Invariance of simultaneous similarity and equivalence of matrices under extension of the ground field

Clément de Seguins Pazzis
Lycée Privé Sainte-Geneviève, 2, rue de l'École des Postes, 78029 Versailles Cedex, France

ARTICLE INFO

Article history:

Received 26 February 2009
Accepted 18 March 2010
Available online 8 April 2010
Submitted by H. Schneider

AMS classification:

15A21
$12 \mathrm{F9} 9$

Keywords:

Matrices
Kronecker reduction
Field extension
Simultaneous similarity
Simultaneous equivalence

Abstract

In this work, we give a new and elementary proof that simultaneous similarity and simultaneous equivalence of families of matrices are invariant under extension of the ground field, a result which is nontrivial for finite fields and first appeared in an earlier paper of Klinger and Levy.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In this article, we let \mathbb{K} denote a field, \mathbb{L} a field extension of \mathbb{K}, and n and p two positive integers.
Definition 1. Two families $\left(A_{i}\right)_{i \in I}$ and $\left(B_{i}\right)_{i \in I}$ of matrices of $M_{n}(\mathbb{K})$ indexed over the same set I are said to be simultaneously similar when there exists $P \in G L_{n}(\mathbb{K})$ such that

$$
\forall i \in I, \quad P A_{i} P^{-1}=B_{i}
$$

(such a matrix P will then be called a base change matrix with respect to the two families).
Two families $\left(A_{i}\right)_{i \in I}$ and $\left(B_{i}\right)_{i \in I}$ of matrices of $M_{n, p}(\mathbb{K})$ indexed over the same set I are said to be simultaneously equivalent when there exists a pair $(P, Q) \in G L_{n}(\mathbb{K}) \times G L_{p}(\mathbb{K})$ such that

[^0]$$
\forall i \in I, \quad P A_{i} Q=B_{i} .
$$

Of course, those relations extend the familiar relations of similarity and equivalence respectively on $M_{n}(\mathbb{K})$ dans $M_{n, p}(\mathbb{K})$, and they are equivalence relations respectively on $M_{n}(\mathbb{K})^{I}$ and $M_{n, p}(\mathbb{K})^{I}$.

The simultaneous similarity of matrices is generally regarded upon as a "wild problem" where finding a useful characterisation by invariants seems out of reach. See [1] for an account of the problem and an algorithmic approach to its solution (for that last matter, also see [3]).

In this respect, our very limited goal here is to establish the following two results:
Theorem 1. Let $\mathbb{K}-\mathbb{L}$ be a field extension and I be a set.
Let $\left(A_{i}\right)_{i \in I}$ and $\left(B_{i}\right)_{i \in I}$ be two families of matrices of $M_{n}(\mathbb{K})$.
Then $\left(A_{i}\right)_{i \in I}$ and $\left(B_{i}\right)_{i \in I}$ are simultaneously similar in $M_{n}(\mathbb{K})$ if and only if they are simultaneously similar in $M_{n}(\mathbb{L})$.

Theorem 2. Let $\mathbb{K}-\mathbb{L}$ be a field extension and I be a set.
Let $\left(A_{i}\right)_{i \in I}$ and $\left(B_{i}\right)_{i \in I}$ be two families of matrices of $M_{n, p}(\mathbb{K})$.
Then $\left(A_{i}\right)_{i \in I}$ and $\left(B_{i}\right)_{i \in I}$ are simultaneously equivalent in $M_{n, p}(\mathbb{K})$ if and only if they are simultaneously equivalent in $M_{n, p}(\mathbb{L})$.

Remarks 1

(i) In both theorems, the "only if" part is trivial.
(ii) It is an easy exercise to derive Theorem 1 from Theorem 2 . However, we will do precisely the opposite!

2. A proof for simultaneous similarity

2.1. A reduction to special cases

In order to prove Theorem 2, we will not, contra [3], try to give a canonical form for simultaneous similarity. Instead, we will focus on base change matrices and prove directly that if one exists in $M_{n}(\mathbb{\mathbb { L }})$, then another (possibly the same) also exists in $M_{n}(\mathbb{K})$. To achieve this, we will prove the theorem in the two following special cases:
(i) \mathbb{K} has at least n elements;
(ii) $\mathbb{K}-\mathbb{L}$ is a separable quadratic extension.

Assuming these cases have been solved, let us immediately prove the general case. Case (i) handles the situation where \mathbb{K} is infinite. Assume now that \mathbb{K} is finite, and choose a positive integer N such that $(\# \mathbb{K})^{2^{N}} \geqslant n$.

Since \mathbb{K} is finite, there exists (see Section V. 4 of [4]) a tower of N quadratic separable extensions

$$
\mathbb{K} \subset K_{1} \subset K_{2} \subset \cdots \subset K_{N} .
$$

We let \mathbb{M} denote a compositum extension of K_{N} and \mathbb{L} (as extensions of \mathbb{K}):

Assume the families $\left(A_{i}\right)_{i \in I}$ and $\left(B_{i}\right)_{i \in I}$ of matrices of $M_{n}(\mathbb{K})$ are simultaneously similar in $M_{n}(\mathbb{\mathbb { }})$. Then they are also simultaneously similar in $M_{n}(\mathbb{M})$. However, $\# K_{N}=(\# \mathbb{K})^{2^{N}} \geqslant n$, so this simultaneous similarity also holds in $M_{n}\left(K_{N}\right)$. Using case (ii) by induction, we then obtain that $\left(A_{i}\right)_{i \in I}$ and $\left(B_{i}\right)_{i \in I}$ are simultaneously similar in $M_{n}(\mathbb{K})$.

2.2. The case $\# \mathbb{K} \geqslant n$

The line of reasoning here is folklore, but we reproduce the proof for sake of completeness. Let then $P \in G L_{n}(\mathbb{L})$ be such that

$$
\forall i \in I, \quad P A_{i} P^{-1}=B_{i},
$$

so

$$
\forall i \in I, \quad P A_{i}=B_{i} P
$$

Let V denote the \mathbb{K}-linear subspace of \mathbb{L} spanned by the coefficients of P, and choose a basis (x_{1}, \ldots, x_{N}) of V. Decompose then

$$
P=x_{1} P_{1}+\cdots+x_{N} P_{N}
$$

with P_{1}, \ldots, P_{N} in $M_{n}(\mathbb{K})$, and let W be the \mathbb{K}-linear subspace of $M_{n}(\mathbb{K})$ spanned by the N-tuple (P_{1}, \ldots, P_{N}). Since the A_{i} 's and the B_{i} 's have all their coefficients in \mathbb{K}, the previous relations yield:

$$
\forall i \in I, \forall k \in \llbracket 1, N \rrbracket, \quad P_{k} A_{i}=B_{i} P_{k}
$$

hence

$$
\forall i \in I, \forall Q \in W, \quad Q A_{i}=B_{i} Q
$$

It thus suffices to prove that W contains a non-singular matrix.
However, the polynomial $\operatorname{det}\left(Y_{1} P_{1}+\cdots+Y_{N} P_{N}\right) \in \mathbb{K}\left[Y_{1}, \ldots, Y_{N}\right]$ is homogeneous of total degree n and is non-zero because

$$
\operatorname{det}\left(x_{1} \cdot P_{1}+\cdots+x_{N} \cdot P_{N}\right)=\operatorname{det}(P) \neq 0
$$

Since $n \leqslant \# \mathbb{K}$, we conclude that the map $Q \mapsto$ det Q does not totally vanish on W, which proves that $W \cap G L_{n}(\mathbb{K})$ is non-empty.

2.3. The case \mathbb{L} is a separable quadratic extension of \mathbb{K}

We choose an arbitrary element $\varepsilon \in \mathbb{L} \backslash \mathbb{K}$ and let σ denote the non-identity automorphism of the \mathbb{K}-algebra \mathbb{L}. Assume $\left(A_{i}\right)_{i \in I}$ and $\left(B_{i}\right)_{i \in I}$ are simultaneously similar in $M_{n}(\mathbb{L})$, and let $P \in G L_{n}(\mathbb{L})$ be such that

$$
\forall i \in I, \quad P A_{i} P^{-1}=B_{i} .
$$

We first point out that the problem is essentially unchanged should P be replaced with a \mathbb{K}-equivalent matrix of $G L_{n}(\mathbb{\mathbb { L }})$.

Indeed, let $\left(P_{1}, P_{2}\right) \in G L_{n}(\mathbb{K})^{2}$, and set $P^{\prime \prime}:=P_{1} P P_{2}^{-1} \in G L_{n}(\mathbb{L})$, and $A_{i}^{\prime \prime}:=P_{2} A_{i}\left(P_{2}\right)^{-1}$ and $B_{i}^{\prime \prime}:=P_{1} B_{i}\left(P_{1}\right)^{-1}$ for all $i \in I$. Then:

$$
\forall i \in I, \quad P^{\prime \prime} A_{i}^{\prime \prime}\left(P^{\prime \prime}\right)^{-1}=B_{i}^{\prime \prime}
$$

Since it follows directly from the definition that $\left(A_{i}\right)_{i \in I}$ and $\left(A_{i}^{\prime \prime}\right)_{i \in I}$ are simultaneously similar in $M_{n}(\mathbb{K})$, and that it is also true of $\left(B_{i}\right)_{i \in I}$ and $\left(B_{i}^{\prime \prime}\right)_{i \in I}$, it will suffice to show that $\left(A_{i}^{\prime \prime}\right)_{i \in I}$ and $\left(B_{i}^{\prime \prime}\right)_{i \in I}$ are simultaneously similar in $M_{n}(\mathbb{K})$, knowing that they are simultaneously similar in $M_{n}(\mathbb{\mathbb { L }})$.

Returning to P, we split it as

$$
P=Q+\varepsilon R \text { with }(Q, R) \in M_{n}(\mathbb{K})^{2} .
$$

The previous remark then reduces the proof to the case where the pair (Q, R) is canonical in terms of Kronecker reduction (see Chapter XII of [2] and our Section 4). More roughly, we can assume, since P is non-singular, that, for some $q \in \llbracket 0, n \rrbracket$:

$$
Q=\left[\begin{array}{cc}
M & 0 \\
0 & I_{n-q}
\end{array}\right] \text { and } R=\left[\begin{array}{cc}
I_{q} & 0 \\
0 & N
\end{array}\right] \text {, }
$$

where $M \in M_{q}(\mathbb{K}), N$ is a nilpotent matrix of $M_{n-q}(\mathbb{K})$, and we have let I_{k} denote the unit matrix of $M_{k}(\mathbb{K})$.

Let $i \in I$. Applying σ coefficient-wise to $P A_{i} P^{-1}=B_{i}$, we get:

$$
\sigma(P) A_{i} \sigma(P)^{-1}=B_{i}=P A_{i} P^{-1},
$$

hence A_{i} commutes with $\sigma(P)^{-1} P$. We now claim the following result:
Lemma 3. Under the preceding assumptions, any matrix of $M_{n}(\mathbb{K})$ that commutes with $\sigma(P)^{-1} P$ also commutes with P.

Assuming this lemma holds, we deduce that $\forall i \in I, P A_{i} P^{-1}=A_{i}$, hence $\left(A_{i}\right)_{i \in I}$ and $\left(B_{i}\right)_{i \in I}$ are equal, thus simultaneously similar in $M_{n}(\mathbb{K})$, which finishes our proof.
Proof of Lemma 3. Let $A \in M_{n}(\mathbb{K})$ which commutes with $\sigma(P)^{-1} P$. Applying σ, we deduce that A also commutes with $P^{-1} \sigma(P)$, hence with $I_{n}+(\sigma(\varepsilon)-\varepsilon) P^{-1} R$, hence with $P^{-1} R$ since $\sigma(\varepsilon) \neq \varepsilon$.

Notice then that

$$
P^{-1} R=\left[\begin{array}{cc}
\left(M+\varepsilon \cdot I_{q}\right)^{-1} & 0 \\
0 & \left(I_{n-q}+\varepsilon N\right)^{-1} N
\end{array}\right]
$$

with $\left(M+\varepsilon \cdot I_{q}\right)^{-1}$ non-singular and $\left(I_{n-q}+\varepsilon N\right)^{-1} N$ nilpotent, so A, which stabilizes both $\operatorname{Im}\left(P^{-1} R\right)^{n}$ and $\operatorname{Ker}\left(P^{-1} R\right)^{n}$, must be of the form

$$
A=\left[\begin{array}{ll}
C & 0 \\
0 & D
\end{array}\right] \text { for some }(C, D) \in M_{q}(\mathbb{K}) \times M_{n-q}(\mathbb{K}) \text {. }
$$

Commutation of A with $P^{-1} R$ ensures that C commutes with $\left(M+\varepsilon \cdot I_{q}\right)^{-1}$, whereas D commutes with $\left(I_{n-q}+\varepsilon N\right)^{-1} N=\varepsilon^{-1} \cdot I_{n-q}-\varepsilon^{-1} \cdot\left(I_{n-q}+\varepsilon N\right)^{-1}$ hence with $\left(I_{n-q}+\varepsilon N\right)^{-1}$. It follows that A commutes with P^{-1}, hence with P.

3. A proof for simultaneous equivalence

We will now derive Theorem 2 from Theorem 1. Under the assumptions of Theorem 2, we choose an arbitrary object a that does not belong to I, and define

$$
C_{a}=D_{a}:=\left[\begin{array}{cc}
I_{n} & 0 \\
0 & 0
\end{array}\right] \in \mathrm{M}_{n+p}(\mathbb{K})
$$

and, for $i \in I$,

$$
C_{i}=\left[\begin{array}{cc}
0 & A_{i} \\
0 & 0
\end{array}\right] \text { and } D_{i}=\left[\begin{array}{cc}
0 & B_{i} \\
0 & 0
\end{array}\right] \text { in } \mathrm{M}_{n+p}(\mathbb{K}) .
$$

The following two conditions are then equivalent:
(i) $\left(A_{i}\right)_{i \in I}$ and $\left(B_{i}\right)_{i \in I}$ are simultaneously equivalent;
(ii) $\left(C_{i}\right)_{i \in I \cup\{a\}}$ and $\left(D_{i}\right)_{i \in I \cup\{a\}}$ are simultaneously similar.

Indeed, if condition (i) holds, then we choose $(P, Q) \in G L_{n}(\mathbb{K}) \times G L_{p}(\mathbb{K})$ such that $\forall i \in I, P A_{i} Q=$ B_{i}, set $R:=\left[\begin{array}{cc}P & 0 \\ 0 & Q^{-1}\end{array}\right]$, and remark that $R \in G L_{n+p}(\mathbb{K})$ and

$$
\forall i \in I \cup\{a\}, \quad R C_{i} R^{-1}=D_{i} .
$$

Conversely, assume condition (ii) holds, and choose $R \in G L_{n+p}(\mathbb{K})$ such that

$$
\forall i \in I \cup\{a\}, \quad R C_{i} R^{-1}=D_{i} .
$$

Equality $R C_{a} R^{-1}=D_{a}$ then entails that R has the form

$$
R=\left[\begin{array}{ll}
P & 0 \\
0 & Q
\end{array}\right] \text { for some }(P, Q) \in G L_{n}(\mathbb{K}) \times G L_{p}(\mathbb{K}),
$$

and the other relations then imply that
$\forall i \in I, \quad P A_{i} Q^{-1}=B_{i}$.
Using equivalence of (i) and (ii) with both fields \mathbb{K} and \mathbb{Z}, Theorem 2 follows easily from Theorem 1.

4. Appendix: on the Kronecker reduction of matrix pencils

Attention was brought to us that, in [2], the proof that every pencil of matrix is equivalent to a canonical one fails for finite fields. We will give a correct proof here in the case of a "weak" canonical form (that is all we need here, and reducing further to a true canonical form is not hard from there using the theory of elementary divisors).

Notation 2. For $n \in \mathbb{N}$, set $\quad L_{n}=\left[\begin{array}{ccccc}1 & 0 & 0 & & \\ 0 & 1 & 0 & & \\ & & \ddots & \ddots & \\ & & & 1 & 0\end{array}\right] \in M_{n, n+1}(\mathbb{K}) \quad$ and $\quad K_{n}=$ $\left[\begin{array}{ccccc}0 & 1 & 0 & & \\ 0 & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & 0 & 1\end{array}\right] \in M_{n, n+1}(\mathbb{K}) ;$ and, for arbitrary objects a and b, define the Jordan matrix:
$J_{n}(a, b)=\left[\begin{array}{cccc}a & b & 0 & \\ 0 & a & b & \\ & & \ddots & \ddots\end{array}\right] \in M_{n}(\{0, a, b\})$.

Theorem 4 (Kronecker reduction theorem for pencils of matrices). Let A and B in $M_{n, p}(\mathbb{K})$. We choose an indeterminate X. Then there are non-singular matrices $\left(P_{1}, Q_{1}\right) \in G L_{n}(\mathbb{K}) \times G L_{p}(\mathbb{K})$ such that $P_{1}(A+$ $X B) Q_{1}$ is block-diagonal with every non-zero diagonal block having one of the following forms, and only one of the first type:

- $P+X I_{r}$ for some non-singular $P \in G L_{r}(\mathbb{K})$;
- $J_{r}(1, X) ; J_{r}(X, 1) ; L_{r}+X K_{r} ;\left(L_{r}+X K_{r}\right)^{t}$.

This decomposition is unique up to permutation of blocks and up to similarity on the non-singular matrix P.

We will only prove here that such a decomposition exists. Uniqueness is not needed here so we will leave it as an exercise for the reader.

We will consider A and B as linear maps from $E=\mathbb{K}^{p}$ to $F=\mathbb{K}^{n}$. Without loss of generality, we may assume $\operatorname{Ker} A \cap \operatorname{Ker} B=\{0\}$ and $\operatorname{Im} A+\operatorname{Im} B=F$. We define inductively two towers $\left(E_{k}\right)_{k \in \mathbb{N}}$ and $\left(F_{k}\right)_{k \in \mathbb{N}}$ of respective linear subspaces of E and F by:
(a) $E_{0}=\{0\} ; F_{0}=A(\{0\})=\{0\}$;
(b) $\forall k \in \mathbb{N}, E_{k+1}=B^{-1}\left(F_{k}\right)$ and $F_{k+1}=A\left(E_{k+1}\right)$.

Notice that $E_{1}=\operatorname{Ker} B$. The sequences $\left(E_{k}\right)_{n \geqslant 0}$ and $\left(F_{k}\right)_{n \geqslant 0}$ are clearly non-decreasing so we can find a smallest integer N such that $E_{N}=E_{k}$ for every $k \geqslant N$. Hence $F_{N}=F_{k}$ for every $k \geqslant N$, and $E_{N}=$ $B^{-1}\left(F_{N}\right)$. It follows that $A\left(E_{N}\right)=F_{N}$ and $B\left(E_{N}\right) \subset F_{N}$. We now let f and g denote the linear maps from E_{N} to F_{N} induced by A and B.

From there, the proof has two independent major steps:
Lemma 5. There are bases \mathbf{B} and \mathbf{C} respectively of E_{N} and F_{N} such that $M_{\mathbf{B}, \mathbf{C}}(f)+X M_{\mathbf{B}, \mathbf{C}}(g)$ is blockdiagonal with all non-zero blocks having one of the forms $J_{r}(1, X)$ or $L_{s}+X K_{s}$.

Lemma 6. There are splittings $E=E_{N} \oplus E^{\prime \prime}$ and $F=F_{N} \oplus F^{\prime \prime}$ such that $A\left(E^{\prime \prime}\right) \subset F^{\prime \prime}$ and $B\left(E^{\prime \prime}\right) \subset F^{\prime \prime}$.
Assuming those lemmas are proven, let us see how we can easily conclude:

- We deduce from the two previous lemmas that $A+X B$ is \mathbb{K}-equivalent to some $\left[\begin{array}{cc}A^{\prime \prime}+X B^{\prime \prime} & 0 \\ 0 & C(X)\end{array}\right]$ where $C(X)$ is block-diagonal with all non-zero blocks of the form $J_{r}(1, X)$ or $L_{S}+X K_{S}$, and $A^{\prime \prime}$ and $B^{\prime \prime}$ have coefficients in \mathbb{K}, with $\operatorname{Ker} B^{\prime \prime}=\{0\}$; it will thus suffice to prove the existence of a canonical form for the pair ($A^{\prime \prime}, B^{\prime \prime}$);
- applying the first step of the proof to the matrices $\left(A^{\prime \prime}\right)^{t}$ and $\left(B^{\prime \prime}\right)^{t}$, we find that $A^{\prime \prime}+X B^{\prime \prime}$ is \mathbb{K} equivalent to some $\left[\begin{array}{cc}A^{\prime \prime}+X B^{\prime \prime} & 0 \\ 0 & D(X)\end{array}\right]$ where $D(X)$ is block-diagonal with all non-zero blocks of the form $J_{r}(1, X)^{t}$ (which is \mathbb{K}-similar to $J_{r}(1, X)$) or $\left(L_{s}+X K_{s}\right)^{t}$, and $A^{\prime \prime}$ and $B^{\prime \prime}$ have coefficients in \mathbb{K}, with $\operatorname{Ker} B^{\prime \prime}=\{0\}$ and coker $B^{\prime \prime}=\{0\}$. It follows that $B^{\prime \prime}$ is non-singular.
- Finally, $\left(B^{\prime \prime}\right)^{-1}\left(A^{\prime \prime}+X B^{\prime \prime}\right)=\left(B^{\prime \prime}\right)^{-1} A^{\prime \prime}+X \cdot I_{k}$ for some integer k, and the pair $\left(A^{\prime \prime}, B^{\prime \prime}\right)$ can thus be reduced by using the Fitting decomposition of $\left(B^{\prime \prime}\right)^{-1} A^{\prime \prime}$ combined with a Jordan reduction of its nilpotent part: this yields a block-diagonal matrix \mathbb{K}-equivalent to $A^{\prime \prime}+X B^{\prime \prime}$ with all diagonal blocks of the form $J_{r}(X, 1)$ or $P+X \cdot I_{s}$ for some non-singular P. This completes the proof of existence.

Proof of Lemma 6. We proceed by induction.
Assume, for some $k \in \llbracket 1, N \rrbracket$, that there are splittings $E=E_{N} \oplus E^{\prime \prime}$ and $F=F_{N} \oplus F^{\prime \prime}$ such that $A\left(E^{\prime \prime}\right) \subset F_{k} \oplus F^{\prime \prime}$ and $B\left(E^{\prime \prime}\right) \subset F_{k} \oplus F^{\prime \prime}$. Since $B^{-1}\left(F_{N}\right)=E_{N}$, the subspaces F_{N} and $B\left(E^{\prime \prime}\right)$ are independent. We can therefore find some $F^{\prime \prime}$ such that $F_{k} \oplus F^{\prime \prime}=F_{k} \oplus F^{\prime \prime}, F_{N} \oplus F^{\prime \prime}=F$ and $B\left(E^{\prime \prime}\right) \subset F^{\prime \prime}$. Choose then a basis $\left(e_{1}, \ldots, e_{p}\right)$ of $E^{\prime \prime}$, and decompose $A\left(e_{i}\right)=f_{i}+f_{i}^{\prime \prime}$ for all $i \in \llbracket 1, p \rrbracket$, with $f_{i} \in F_{k}$ and $f_{i}^{\prime \prime} \in F^{\prime \prime}$. For $i \in \llbracket 1, p \rrbracket$, we have $f_{i}=A\left(g_{i}\right)$ for some $g_{i} \in E_{k}$. Then $\left(e_{1}-g_{1}, \ldots, e_{p}-g_{p}\right)$ still spans a complementary subspace $E^{\prime \prime}$ of E_{N} in E, and we now have $A\left(e_{i}-g_{i}\right) \in F^{\prime \prime}$ and $B\left(e_{i}-g_{i}\right) \in F^{\prime \prime} \oplus F_{k-1}$ for all $i \in \llbracket 1, p \rrbracket$. Hence $E=E_{N} \oplus E^{\prime \prime}$ and $F=F_{N} \oplus F^{\prime \prime}$, now with $A\left(E^{\prime \prime}\right) \subset F_{k-1} \oplus F^{\prime \prime}$ and $B\left(E^{\prime \prime}\right) \subset$ $F_{k-1} \oplus F^{\prime \prime}$. The condition is thus proven at the integer $k-1$. By downward induction, we find that it holds for $k=0$.

Proof of Lemma 5. The argument is similar to the standard proof of the Jordan reduction theorem.

- Split $F_{N}=F_{N-1} \oplus W_{N, N}$ and $E_{N}=E_{N-1} \oplus V_{N, N} \oplus V_{N, N}^{\prime \prime}$ such that $E_{N-1} \oplus V_{N, N}^{\prime \prime}=E_{N-1}$ $+\left(E_{N} \cap \operatorname{Ker} f\right), V_{N, N}^{\prime \prime} \subset \operatorname{Ker} f$ and $f\left(V_{N, N}\right)=W_{N, N}$ (so f induces an isomorphism from $V_{N, N}$ to $\left.W_{N, N}\right)$. Set $W_{N, N-1}=g\left(V_{N, N}\right)$ and $W_{N, N-1}^{\prime \prime}=g\left(V_{N, N}^{\prime \prime}\right)$. Remark that $F_{N-2} \oplus W_{N, N-1} \oplus W_{N, N-1}^{\prime \prime} \subset$ F_{N-1}, and split $F_{N-1}=F_{N-2} \oplus W_{N, N-1} \oplus W_{N, N-1}^{\prime \prime} \oplus W_{N-1, N-1}$.
- We then proceed by downward induction to define four families of linear subspaces $\left(V_{\ell, k}\right)_{1 \leqslant k \leqslant \ell \leqslant N},\left(V_{\ell, k}^{\prime \prime}\right)_{1 \leqslant k \leqslant \ell \leqslant N},\left(W_{\ell, k}\right)_{1 \leqslant k \leqslant \ell \leqslant N}$ and $\left(W_{\ell, k}^{\prime \prime}\right)_{1 \leqslant k \leqslant \ell-1 \leqslant N-1}$ such that:
(i) for every $k \in \llbracket 1, N \rrbracket$,

$$
E_{k}=E_{k-1} \oplus V_{k, k} \oplus V_{k+1, k} \oplus \cdots \oplus V_{N, k} \oplus V_{k, k}^{\prime \prime} \oplus V_{k+1, k}^{\prime \prime} \oplus \cdots \oplus V_{N, k}^{\prime \prime}
$$

(ii) for every $k \in \llbracket 1, N \rrbracket$,

$$
F_{k}=F_{k-1} \oplus W_{k, k} \oplus W_{k+1, k} \oplus \cdots \oplus W_{N, k} \oplus W_{k+1, k}^{\prime \prime} \oplus W_{k+2, k}^{\prime \prime} \oplus \cdots \oplus W_{N, k}^{\prime \prime}
$$

(iii) for every $k \in \llbracket 1, N \rrbracket, E_{k-1}+\left(E_{k} \cap \operatorname{Ker} f\right)=E_{k-1} \oplus V_{k, k}^{\prime \prime}$ and $V_{k, k}^{\prime \prime} \subset \operatorname{Ker} f$;
(vi) for every $\ell \in \llbracket 1, N \rrbracket$ and $k \in \llbracket 2, \ell \rrbracket, g$ induces an isomorphism $g_{\ell, k}: V_{\ell, k} \xrightarrow{\simeq} W_{\ell, k-1}$ and an isomorphism $g_{\ell, k}^{\prime \prime}: V_{\ell, k}^{\prime \prime} \xrightarrow{\simeq} W_{\ell, k-1}^{\prime \prime}$;
(v) for every $\ell \in \llbracket 1, N \rrbracket$ and $k \in \llbracket 1, \ell \rrbracket, f$ induces an isomorphism $f_{\ell, k}: V_{\ell, k} \xrightarrow{\simeq} W_{\ell, k}$ and, if $k<\ell$, an isomorphism $f_{\ell, k}^{\prime \prime}: V_{\ell, k}^{\prime \prime} \xrightarrow{\simeq} W_{\ell, k .}^{\prime \prime}$.
\{0\}

\{0\}

- Set $\ell \in \llbracket 1, N \rrbracket$. Define

$$
\begin{aligned}
& G_{\ell}=V_{\ell, 1} \oplus \cdots \oplus V_{\ell, \ell,} \quad G_{\ell}^{\prime \prime}=V_{\ell, 1}^{\prime \prime} \oplus \cdots \oplus V_{\ell, \ell}^{\prime \prime} \\
& H_{\ell}=W_{\ell, 1} \oplus \ldots \oplus W_{\ell, \ell} \text { and } H_{\ell}^{\prime \prime}=W_{\ell, 1}^{\prime \prime} \oplus \ldots \oplus W_{\ell, \ell-1}^{\prime \prime} .
\end{aligned}
$$

Notice that:

$$
f\left(G_{\ell}\right)=H_{\ell}, \quad g\left(G_{\ell}\right) \oplus W_{\ell, \ell}=H_{\ell}, \quad f\left(G_{\ell}^{\prime \prime}\right)=H_{\ell}^{\prime \prime} \quad \text { and } g\left(G_{\ell}^{\prime \prime}\right)=H_{\ell}^{\prime \prime} .
$$

From there, it is easy to conclude.

- Let $n_{\ell}=\operatorname{dim} W_{\ell, \ell}$. Remark that $\operatorname{dim} V_{\ell, k}=\operatorname{dim} W_{\ell, k}=n_{\ell}$ for every $k \in \llbracket 1, \ell \rrbracket$ and choose a basis $\mathbf{C}_{\ell, \ell}$ of $W_{\ell, \ell}$. Define $\mathbf{B}_{\ell, \ell}=f_{\ell, \ell}^{-1}\left(\mathbf{C}_{\ell, \ell}\right), \mathbf{C}_{\ell, \ell-1}:=g_{\ell, \ell}\left(\mathbf{B}_{\ell, \ell}\right)$ and proceed by induction to recover a basis for $V_{\ell, k}$ and $W_{\ell, k}$ for every suitable k : by glueing together those bases, we recover respective bases $\left(\mathbf{B}_{\ell, 1}, \ldots, \mathbf{B}_{\ell, \ell}\right)$ and $\left(\mathbf{C}_{\ell, 1}, \ldots, \mathbf{C}_{\ell, \ell}\right)$ of G_{ℓ} and H_{ℓ} and remark that f and g induce linear maps from G_{ℓ} to H_{ℓ} with respective matrices $L_{\ell-1} \otimes I_{n_{\ell}}$ and $K_{\ell-1} \otimes I_{n_{\ell}}$ in those bases (remember that $E_{1}=\operatorname{Kerg}$). A simple permutation of bases shows that those linear maps can be represented by $I_{n_{\ell}} \otimes L_{\ell-1}$ and $I_{n_{\ell}} \otimes K_{\ell-1}$ in a suitable common pair of bases.
- Proceeding similarly for $G_{\ell}^{\prime \prime}$ and $H_{\ell}^{\prime \prime}$, but starting from a basis of $V_{\ell, \ell}^{\prime \prime}$, we obtain that f and g induce linear maps from $G_{\ell}^{\prime \prime}$ to $H_{\ell}^{\prime \prime}$ and there is a suitable choice of bases so that their matrices are respectively $I_{s} \otimes I_{\ell}$ and $I_{s} \otimes J_{\ell}(0,1)$ for some integer s.
- Notice that we have defined splittings

$$
E_{N}=G_{1} \oplus G_{1}^{\prime \prime} \oplus G_{2} \oplus G_{2}^{\prime \prime} \oplus \cdots \oplus G_{N} \oplus G_{N}^{\prime \prime}
$$

and

$$
F_{N}=H_{1} \oplus H_{1}^{\prime \prime} \oplus H_{2} \oplus H_{2}^{\prime \prime} \oplus \cdots \oplus H_{N} \oplus H_{N}^{\prime \prime},
$$

therefore Lemma 5 is proven by glueing together the various bases built here.

References

[1] S. Friedland, Simultaneous similarity of matrices, Adv. Math. 50 (1983) 189-265.
[2] F.R. Gantmacher, Matrix Theory, vol. 2, Chelsea, New York, 1977.
[3] L. Klinger, L.S. Levy, Sweeping similarity of matrices, Linear Algebra Appl. 75 (1986) 67-104.
[4] S. Lang, Algebra, GTM, third ed., vol. 211, Springer-Verlag, 2002.

[^0]: E-mail address: dsp.prof@gmail.com

