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1. Introduction

In this article, we let K denote a field, L a field extension of K, and n and p two positive integers.

Definition 1. Two families (Ai)i∈I and (Bi)i∈I of matrices of Mn(K) indexed over the same set I are

said to be simultaneously similar when there exists P ∈ GLn(K) such that

∀i ∈ I, PAiP
−1 = Bi

(such a matrix P will then be called a base change matrix with respect to the two families).

Two families (Ai)i∈I and (Bi)i∈I of matrices of Mn,p(K) indexed over the same set I are said to be

simultaneously equivalentwhen there exists a pair (P, Q) ∈ GLn(K) × GLp(K) such that
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∀i ∈ I, PAiQ = Bi.

Of course, those relations extend the familiar relations of similarity and equivalence respectively

onMn(K) dans Mn,p(K), and they are equivalence relations respectively on Mn(K)I andMn,p(K)I .
The simultaneous similarity of matrices is generally regarded upon as a “wild problem" where

finding a useful characterisation by invariants seems out of reach. See [1] for an account of the problem

and an algorithmic approach to its solution (for that last matter, also see [3]).

In this respect, our very limited goal here is to establish the following two results:

Theorem 1. Let K − L be a field extension and I be a set.
Let (Ai)i∈I and (Bi)i∈I be two families of matrices of Mn(K).
Then (Ai)i∈I and (Bi)i∈I are simultaneously similar in Mn(K) if and only if they are simultaneously

similar in Mn(L).

Theorem 2. Let K − L be a field extension and I be a set.
Let (Ai)i∈I and (Bi)i∈I be two families of matrices of Mn,p(K).
Then (Ai)i∈I and (Bi)i∈I are simultaneously equivalent inMn,p(K) if and only if they are simultaneously

equivalent in Mn,p(L).

Remarks 1

(i) In both theorems, the “only if" part is trivial.

(ii) It is an easy exercise to derive Theorem 1 from Theorem 2. However, we will do precisely the

opposite!

2. A proof for simultaneous similarity

2.1. A reduction to special cases

In order to prove Theorem 2, we will not, contra [3], try to give a canonical form for simultaneous

similarity. Instead, wewill focus on base changematrices and prove directly that if one exists inMn(L),
then another (possibly the same) also exists in Mn(K). To achieve this, we will prove the theorem in

the two following special cases:

(i) K has at least n elements;

(ii) K − L is a separable quadratic extension.

Assuming these cases have been solved, let us immediately prove the general case. Case (i) handles

the situation where K is infinite. Assume now that K is finite, and choose a positive integer N such

that (# K)2
N � n.

Since K is finite, there exists (see Section V.4 of [4]) a tower of N quadratic separable extensions

K ⊂ K1 ⊂ K2 ⊂ · · · ⊂ KN .

We let M denote a compositum extension of KN and L (as extensions of K):

Assume the families (Ai)i∈I and (Bi)i∈I of matrices of Mn(K) are simultaneously similar in Mn(L).

Then they are also simultaneously similar in Mn(M). However, # KN = (# K)2
N � n, so this

simultaneous similarity also holds inMn(KN). Using case (ii) by induction, we then obtain that (Ai)i∈I

and (Bi)i∈I are simultaneously similar inMn(K).
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2.2. The case # K � n

The line of reasoning here is folklore, but we reproduce the proof for sake of completeness. Let then

P ∈ GLn(L) be such that

∀i ∈ I, PAiP
−1 = Bi,

so

∀i ∈ I, PAi = BiP.

LetV denote theK-linear subspaceofL spannedby the coefficients ofP, and choose abasis (x1, . . . , xN)
of V . Decompose then

P = x1P1 + · · · + xNPN

with P1, . . . , PN in Mn(K), and let W be the K-linear subspace of Mn(K) spanned by the N-tuple

(P1, . . . , PN). Since the Ai’s and the Bi’s have all their coefficients in K, the previous relations yield:

∀i ∈ I, ∀k ∈ [[1, N]], PkAi = BiPk

hence

∀i ∈ I, ∀Q ∈ W, QAi = BiQ .

It thus suffices to prove thatW contains a non-singular matrix.

However, the polynomial det(Y1 P1 + · · · + YN PN) ∈ K[Y1, . . . , YN] is homogeneous of total de-

gree n and is non-zero because

det(x1 · P1 + · · · + xN · PN) = det(P) /= 0.

Since n�# K, we conclude that the map Q �→ det Q does not totally vanish onW , which proves that

W ∩ GLn(K) is non-empty.

2.3. The case L is a separable quadratic extension of K

We choose an arbitrary element ε ∈ L \ K and let σ denote the non-identity automorphism of the

K-algebra L. Assume (Ai)i∈I and (Bi)i∈I are simultaneously similar in Mn(L), and let P ∈ GLn(L) be

such that

∀i ∈ I, PAiP
−1 = Bi.

Wefirst point out that the problem is essentially unchanged should P be replacedwith a K-equivalent

matrix of GLn(L).

Indeed, let (P1, P2) ∈ GLn(K)2, and set P′′ := P1PP
−1
2 ∈ GLn(L), and A′′

i := P2Ai(P2)
−1 and

B′′
i := P1Bi(P1)

−1 for all i ∈ I. Then:

∀i ∈ I, P′′A′′
i (P

′′)−1 = B′′
i .

Since it follows directly from the definition that (Ai)i∈I and (A′′
i )i∈I are simultaneously similar in

Mn(K), and that it is also true of (Bi)i∈I and (B′′
i )i∈I , it will suffice to show that (A′′

i )i∈I and (B′′
i )i∈I are

simultaneously similar inMn(K), knowing that they are simultaneously similar in Mn(L).
Returning to P, we split it as

P = Q + εR with (Q, R) ∈ Mn(K)2.

The previous remark then reduces the proof to the case where the pair (Q, R) is canonical in terms of

Kronecker reduction (see Chapter XII of [2] and our Section 4). More roughly, we can assume, since P

is non-singular, that, for some q ∈ [[0, n]]:
Q =

[
M 0

0 In−q

]
and R =

[
Iq 0

0 N

]
,
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where M ∈ Mq(K), N is a nilpotent matrix of Mn−q(K), and we have let Ik denote the unit matrix of

Mk(K).
Let i ∈ I. Applying σ coefficient-wise to PAiP

−1 = Bi, we get:

σ(P)Aiσ(P)−1 = Bi = PAiP
−1,

hence Ai commutes with σ(P)−1P. We now claim the following result:

Lemma 3. Under the preceding assumptions, any matrix of Mn(K) that commutes with σ(P)−1 P also

commutes with P.

Assuming this lemmaholds,wededuce that∀i ∈ I, PAiP
−1 = Ai, hence (Ai)i∈I and (Bi)i∈I are equal,

thus simultaneously similar in Mn(K), which finishes our proof.

Proof of Lemma 3. Let A ∈ Mn(K) which commutes with σ(P)−1P. Applying σ , we deduce that A

also commutes with P−1σ(P), hence with In + (σ (ε) − ε)P−1R, hence with P−1R since σ(ε) /= ε.
Notice then that

P−1R =
[
(M + ε · Iq)−1 0

0 (In−q + εN)−1N

]

with (M + ε · Iq)−1 non-singular and (In−q + εN)−1N nilpotent, so A, which stabilizes both

Im(P−1R)n and Ker(P−1R)n, must be of the form

A =
[
C 0

0 D

]
for some (C, D) ∈ Mq(K) × Mn−q(K).

Commutation of A with P−1R ensures that C commutes with (M + ε · Iq)−1, whereas D commutes

with (In−q + εN)−1N = ε−1 · In−q − ε−1 · (In−q + εN)−1 hence with (In−q + εN)−1. It follows that

A commutes with P−1, hence with P. �

3. A proof for simultaneous equivalence

We will now derive Theorem 2 from Theorem 1. Under the assumptions of Theorem 2, we choose

an arbitrary object a that does not belong to I, and define

Ca = Da :=
[
In 0

0 0

]
∈ Mn+p(K)

and, for i ∈ I,

Ci =
[
0 Ai

0 0

]
and Di =

[
0 Bi
0 0

]
in Mn+p(K).

The following two conditions are then equivalent:

(i) (Ai)i∈I and (Bi)i∈I are simultaneously equivalent;

(ii) (Ci)i∈I∪{a} and (Di)i∈I∪{a} are simultaneously similar.

Indeed, if condition (i) holds, thenwe choose (P, Q) ∈ GLn(K) × GLp(K) such that ∀i ∈ I, PAiQ =
Bi, set R :=

[
P 0

0 Q−1

]
, and remark that R ∈ GLn+p(K) and

∀i ∈ I ∪ {a}, RCiR
−1 = Di.

Conversely, assume condition (ii) holds, and choose R ∈ GLn+p(K) such that

∀i ∈ I ∪ {a}, RCiR
−1 = Di.

Equality RCaR
−1 = Da then entails that R has the form
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R =
[
P 0

0 Q

]
for some (P, Q) ∈ GLn(K) × GLp(K),

and the other relations then imply that

∀i ∈ I, PAiQ
−1 = Bi.

Using equivalence of (i) and (ii) with both fields K and L, Theorem 2 follows easily from

Theorem 1.

4. Appendix: on the Kronecker reduction of matrix pencils

Attention was brought to us that, in [2], the proof that every pencil of matrix is equivalent to a

canonical one fails for finite fields. We will give a correct proof here in the case of a “weak" canonical

form (that is all we need here, and reducing further to a true canonical form is not hard from there

using the theory of elementary divisors).

Notation 2. For n ∈ N, set Ln =

⎡
⎢⎢⎢⎣
1 0 0

0 1 0

. . .
. . .

1 0

⎤
⎥⎥⎥⎦ ∈ Mn,n+1(K) and Kn =

⎡
⎢⎢⎢⎣
0 1 0

0 0 1

. . .
. . .

0 1

⎤
⎥⎥⎥⎦ ∈ Mn,n+1(K); and, for arbitrary objects a and b, define the Jordan matrix:

Jn(a, b) =
⎡
⎢⎢⎣
a b 0

0 a b

. . .
. . .

⎤
⎥⎥⎦ ∈ Mn({0, a, b}).

Theorem 4 (Kronecker reduction theorem for pencils of matrices). Let A and B in Mn,p(K). We choose

an indeterminate X. Then there are non-singularmatrices (P1, Q1) ∈ GLn(K) × GLp(K) such that P1(A +
XB)Q1 is block-diagonal with every non-zero diagonal block having one of the following forms, and only

one of the first type:
• P + XIr for some non-singular P ∈ GLr(K);
• Jr(1, X); Jr(X, 1); Lr + XKr; (Lr + XKr)

t .

This decomposition is unique up to permutation of blocks and up to similarity on the non-singular

matrix P.

Wewill only prove here that such a decomposition exists. Uniqueness is not needed here sowewill

leave it as an exercise for the reader.

We will consider A and B as linear maps from E = Kp to F = Kn. Without loss of generality, we

may assume Ker A ∩ Ker B = {0} and Im A + Im B = F . We define inductively two towers (Ek)k∈N and

(Fk)k∈N of respective linear subspaces of E and F by:

(a) E0 = {0}; F0 = A({0}) = {0};
(b) ∀k ∈ N, Ek+1 = B−1(Fk) and Fk+1 = A(Ek+1).

Notice that E1 = Ker B. The sequences (Ek)n� 0 and (Fk)n� 0 are clearly non-decreasing so we can

find a smallest integer N such that EN = Ek for every k �N. Hence FN = Fk for every k �N, and EN =
B−1(FN). It follows that A(EN) = FN and B(EN) ⊂ FN . We now let f and g denote the linear maps from

EN to FN induced by A and B.
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From there, the proof has two independent major steps:

Lemma 5. There are bases B and C respectively of EN and FN such that MB,C(f ) + XMB,C(g) is block-

diagonal with all non-zero blocks having one of the forms Jr(1, X) or Ls + XKs.

Lemma 6. There are splittings E = EN ⊕ E′′ and F = FN ⊕ F ′′ such that A(E′′) ⊂ F ′′ and B(E′′) ⊂ F ′′.

Assuming those lemmas are proven, let us see how we can easily conclude:

• We deduce from the two previous lemmas that A + XB is K-equivalent to some[
A′′ + X B′′ 0

0 C(X)

]
where C(X) is block-diagonal with all non-zero blocks of the form Jr(1, X)

or Ls + X Ks, and A′′ and B′′ have coefficients inK, with Ker B′′ = {0}; it will thus suffice to prove

the existence of a canonical form for the pair (A′′, B′′);
• applying the first step of the proof to the matrices (A′′)t and (B′′)t , we find that A′′ + XB′′ is K-

equivalent to some

[
A′′ + X B′′ 0

0 D(X)

]
whereD(X) is block-diagonalwith all non-zeroblocks of

the form Jr(1, X)t (which is K-similar to Jr(1, X)) or (Ls + XKs)
t , and A′′ and B′′ have coefficients

in K, with Ker B′′ = {0} and coker B′′ = {0}. It follows that B′′ is non-singular.
• Finally, (B′′)−1(A′′ + XB′′) = (B′′)−1A′′ + X · Ik for some integer k, and the pair (A′′, B′′) can thus

be reduced by using the Fitting decomposition of (B′′)−1A′′ combinedwith a Jordan reduction of

its nilpotent part: this yields a block-diagonalmatrixK-equivalent to A′′ + XB′′ with all diagonal

blocks of the form Jr(X, 1) or P + X · Is for some non-singular P. This completes the proof of

existence.

Proof of Lemma 6.We proceed by induction.

Assume, for some k ∈ [[1, N]], that there are splittings E = EN ⊕ E′′ and F = FN ⊕ F ′′ such that

A(E′′) ⊂ Fk ⊕ F ′′ and B(E′′) ⊂ Fk ⊕ F ′′. Since B−1(FN) = EN , the subspaces FN and B(E′′) are inde-

pendent. We can therefore find some F ′′ such that Fk ⊕ F ′′ = Fk ⊕ F ′′, FN ⊕ F ′′ = F and B(E′′) ⊂ F ′′.
Choose then a basis (e1, . . . , ep)of E

′′, anddecomposeA(ei) = fi + f ′′i for all i ∈ [[1, p]], with fi ∈ Fk and

f ′′i ∈ F ′′. For i ∈ [[1, p]], we have fi = A(gi) for some gi ∈ Ek . Then (e1 − g1, . . . , ep − gp) still spans a

complementary subspace E′′ of EN in E, and we now have A(ei − gi) ∈ F ′′ and B(ei − gi) ∈ F ′′ ⊕ Fk−1

for all i ∈ [[1, p]]. Hence E = EN ⊕ E′′ and F = FN ⊕ F ′′, now with A(E′′) ⊂ Fk−1 ⊕ F ′′ and B(E′′) ⊂
Fk−1 ⊕ F ′′. The condition is thus proven at the integer k − 1. By downward induction, we find that it

holds for k = 0. �
Proof of Lemma 5. The argument is similar to the standard proof of the Jordan reduction theorem.

• Split FN = FN−1 ⊕ WN,N and EN = EN−1 ⊕ VN,N ⊕ V ′′
N,N such that EN−1 ⊕ V ′′

N,N = EN−1

+ (EN ∩ Ker f ), V ′′
N,N ⊂ Ker f and f (VN,N) = WN,N (so f induces an isomorphism from VN,N to

WN,N). SetWN,N−1 = g(VN,N)andW ′′
N,N−1 = g(V ′′

N,N). Remark that FN−2 ⊕ WN,N−1 ⊕ W ′′
N,N−1 ⊂

FN−1, and split FN−1 = FN−2 ⊕ WN,N−1 ⊕ W ′′
N,N−1 ⊕ WN−1,N−1.• We then proceed by downward induction to define four families of linear subspaces

(V�,k)1� k � � �N, (V
′′
�,k)1� k � � �N, (W�,k)1� k � � �N and (W ′′

�,k)1� k � �−1�N−1 such that:

(i) for every k ∈ [[1, N]],
Ek = Ek−1 ⊕ Vk,k ⊕ Vk+1,k ⊕ · · · ⊕ VN,k ⊕ V ′′

k,k ⊕ V ′′
k+1,k ⊕ · · · ⊕ V ′′

N,k;
(ii) for every k ∈ [[1, N]],

Fk = Fk−1 ⊕ Wk,k ⊕ Wk+1,k ⊕ · · · ⊕ WN,k ⊕ W ′′
k+1,k ⊕ W ′′

k+2,k ⊕ · · · ⊕ W ′′
N,k;

(iii) for every k ∈ [[1, N]], Ek−1 + (Ek ∩ Ker f ) = Ek−1 ⊕ V ′′
k,k and V ′′

k,k ⊂ Ker f ;
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(vi) for every � ∈ [[1, N]] and k ∈ [[2, �]], g induces an isomorphism g�,k : V�,k
�−→W�,k−1 and

an isomorphism g′′
�,k : V ′′

�,k

�−→W ′′
�,k−1;

(v) for every � ∈ [[1, N]] and k ∈ [[1, �]], f induces an isomorphism f�,k : V�,k
�−→W�,k and, if

k < �, an isomorphism f ′′�,k : V ′′
�,k

�−→W ′′
�,k.

• Set � ∈ [[1, N]]. Define
G� = V�,1 ⊕ · · · ⊕ V�,�, G′′

� = V ′′
�,1 ⊕ · · · ⊕ V ′′

�,�,

H� = W�,1 ⊕ . . . ⊕ W�,� and H′′
� = W ′′

�,1 ⊕ . . . ⊕ W ′′
�,�−1.

Notice that:

f (G�) = H�, g(G�) ⊕ W�,� = H�, f (G′′
� ) = H′′

� and g(G′′
� ) = H′′

� .

From there, it is easy to conclude.

• Let n� = dimW�,�. Remark that dim V�,k = dimW�,k = n� for every k ∈ [[1, �]] and choose a

basis C�,� of W�,�. Define B�,� = f
−1
�,� (C�,�), C�,�−1 := g�,�(B�,�) and proceed by induction to

recover a basis for V�,k andW�,k for every suitable k: by glueing together those bases, we recover

respective bases (B�,1, . . . , B�,�) and (C�,1, . . . , C�,�) of G� and H� and remark that f and g induce

linear maps from G� to H� with respective matrices L�−1 ⊗ In�
and K�−1 ⊗ In�

in those bases

(remember that E1 = Kerg). A simple permutation of bases shows that those linear maps can be

represented by In�
⊗ L�−1 and In�

⊗ K�−1 in a suitable common pair of bases.

• Proceeding similarly for G′′
� and H′′

� , but starting from a basis of V ′′
�,�, we obtain that f and g

induce linear maps from G′′
� to H′′

� and there is a suitable choice of bases so that their matrices

are respectively Is ⊗ I� and Is ⊗ J�(0, 1) for some integer s.

• Notice that we have defined splittings

EN = G1 ⊕ G′′
1 ⊕ G2 ⊕ G′′

2 ⊕ · · · ⊕ GN ⊕ G′′
N

and

FN = H1 ⊕ H′′
1 ⊕ H2 ⊕ H′′

2 ⊕ · · · ⊕ HN ⊕ H′′
N,

therefore Lemma 5 is proven by glueing together the various bases built here. �
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