Linear Algebra and its Applications 433 (2010) 618-624

Invariance of simultaneous similarity and equivalence of matrices under extension of the ground field

Clément de Seguins Pazzis

Lycée Privé Sainte-Geneviève, 2, rue de l'École des Postes, 78029 Versailles Cedex, France

ARTICLE INFO

Article history: Received 26 February 2009 Accepted 18 March 2010 Available online 8 April 2010

Submitted by H. Schneider

AMS classification: 15A21 12F99

Keywords: Matrices Kronecker reduction Field extension Simultaneous similarity Simultaneous equivalence

ABSTRACT

In this work, we give a new and elementary proof that simultaneous similarity and simultaneous equivalence of families of matrices are invariant under extension of the ground field, a result which is nontrivial for finite fields and first appeared in an earlier paper of Klinger and Levy.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In this article, we let \mathbb{K} denote a field, \mathbb{L} a field extension of \mathbb{K} , and *n* and *p* two positive integers.

Definition 1. Two families $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ of matrices of $M_n(\mathbb{K})$ indexed over the same set I are said to be **simultaneously similar** when there exists $P \in GL_n(\mathbb{K})$ such that

 $\forall i \in I, PA_iP^{-1} = B_i$

(such a matrix *P* will then be called a **base change matrix** with respect to the two families).

Two families $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ of matrices of $M_{n,p}(\mathbb{K})$ indexed over the same set I are said to be **simultaneously equivalent** when there exists a pair $(P, Q) \in GL_n(\mathbb{K}) \times GL_p(\mathbb{K})$ such that

E-mail address: dsp.prof@gmail.com

0024-3795/\$ - see front matter $\ensuremath{\mathbb{C}}$ 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2010.03.022

 $\forall i \in I, PA_iQ = B_i.$

Of course, those relations extend the familiar relations of similarity and equivalence respectively on $M_n(\mathbb{K})$ dans $M_{n,p}(\mathbb{K})$, and they are equivalence relations respectively on $M_n(\mathbb{K})^l$ and $M_{n,p}(\mathbb{K})^l$.

The simultaneous similarity of matrices is generally regarded upon as a "wild problem" where finding a useful characterisation by invariants seems out of reach. See [1] for an account of the problem and an algorithmic approach to its solution (for that last matter, also see [3]).

In this respect, our very limited goal here is to establish the following two results:

Theorem 1. Let $\mathbb{K} - \mathbb{L}$ be a field extension and I be a set.

Let $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ be two families of matrices of $M_n(\mathbb{K})$.

Then $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ are simultaneously similar in $M_n(\mathbb{K})$ if and only if they are simultaneously similar in $M_n(\mathbb{L})$.

Theorem 2. Let $\mathbb{K} - \mathbb{L}$ be a field extension and I be a set.

Let $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ be two families of matrices of $M_{n,p}(\mathbb{K})$.

Then $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ are simultaneously equivalent in $M_{n,p}(\mathbb{K})$ if and only if they are simultaneously equivalent in $M_{n,p}(\mathbb{L})$.

Remarks 1

- (i) In both theorems, the "only if" part is trivial.
- (ii) It is an easy exercise to derive Theorem 1 from Theorem 2. However, we will do precisely the opposite!

2. A proof for simultaneous similarity

2.1. A reduction to special cases

In order to prove Theorem 2, we will not, *contra* [3], try to give a canonical form for simultaneous similarity. Instead, we will focus on base change matrices and prove directly that if one exists in $M_n(\mathbb{L})$, then another (possibly the same) also exists in $M_n(\mathbb{K})$. To achieve this, we will prove the theorem in the two following special cases:

(i) \mathbb{K} has at least *n* elements;

(ii) $\mathbb{K} - \mathbb{L}$ is a separable quadratic extension.

Assuming these cases have been solved, let us immediately prove the general case. Case (i) handles the situation where \mathbb{K} is infinite. Assume now that \mathbb{K} is finite, and choose a positive integer *N* such that $(\# \mathbb{K})^{2^N} \ge n$.

Since \mathbb{K} is finite, there exists (see Section V.4 of [4]) a tower of N quadratic separable extensions

 $\mathbb{K} \subset K_1 \subset K_2 \subset \cdots \subset K_N.$

We let \mathbb{M} denote a compositum extension of K_N and \mathbb{L} (as extensions of \mathbb{K}):

Assume the families $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ of matrices of $M_n(\mathbb{K})$ are simultaneously similar in $M_n(\mathbb{L})$. Then they are also simultaneously similar in $M_n(\mathbb{M})$. However, $\# K_N = (\# \mathbb{K})^{2^N} \ge n$, so this simultaneous similarity also holds in $M_n(K_N)$. Using case (ii) by induction, we then obtain that $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ are simultaneously similar in $M_n(\mathbb{K})$. 2.2. The case # $\mathbb{K} \ge n$

The line of reasoning here is folklore, but we reproduce the proof for sake of completeness. Let then $P \in GL_n(\mathbb{L})$ be such that

$$\forall i \in I, PA_iP^{-1} = B_i,$$

so

 $\forall i \in I, PA_i = B_i P.$

Let *V* denote the \mathbb{K} -linear subspace of \mathbb{L} spanned by the coefficients of *P*, and choose a basis (x_1, \ldots, x_N) of *V*. Decompose then

$$P = x_1 P_1 + \cdots + x_N P_N$$

with P_1, \ldots, P_N in $M_n(\mathbb{K})$, and let W be the \mathbb{K} -linear subspace of $M_n(\mathbb{K})$ spanned by the N-tuple (P_1, \ldots, P_N) . Since the A_i 's and the B_i 's have all their coefficients in \mathbb{K} , the previous relations yield:

$$\forall i \in I, \forall k \in \llbracket 1, N \rrbracket, P_k A_i = B_i P_k$$

hence

$$\forall i \in I, \forall Q \in W, QA_i = B_iQ.$$

It thus suffices to prove that W contains a non-singular matrix.

However, the polynomial det $(Y_1 P_1 + \cdots + Y_N P_N) \in \mathbb{K}[Y_1, \dots, Y_N]$ is homogeneous of total degree *n* and is non-zero because

$$\det(x_1 \cdot P_1 + \cdots + x_N \cdot P_N) = \det(P) \neq 0.$$

Since $n \leq \# \mathbb{K}$, we conclude that the map $Q \mapsto \det Q$ does not totally vanish on W, which proves that $W \cap GL_n(\mathbb{K})$ is non-empty.

2.3. The case \mathbb{L} is a separable quadratic extension of \mathbb{K}

We choose an arbitrary element $\varepsilon \in \mathbb{L} \setminus \mathbb{K}$ and let σ denote the non-identity automorphism of the \mathbb{K} -algebra \mathbb{L} . Assume $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ are simultaneously similar in $M_n(\mathbb{L})$, and let $P \in GL_n(\mathbb{L})$ be such that

$$\forall i \in I, PA_iP^{-1} = B_i.$$

We first point out that the problem is essentially unchanged should *P* be replaced with a \mathbb{K} -equivalent matrix of $GL_n(\mathbb{L})$.

Indeed, let $(P_1, P_2) \in GL_n(\mathbb{K})^2$, and set $P'' := P_1 P P_2^{-1} \in GL_n(\mathbb{L})$, and $A''_i := P_2 A_i (P_2)^{-1}$ and $B''_i := P_1 B_i (P_1)^{-1}$ for all $i \in I$. Then:

$$\forall i \in I, P''A_i''(P'')^{-1} = B_i''.$$

Since it follows directly from the definition that $(A_i)_{i \in I}$ and $(A''_i)_{i \in I}$ are simultaneously similar in $M_n(\mathbb{K})$, and that it is also true of $(B_i)_{i \in I}$ and $(B''_i)_{i \in I}$, it will suffice to show that $(A''_i)_{i \in I}$ and $(B''_i)_{i \in I}$ are simultaneously similar in $M_n(\mathbb{K})$, knowing that they are simultaneously similar in $M_n(\mathbb{L})$.

Returning to *P*, we split it as

$$P = Q + \varepsilon R$$
 with $(Q, R) \in M_n(\mathbb{K})^2$.

The previous remark then reduces the proof to the case where the pair (Q, R) is canonical in terms of Kronecker reduction (see Chapter XII of [2] and our Section 4). More roughly, we can assume, since *P* is non-singular, that, for some $q \in [[0, n]]$:

$$Q = \begin{bmatrix} M & 0 \\ 0 & I_{n-q} \end{bmatrix} \text{ and } R = \begin{bmatrix} I_q & 0 \\ 0 & N \end{bmatrix},$$

620

where $M \in M_q(\mathbb{K})$, N is a nilpotent matrix of $M_{n-q}(\mathbb{K})$, and we have let I_k denote the unit matrix of $M_k(\mathbb{K}).$

Let $i \in I$. Applying σ coefficient-wise to $PA_iP^{-1} = B_i$, we get:

$$\sigma(P)A_i\sigma(P)^{-1} = B_i = PA_iP^{-1}$$

hence A_i commutes with $\sigma(P)^{-1}P$. We now claim the following result:

Lemma 3. Under the preceding assumptions, any matrix of $M_n(\mathbb{K})$ that commutes with $\sigma(P)^{-1}P$ also commutes with P.

Assuming this lemma holds, we deduce that $\forall i \in I$, $PA_iP^{-1} = A_i$, hence $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ are equal, thus simultaneously similar in $M_n(\mathbb{K})$, which finishes our proof.

Proof of Lemma 3. Let $A \in M_n(\mathbb{K})$ which commutes with $\sigma(P)^{-1}P$. Applying σ , we deduce that A also commutes with $P^{-1}\sigma(P)$, hence with $I_n + (\sigma(\varepsilon) - \varepsilon)P^{-1}R$, hence with $P^{-1}R$ since $\sigma(\varepsilon) \neq \varepsilon$. Notice then that

$$P^{-1}R = \begin{bmatrix} (M + \varepsilon \cdot I_q)^{-1} & 0\\ 0 & (I_{n-q} + \varepsilon N)^{-1}N \end{bmatrix}$$

with $(M + \varepsilon \cdot I_q)^{-1}$ non-singular and $(I_{n-q} + \varepsilon N)^{-1}N$ nilpotent, so A, which stabilizes both $\operatorname{Im}(P^{-1}R)^n$ and $\operatorname{Ker}(P^{-1}R)^n$, must be of the form

$$A = \begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix} \text{ for some } (C, D) \in M_q(\mathbb{K}) \times M_{n-q}(\mathbb{K}).$$

Commutation of A with $P^{-1}R$ ensures that C commutes with $(M + \varepsilon \cdot I_q)^{-1}$, whereas D commutes with $(I_{n-q} + \varepsilon N)^{-1}N = \varepsilon^{-1} \cdot I_{n-q} - \varepsilon^{-1} \cdot (I_{n-q} + \varepsilon N)^{-1}$ hence with $(I_{n-q} + \varepsilon N)^{-1}$. It follows that A commutes with P^{-1} , hence with P.

3. A proof for simultaneous equivalence

We will now derive Theorem 2 from Theorem 1. Under the assumptions of Theorem 2, we choose an arbitrary object *a* that does not belong to *I*, and define

$$C_a = D_a := \begin{bmatrix} I_n & 0\\ 0 & 0 \end{bmatrix} \in \mathbf{M}_{n+p}(\mathbb{K})$$

and, for $i \in I$.

$$C_i = \begin{bmatrix} 0 & A_i \\ 0 & 0 \end{bmatrix}$$
 and $D_i = \begin{bmatrix} 0 & B_i \\ 0 & 0 \end{bmatrix}$ in $M_{n+p}(\mathbb{K})$.

The following two conditions are then equivalent:

(i) $(A_i)_{i \in I}$ and $(B_i)_{i \in I}$ are simultaneously equivalent;

(ii) $(C_i)_{i \in I \cup \{a\}}$ and $(D_i)_{i \in I \cup \{a\}}$ are simultaneously similar.

Indeed, if condition (i) holds, then we choose $(P, Q) \in GL_n(\mathbb{K}) \times GL_p(\mathbb{K})$ such that $\forall i \in I$, $PA_iQ =$ B_i , set $R := \begin{bmatrix} P & 0 \\ 0 & Q^{-1} \end{bmatrix}$, and remark that $R \in GL_{n+p}(\mathbb{K})$ and

$$\forall i \in I \cup \{a\}, \quad RC_i R^{-1} = D_i.$$

Conversely, assume condition (ii) holds, and choose $R \in GL_{n+p}(\mathbb{K})$ such that

$$\forall i \in I \cup \{a\}, \quad RC_i R^{-1} = D_i.$$

Equality $RC_aR^{-1} = D_a$ then entails that *R* has the form

$$R = \begin{bmatrix} P & 0 \\ 0 & Q \end{bmatrix} \text{ for some } (P, Q) \in GL_n(\mathbb{K}) \times GL_p(\mathbb{K})$$

and the other relations then imply that

$$\forall i \in I, \quad PA_iQ^{-1} = B_i.$$

Using equivalence of (i) and (ii) with both fields $\mathbb K$ and $\mathbb L$, Theorem 2 follows easily from Theorem 1.

4. Appendix: on the Kronecker reduction of matrix pencils

Attention was brought to us that, in [2], the proof that every pencil of matrix is equivalent to a canonical one fails for finite fields. We will give a correct proof here in the case of a "weak" canonical form (that is all we need here, and reducing further to a true canonical form is not hard from there using the theory of elementary divisors).

Notation 2. For $n \in \mathbb{N}$, set $L_n = \begin{bmatrix} 1 & 0 & 0 & \\ 0 & 1 & 0 & \\ & \ddots & \ddots & \\ & & & 1 & 0 \end{bmatrix} \in M_{n,n+1}(\mathbb{K})$ and $K_n =$

 $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ & \ddots & \ddots \\ & & 0 & 1 \end{bmatrix} \in M_{n,n+1}(\mathbb{K}); \text{ and, for arbitrary objects } a \text{ and } b, \text{ define the Jordan matrix:}$

$$J_n(a,b) = \begin{bmatrix} a & b & 0 & \\ 0 & a & b & \\ & \ddots & \ddots \end{bmatrix} \in M_n(\{0, a, b\}).$$

Theorem 4 (Kronecker reduction theorem for pencils of matrices). Let A and B in $M_{n,p}(\mathbb{K})$. We choose an indeterminate X. Then there are non-singular matrices $(P_1, Q_1) \in GL_n(\mathbb{K}) \times GL_p(\mathbb{K})$ such that $P_1(A + XB)Q_1$ is block-diagonal with every non-zero diagonal block having one of the following forms, and only one of the first type:

- $P + XI_r$ for some non-singular $P \in GL_r(\mathbb{K})$;
- $J_r(1, X); J_r(X, 1); L_r + XK_r; (L_r + XK_r)^t$.

This decomposition is unique up to permutation of blocks and up to similarity on the non-singular matrix P.

We will only prove here that such a decomposition exists. Uniqueness is not needed here so we will leave it as an exercise for the reader.

We will consider *A* and *B* as linear maps from $E = \mathbb{K}^p$ to $F = \mathbb{K}^n$. Without loss of generality, we may assume Ker $A \cap$ Ker $B = \{0\}$ and Im A + Im B = F. We define inductively two towers $(E_k)_{k \in \mathbb{N}}$ and $(F_k)_{k \in \mathbb{N}}$ of respective linear subspaces of *E* and *F* by:

(a) $E_0 = \{0\}; F_0 = A(\{0\}) = \{0\};$ (b) $\forall k \in \mathbb{N}, E_{k+1} = B^{-1}(F_k) \text{ and } F_{k+1} = A(E_{k+1}).$

Notice that $E_1 = \text{Ker } B$. The sequences $(E_k)_{n \ge 0}$ and $(F_k)_{n \ge 0}$ are clearly non-decreasing so we can find a smallest integer N such that $E_N = E_k$ for every $k \ge N$. Hence $F_N = F_k$ for every $k \ge N$, and $E_N = B^{-1}(F_N)$. It follows that $A(E_N) = F_N$ and $B(E_N) \subset F_N$. We now let f and g denote the linear maps from E_N to F_N induced by A and B.

622

From there, the proof has two independent major steps:

Lemma 5. There are bases **B** and **C** respectively of E_N and F_N such that $M_{B,C}(f) + XM_{B,C}(g)$ is blockdiagonal with all non-zero blocks having one of the forms $J_r(1, X)$ or $L_s + XK_s$.

Lemma 6. There are splittings $E = E_N \oplus E''$ and $F = F_N \oplus F''$ such that $A(E'') \subset F''$ and $B(E'') \subset F''$.

Assuming those lemmas are proven, let us see how we can easily conclude:

- We deduce from the two previous lemmas that A + XB is \mathbb{K} -equivalent to some $\begin{bmatrix} A'' + XB'' & 0\\ 0 & C(X) \end{bmatrix}$ where C(X) is block-diagonal with all non-zero blocks of the form $J_r(1, X)$ or $L_s + XK_s$, and A'' and B'' have coefficients in \mathbb{K} , with Ker $B'' = \{0\}$; it will thus suffice to prove the existence of a canonical form for the pair (A'', B'');
- applying the first step of the proof to the matrices $(A'')^t$ and $(B'')^t$, we find that A'' + XB'' is K-equivalent to some $\begin{bmatrix} A'' + X B'' & 0\\ 0 & D(X) \end{bmatrix}$ where D(X) is block-diagonal with all non-zero blocks of the form $J_r(1, X)^t$ (which is K-similar to $J_r(1, X)$) or $(L_s + XK_s)^t$, and A'' and B'' have coefficients in K, with Ker $B'' = \{0\}$ and coker $B'' = \{0\}$. It follows that B'' is non-singular.
- Finally, $(B'')^{-1}(A'' + XB'') = (B'')^{-1}A'' + X \cdot I_k$ for some integer *k*, and the pair (A'', B'') can thus be reduced by using the Fitting decomposition of $(B'')^{-1}A''$ combined with a Jordan reduction of its nilpotent part: this yields a block-diagonal matrix K-equivalent to A'' + XB'' with all diagonal blocks of the form $J_r(X, 1)$ or $P + X \cdot I_s$ for some non-singular *P*. This completes the proof of existence.

Proof of Lemma 6. We proceed by induction.

Assume, for some $k \in [[1, N]]$, that there are splittings $E = E_N \oplus E''$ and $F = F_N \oplus F''$ such that $A(E'') \subset F_k \oplus F''$ and $B(E'') \subset F_k \oplus F''$. Since $B^{-1}(F_N) = E_N$, the subspaces F_N and B(E'') are independent. We can therefore find some F'' such that $F_k \oplus F'' = F_k \oplus F''$, $F_N \oplus F'' = F$ and $B(E'') \subset F''$. Choose then a basis (e_1, \ldots, e_p) of E'', and decompose $A(e_i) = f_i + f_i''$ for all $i \in [[1, p]]$, with $f_i \in F_k$ and $f_i'' \in F''$. For $i \in [[1, p]]$, we have $f_i = A(g_i)$ for some $g_i \in E_k$. Then $(e_1 - g_1, \ldots, e_p - g_p)$ still spans a complementary subspace E'' of E_N in E, and we now have $A(e_i - g_i) \in F''$ and $B(e_i - g_i) \in F'' \oplus F_{k-1}$ for all $i \in [[1, p]]$. Hence $E = E_N \oplus E''$ and $F = F_N \oplus F''$, now with $A(E'') \subset F_{k-1} \oplus F''$ and $B(E'') \subset F_{k-1} \oplus F''$. The condition is thus proven at the integer k - 1. By downward induction, we find that it holds for k = 0. \Box

Proof of Lemma 5. The argument is similar to the standard proof of the Jordan reduction theorem.

- Split F_N = F_{N-1} ⊕ W_{N,N} and E_N = E_{N-1} ⊕ V_{N,N} ⊕ V''_{N,N} such that E_{N-1} ⊕ V''_{N,N} = E_{N-1} + (E_N ∩ Ker f), V''_{N,N} ⊂ Ker f and f(V_{N,N}) = W_{N,N} (so f induces an isomorphism from V_{N,N} to W_{N,N}). Set W_{N,N-1} = g(V_{N,N}) and W''_{N,N-1} = g(V''_{N,N}). Remark that F_{N-2} ⊕ W_{N,N-1} ⊕ W''_{N,N-1} ⊂ F_{N-1}, and split F_{N-1} = F_{N-2} ⊕ W_{N,N-1} ⊕ W''_{N,N-1} ⊕ W_{N-1,N-1}.
 We then proceed by downward induction to define four families of linear subspaces
- We then proceed by downward induction to define four families of linear subspaces $(V_{\ell,k})_{1 \leq k \leq \ell \leq N}, (V''_{\ell,k})_{1 \leq k \leq \ell \leq N}, (W_{\ell,k})_{1 \leq k \leq \ell \leq N}$ and $(W''_{\ell,k})_{1 \leq k \leq \ell-1 \leq N-1}$ such that:
 - (i) for every $k \in \llbracket 1, N \rrbracket$,

$$E_k = E_{k-1} \oplus V_{k,k} \oplus V_{k+1,k} \oplus \cdots \oplus V_{N,k} \oplus V_{k,k}'' \oplus V_{k+1,k}'' \oplus \cdots \oplus V_{N,k}'';$$

(ii) for every $k \in \llbracket 1, N \rrbracket$,

$$F_k = F_{k-1} \oplus W_{k,k} \oplus W_{k+1,k} \oplus \cdots \oplus W_{N,k} \oplus W_{k+1,k}^{"} \oplus W_{k+2,k}^{"} \oplus \cdots \oplus W_{N,k}^{"};$$

(iii) for every $k \in [[1, N]]$, $E_{k-1} + (E_k \cap \text{Ker } f) = E_{k-1} \oplus V''_{k,k}$ and $V''_{k,k} \subset \text{Ker } f$;

- (vi) for every l ∈ [[1, N]] and k ∈ [[2, l]], g induces an isomorphism g_{l,k} : V_{l,k} → W_{l,k-1} and an isomorphism g''_{l,k} : V''_{l,k} → W''_{l,k-1};
- (v) for every $\ell \in \llbracket 1, N \rrbracket$ and $k \in \llbracket 1, \ell \rrbracket$, f induces an isomorphism $f_{\ell,k} : V_{\ell,k} \xrightarrow{\simeq} W_{\ell,k}$ and, if $k < \ell$, an isomorphism $f_{\ell,k}'' : V_{\ell,k}'' \xrightarrow{\simeq} W_{\ell,k}''$.

• Set $\ell \in \llbracket 1, N \rrbracket$. Define

$$G_{\ell} = V_{\ell,1} \oplus \cdots \oplus V_{\ell,\ell}, \quad G_{\ell}'' = V_{\ell,1}'' \oplus \cdots \oplus V_{\ell,\ell}'',$$

$$H_{\ell} = W_{\ell,1} \oplus \cdots \oplus W_{\ell,\ell} \quad \text{and} \quad H_{\ell}'' = W_{\ell,1}'' \oplus \cdots \oplus W_{\ell,\ell-1}'',$$

Notice that:

$$f(G_{\ell}) = H_{\ell}, \quad g(G_{\ell}) \oplus W_{\ell,\ell} = H_{\ell}, \quad f(G_{\ell}'') = H_{\ell}'' \quad \text{and} \quad g(G_{\ell}'') = H_{\ell}''.$$

From there, it is easy to conclude.

- Let $n_{\ell} = \dim W_{\ell,\ell}$. Remark that $\dim V_{\ell,k} = \dim W_{\ell,k} = n_{\ell}$ for every $k \in \llbracket 1, \ell \rrbracket$ and choose a basis $\mathbf{C}_{\ell,\ell}$ of $W_{\ell,\ell}$. Define $\mathbf{B}_{\ell,\ell} = f_{\ell,\ell}^{-1}(\mathbf{C}_{\ell,\ell})$, $\mathbf{C}_{\ell,\ell-1} := g_{\ell,\ell}(\mathbf{B}_{\ell,\ell})$ and proceed by induction to recover a basis for $V_{\ell,k}$ and $W_{\ell,k}$ for every suitable k: by glueing together those bases, we recover respective bases ($\mathbf{B}_{\ell,1}, \ldots, \mathbf{B}_{\ell,\ell}$) and ($\mathbf{C}_{\ell,1}, \ldots, \mathbf{C}_{\ell,\ell}$) of G_{ℓ} and H_{ℓ} and remark that f and g induce linear maps from G_{ℓ} to H_{ℓ} with respective matrices $L_{\ell-1} \otimes I_{n_{\ell}}$ and $K_{\ell-1} \otimes I_{n_{\ell}}$ in those bases (remember that $E_1 = \text{Kerg}$). A simple permutation of bases shows that those linear maps can be represented by $I_{n_{\ell}} \otimes L_{\ell-1}$ and $I_{n_{\ell}} \otimes K_{\ell-1}$ in a suitable common pair of bases.
- Proceeding similarly for G''_{ℓ} and H''_{ℓ} , but starting from a basis of $V''_{\ell,\ell}$, we obtain that f and g induce linear maps from G''_{ℓ} to H''_{ℓ} and there is a suitable choice of bases so that their matrices are respectively $I_s \otimes I_{\ell}$ and $I_s \otimes J_{\ell}(0, 1)$ for some integer s.
- Notice that we have defined splittings

$$E_N = G_1 \oplus G_1'' \oplus G_2 \oplus G_2'' \oplus \cdots \oplus G_N \oplus G_N''$$

and

$$F_N = H_1 \oplus H_1'' \oplus H_2 \oplus H_2'' \oplus \cdots \oplus H_N \oplus H_N'',$$

therefore Lemma 5 is proven by glueing together the various bases built here. \Box

References

- [1] S. Friedland, Simultaneous similarity of matrices, Adv. Math. 50 (1983) 189-265.
- [2] F.R. Gantmacher, Matrix Theory, vol. 2, Chelsea, New York, 1977.
- [3] L. Klinger, L.S. Levy, Sweeping similarity of matrices, Linear Algebra Appl. 75 (1986) 67-104.
- [4] S. Lang, Algebra, GTM, third ed., vol. 211, Springer-Verlag, 2002.