of ¢.

4 Representing m-calculus agents as HD-automata

We are interested in the representation of m-calculus agents as HD-automata.
First we define the named set of labels L, for this language: we have to
distinguish between synchronizations, inputs, free outputs and bound outputs.
Thus the set of labels is

L, = {tau, in, iny, out, out,, bout }

where in, and outs are used when subject and object names of inputs or free

outputs coincide (these special labels are necessary, since the function from

the names associated to a label into the names associated to a transition must

be injective). No name is associated to tau, one name (n) is associated to iny

and out, and two names (ng,, and ney;) are associated to in, out and bout.
The sorting I'; on L, is defined as follows:

A tau in iny| out |out,| bout
n e L(A) — |NMsub| Mobj | T |Msub|Tobj| T [Msub |Tlobj
['x(n) | — |old|both|old|old|old|old |old |new

This means that the subject names of the labels must be old names, whereas
the object names must be old in the case of free output, new in the case of

10

MONTANARI AND PISTORE

bound output and can be either old or new in the case of input.

To associate a HD-automaton to a m-calculus agent, we have to represent
the derivatives of the agent as states of the automaton and their transitions as
transitions in the HD-automaton; the names corresponding to a state are the
free names of the corresponding agent, the names corresponding to a transition
are the free names of the source state plus the new names (if any) appearing
in the label of the transition. A label of L, is associated to each transition in
the obvious way.

This naive construction can be improved to obtain more compact HD-
automata. Consider the agent p = 2(z).q(z,y, 2); it can perform an infinite
number of input transitions, corresponding to different received names. In
the context of HD-automata, however, due to the local nature of names, the
transitions of p corresponding to the input of all the names different from
x and y are indistinguishable; so it is sufficient to consider just three input
transitions for p, i.e., the inputs of names z and y, and the input of one
representative of the fresh names.

Similarly, it is sufficient to consider just one bound output, whose extruded
name is the representative of the names not appearing in the agent; finally,
all the 7 and the free output transitions have to be considered.

According to the following definition we choose to use the first name which
does not appear free in p — namely min(9t \ fn(p)) — as representative for
the input and bound output transitions of p.

Definition 4.1 (representative transitions) A 7w-calculus transition ¢ :
p = qis a representative transition if n(a) C £n(p) U {min(9 ~ £n(p))}.

The following lemma shows that the representative transitions express, up
to a-conversion, all the behaviors of an agent.

Lemma 4.2 Let t : p = ¢, with o = ax (resp. a = a(z)), be a non-
representative m-calculus transition. Then there is some representative transi-

tiont' :p L ¢, with o' = ay (resp. o/ =al(y)), such that ¢' = q{y/x z/y}.

If only representative transitions are used when building a HD-automaton
from a m-calculus agent, the obtained HD-automaton is finite-branching (i.e.,
with a finite set of transitions from each state of the automaton).

Another advantage of using local names is that two agents differing only
for a bijective substitution can be collapsed in the same state in the HD-
automaton: we assume to have a function norm that, given an agent p, returns
a pair (¢,0) = norm(p), where ¢ is the representative of the class of agents dif-
fering from p for bijective substitutions and o : fn(q) — fn(p) is the bijective
substitution such that p = qo.

Definition 4.3 (from r-calculus agents to HD-automata) The HD-
automaton A, corresponding to a m-calculus agent p is defined by the following

11

MONTANARI AND PISTORE

a T xy |xx| Ty zx | Z(y)

tau in iny| out |outy| bout

n € LIA]| = |Msub|Tobj| T [Tsub|Mobj| 7 |Tsub [Tob;
kn) | = |z |ylz|z|y| x| x|y
Table 2

Relations between mw-calculus labels and labels of HD-automata.

rules:

e if norm(p) = (p/, 0’) then:
- p' € @ is the initial state and Q[p'] = £n(p’);
- o' is the initial embedding;

cifgeQ,t:q> ¢ is a representative transition and norm(q') = (¢"

then:

- ¢" € Q and Q[¢"] = £n(¢");

- t € T and T[t] = £n(q) U bn(«);

- 5(t) =q, d(t) = ¢", s[t, q] = idsn(g) and d[t, ¢"] = o;
- I(t) = A and I[t, \] = k are defined as in Table 2.

70)7

Lemma 4.4 For every m-calculus agent p, the HD-automaton A, is well-
sorted for labels L, and sorting I',.

For each m-calculus agent p, the HD-automaton A, is obviously finitely
named. Now we will identify a class of agents that generate a finite HD-
automaton. This is the class of finitary m-calculus agents, which is defined
like the corresponding class of CCS agents.

Definition 4.5 (finitary agents) The degree of parallelism deg(p) of a -
calculus agent p is defined as follows:

deg(0) =0 deg(p.p) =1
deg((va)p) = deg(p) deg(plg) = deg(p) + deg(q)
deg(p+q) =1 deg([z=y|p) = deg(p)
deg(A4) =1

A m-calculus agent p is finitary if max{deg(p’) |p & --- & p'} < .

Theorem 4.6 Let p be a finitary w-calculus agent. Then the HD-automaton
A, is finite.

An important class of finitary agents which can be characterized syntac-
tically is the class of the agents with finite control, i.e., the agents without
parallel composition in the body of recursive definitions. In this case, after an

12

MONTANARI AND PISTORE

initialization phase during which a finite set of processes acting in parallel is
created, no new processes can be generated.

5 Bisimulation for HD-automata

In this section we introduce a notion of bisimulation on HD-automata and give
some basic properties of this bisimulation. We also show that the definition
of bisimulation on 7w-calculus agents is captured exactly by the bisimulation
on HD-automata.

5.1 Open maps and bisimulations

Consider a morphism m : A; — A, in the category of automata. Relation
R={{q1,0) € Q1 x Q2| =mg(q:)}

is a simulation for A; and A,. In fact, assume ¢; R ¢ and t; : ¢1 N qy; then
we have 5 : ¢o EN ¢, and q] R ¢, by taking ¢ R ¢5. Moreover go; R qo2-

So, a morphism m : A; — A, expresses the fact that all the transitions
of A; can be simulated in A,, starting from the initial states. In general,
however, it is not true that all the transitions of A, can be simulated in A;.

However, it is possible to define a particular class of “bisimulation” mor-
phisms, such that the existence of such a morphism from A; to A, guarantees
not only that the transitions of A; can be adequately simulated in A, but
also the converse; i.e., the existence of a “bisimulation” morphism guarantees
that A; and A, are bisimilar. In general, it is not true the converse, i.e., there
exist bisimilar automata A; and A, such that no “bisimulation” morphism
(nor generic morphisms) can be found between them. However, whenever two
automata A; and A, are bisimilar, it is possible to find a common predecessor
A and a span of “bisimulation” morphisms m; : A — A; and my : A — A,
between them.

" A\Z”
Ay Ap
This class of “bisimulation” morphisms have been defined in various man-
ner in the literature, and different names have been given to them. Here we
just consider the approach of open maps [10], that it is general enough to be
applied not only to automata, but also to other models of concurrency, like
Petri nets and event structures.

Assume a category M of models. Let E be the subcategory of M whose
objects are the experiments that can be executed on M and whose arrows
express how the experiments can be extended. If X is an object of E and M
is an object of M, an arrow x : X — M of M represents the execution of the
experiment X in the model M.

13

MONTANARI AND PISTORE

Consider an arrow m : M — N in M. We can see this arrow as a simulation
of model M in model N. So, correctly, if an experiment X can be executed
in M (there exists an arrow z : X — M) and N can simulate M (there exists
an arrow m : M — N) then the experiment X can be executed in N (via the
arrow x;m : X — N).

Suppose now to extend the experiment X to an experiment Y (via an
arrow f: X — Y in E) and that an arrow y : Y — N exists such that the
following diagram commutes in M.

(1) X——=M
|, b
Y ——N
This means that the execution of the experiment X in N (via x;m) can
be extended to an execution of the experiment Y in N (via y).
This does not imply in general that also the execution of X in M can be

extended to an execution of Y in M (which equates y via m) but we can make
this sure by requiring that there is an arrow 3’ such that the diagram

(2) X——=M

(A

Y ——N
commutes. Given m, if for each commuting diagram (1) there is an arrow y’
such that also (2) commutes, we say that m is an E-open map.

It is easy to check that the open maps form a subcategory of M (i.e.,
identities are open and open maps are closed for composition).

Definition 5.1 (open bisimulation) We say that two objects M; and M,
of M are open-bistmilar with respect to E if and only if there is a span of
E-open maps mq, ms.

NG
M, M,

In [10] it is shown that, if the category Auty is used as the category of
the models and the full subcategory Bran; of the branches (i.e., of those
finite automata which consist of a linear sequence of transitions) is used as
the category of experiments, then two automata are open-bisimilar if and only
if they are bisimilar according to the classical definition.

5.2 Application to the HD-automata

In the case of HD-automata, an experiment is a finite sequences of transi-
tions and an extended experiment can be obtained by adding new transitions.
Moreover, we require that no name is forgotten during an experiment, since
this models the idea that the observer can remember all the names previously

14

MONTANARI AND PISTORE

used in the experiment. However, this is not a crucial point for the validity of
Theorem 5.4.

Definition 5.2 (category of HD-experiments) A HD-automaton X is a
HD-experiment if:

* Q={9 q,---,qn} are the states and T' = {t1,...,t,} are the transitions,
and s(t;) = ¢;—1 and d(t;) = q;;
o for all t € T, d[t,d(t)] : Q[d(t)] — T[t] is bijective.

A morphism (mq, mt) : X — X' is name preserving if mq and my are bijections
on the names, i.e., mq[g, mg(g)] is a bijection between Q'[mg(q)] and Qlg] for
all ¢ € @, and similarly for m+.

The category Exp of HD-experiments is the subcategory of HD with HD-
experiments as objects and name preserving morphisms as arrows.

Category Exp| is the full subcategory of Exp whose objects are HDy p-
automata.

Now we can apply the general definition of open-bisimilarity in our case.

Definition 5.3 (HD-bisimilarity) Two well-sorted HD-automata A and B
on the same labels L and sorting I' are HD-bisimilar, written A ~ B, if they
are open-bisimilar w.r.t. experiments Expy .

The definition of HD-bisimilarity can be applied also in the case of HD-
automata obtained from w-calculus agents. The induced equivalence on the
agents coincides exactly with the strong, early bisimilarity relation ~.

Theorem 5.4 Let p; and py be m-calculus agents. Then py ~y po iff A, ~
Ap,.

It is also possible to give an explicit definition of HD-bisimulation, in terms
of relations on the states, rather that in terms of bisimulation morphisms. The
explicit definition is reported in Appendix A.

6 Concluding remarks

In this paper we have briefly described history dependent automata, an oper-
ational model adequate to deal with history dependent calculi. In particular,
we have represented m-calculus agents via HD-automata and strong, early 7-
calculus bisimilarity via a general definition of bisimulation equivalence on
HD-automata. All these results will appear in more detail in [21].

We want to stress that HD-automata can be applied successfully also to
the late semantics of m-calculus (only the translation of Definition 4.3 has to
be changed) or to other examples of history dependent calculi, as for instance
CCS with localities [4,20] or with causality [6,18]. It is also possible to define
a weak HD-bisimulation that applies to all these cases. Also, HD-automata

15

MONTANARI AND PISTORE

can be applied to formalisms outside the field of process algebras; this is the
case for the history-preserving semantics of Petri nets [2,19].

HD-automata are very promising for the development of automatic verifica-
tion tools for history dependent calculi. In fact, HD-automata can be used as a
common format in which various history-dependent calculi can be translated,
so that general algorithms on HD-automata can be re-used for all these calculi.
We are developing a verification environment which is based on the approach
above. The environment provides a number of front ends translating the dif-
ferent history dependent formalisms into HD-automata, and a set of tools to
edit, visualize, compose and check for equivalence the obtained HD-automata.
It is also possible to associate ordinary automata to the HD-automata, in such
a way that bisimilar HD-automata are mapped into bisimilar automata, and
finite HD-automata are mapped into finite automata. In this way, classical
algorithms and tools for ordinary automata [3] can be re-used. A preliminary
report on the development of the tool appeared in [8].

References

[1] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96:217-248, 1992.

[2] E. Best, R. Devillers, A. Kiehn and L. Pomello. Fully concurrent bisimulation.
Acta Informatica, 28:231-264, 1991.

[3] A. Bouali, S. Gnesi and S. Larosa. The integration project for the JACK
environment. Bullettin of the EATCS, 54, 1994.

[4] G. Boudol, I. Castellani, M. Hennessy and A. Kiehn. Observing localities.
Theoretical Computer Science, 114:31-61, 1993.

[5] M. Dam. On the decidability of process equivalences for the m-calculus.
Theoretical Computer Science, 183:215-228, 1997.

[6] Ph. Darondeau and P. Degano. Causal trees. In Proc. ICALP’89, LNCS 372.
Springer Verlag, 1989.

[7] P. Degano, R. De Nicola and U. Montanari. CCS is an (augmented) contact
free C/E system. In Proc. Adv. Sch. on Mathematical Models for the Semantics
of Parallelism, LNCS 280. Springer Verlag, 1986.

8] G. Ferrari, G. Ferro, S. Gnesi, U. Montanari, M. Pistore and G. Ristori.
An automata based verification environment for mobile processes. In Proc.

TACAS’97, LNCS 1217. Springer Verlag, 1997.

9] P. Inverardi and C. Priami. Evaluation of tools for the analysis of
communicating systems. Bulletin of the FATCS, 45:158-185, 1991.

[10] A. Joyal, M. Nielsen and G. Winskel. Bisimulation from open maps. In Proc.
LICS’93. Full version as BRICS RS-94-7. Department of Computer Science,
University of Aarhus. 1994.

16

MONTANARI AND PISTORE

[11] A. Kiehn. Local and global causes. Tech. Rep. 42/23/91, Institut fiir Informatik,
TU Miinchen, 1991.

[12] E. Madelaine. Verification tools for the CONCUR project. Bulletin of the
EATCS, 47:110-126, 1992.

[13] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[14] R. Milner. The polyadic m-calculus: a tutorial. In Logic and Algebra of
Specification, NATO ASI Series F, Vol. 94. Springer Verlag, 1993.

[15] R. Milner, J. Parrow and D. Walker. A calculus of mobile processes (parts I
and II). Information and Computation, 100:1-77, 1992.

[16] R. Milner, J. Parrow and D. Walker. Modal logic for mobile processes.
Theoretical Computer Science, 114:149-171, 1993.

[17] U. Montanari and M. Pistore. Checking bisimilarity for finitary m-calculus. In
Proc. CONCUR’95, LNCS 962. Springer Verlag, 1995.

[18] U. Montanari and M. Pistore. History dependent verification for partial order
systems. In Partial Order Methods in Verification, DIMACS Series, Vol. 29.
American Mathematical Society, 1997.

[19] U. Montanari and M. Pistore. Minimal transition systems for history-preserving
bisimulation. In Proc. STACS’97, LNCS 1200. Springer Verlag, 1997.

[20] U. Montanari, M. Pistore and D. Yankelevich. Efficient minimization up to
location equivalence. In Proc. ESOP’96, LNCS 1058. Springer Verlag, 1996.

[21] U. Montanari and M. Pistore. History dependent automata. Tech. Rep. in
preparation. Dipartimento di Informatica, Universita di Pisa, 1998.

[22] D. Park. Concurrency and Automata on Infinite Sequences, LNCS 104. Springer
Verlag, 1980.

[23] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD Thesis CST-99-93, University of Edinburgh, 1992.

[24] D. Walker. Objects in the 7-calculus. Information and Computation, 116:253—
271, 1995.

A Explicit definition of HD-bisimulation

Here we want to give an explicit definition of bisimulation on HD-automata
which is equivalent to the one given in Definition 5.3 by exploiting the open
maps. This definition is less satisfactory than the one given via open maps,
since, as we will see, it has to deal explicitly with the different sorts of names
that appear in a transition. However, the explicit definition makes it clear that
the bisimulation of two HD-automata can be effectively decided whenever the
two HD-automata are finite.

17

MONTANARI AND PISTORE

Due to the private nature of the names appearing in the states of HD-
automata, bisimulations cannot simply be relations on the states; they must
also deal with name correspondences: a HD-bisimulation is a set of triples
of the form (qi,d, ¢2) where ¢; and ¢y are states of the automata and ¢ is a
partial bijection between the names of the states. The bijection is partial since
we allow for equivalent states with different numbers of names (for instance,
equivalent m-calculus agents can have different sets of free names). In what
follows, we represent a partial bijection f from set A to set B with f : A — B.

Suppose that we want to check if states ¢; and ¢y are (strongly) bisimilar
via the partial bijection ¢ : Q[¢1] —— Q[¢2] and suppose that ¢; can perform a

transition £y : ¢ EN ¢y We assume for the moment that all the names of the

label A are of sorts 01ld or new. Then we have to find a transition ¢ : ¢ EN ¢
that matches %, i.e., not only the two transitions must have the same label,
but also the names associated to the labels must be used consistently. This
means that:

a) if a name n of the label is of sort 0ld, then the corresponding names in the
source states ¢; and g, must be in correspondence by § (such names surely
exist in ¢; and ¢, if the HD-automata are well-sorted);

b) if a name n of the label is of sort new, then the corresponding names in
the transitions ¢; and t, are put in correspondence (if the HD-automata are
well-sorted, no names corresponding to n appear in the source states).

This behavior is obtained by requiring that a partial bijection ¢ : T[t;] «—
T[ty] exists such that: i) ¢ coincides with ¢ if restricted to the names of
the source states (obviously, via the embeddings s[t, ¢1] and s[ts, g2]); i) the
names associated to the labels are the same, via (, and iii) the destination
states ¢ and ¢, are bisimilar via a partial bijection ¢’ which is compatible
with ¢ (i.e., if two names are related by ¢’ in the destination states, then the
corresponding names in the transitions are related by ().

The situation is more complex if a name n of the label A is of sort both.
We can distinguish three more cases:

c¢) the name n; in t; corresponding to n is already present in ¢; and is asso-
ciated via ¢’ to a name of ¢; in this case a matching transition t, from ¢,
must use for n this associated name;

d) the name n; in t; corresponding to n is already present in ¢; and it is not
associated via d to a name of ¢y; in this case t; must be matched by a
transition t5 from ¢y which uses an universal name for n; the meaning of
this is that name n; is handled as a special case in state ¢;, but is handled
by the default transition in gy;

e) the name n; in ¢; corresponding to n is not already present in ¢; (i.e., ny is
an universal name); in this case we require that ¢, is matched:
el) by a transition from ¢o which uses an universal name for n (the two uni-
versal names are put in correspondence), and

18

MONTANARI AND PISTORE

e2) for each name ny of ¢, not appearing (via) in ¢, by a transition from
o that uses ny for n (in this case, a new correspondence is set for n; and
ns); the meaning of this is that the default transition in ¢; must match
also the special cases of ¢go which are not contemplated by ¢;.

This more complex behavior is obtained by requiring that, for each transition

ttqq EN ¢y and for each possible partial bijection £ between the universal
names of ¢, and the names of ¢, which do not already correspond to names of
g1, there is some transition s : ¢o LN ¢4 and some partial bijection ¢ : T[t;] «—
T[ts] extending &;sts, ¢2] such that i) ¢ satisfies the rules a-¢) above?; ii) the
names associated to the labels are the same, via (, and iii) the destination
states ¢ and ¢, are bisimilar via a partial bijection ¢ which is compatible
with (. Notice that to a name of ¢; can correspond no name of ¢, via (, if no
name is associated to it via 6 and the name does not appear in the label.

Definition A.1 (HD-bisimulation) Let A; and A, be two HD-automata
in HD r. A HD-simulation for A, and A, is a set of triples R C {{¢1, 6, ¢2) |

G € Q1, g2 € Q2,0 : Qi1]q1] — Qa[q2]} such that, whenever (qi,d,¢q) € R
then:

for each t; : ¢ N ¢, in Ay and for each & : Ti[t1]umiv “ Q2[g2] such
that cod(§) N cod(d) = 0, there exist some ty : go 2 ¢, in Ay and some
C : Tl[tl] — Tz[tz] such that:
*)= Sl[tlaQI]; & 52[752,(]2]71;
= C|T1[t1}mv;52[t2,Q2]_1§
o hlti, A; ¢ = la[te, AJ;
(4,0, q}) € R where &' C di[t1,q}]; (; dafta, gh] .
A HD-bisimulation for A, and A, is a set of triples R such that R is a HD-
simulation for A; and Ay and R = {{(¢2,0 1, q1) | (q1,0,2) € R} is a
HD-simulations for A, and A;.
A HD-bisimulation on for A is a HD-bisimulation for A and A.
The HD-automata A; and A, are (strongly) HD-bisimilar (written A; ~ As) if
there exists some HD-bisimulation for A; and A, such that (i;(x),d,is(%)) € R
for & C iy[*, i1 (x)];i1[*, 01 (%)] L.

Theorem A.2 Two HD-automata are bisimilar according to Definition 5.3
iff they are bisimilar according to Definition A.1.

4 For rule e): let n; be an universal name of t1; if £(n1) = ny € Q[g2] then n; must be
matched by ny (case €2); if £(n1) is undefined, an universal name of ¢, must match ny (case
el).

19

