
Theoretical Computer Science 348 (2005) 240–250
www.elsevier.com/locate/tcs

The minimum-entropy set cover problem

Eran Halperina,1, Richard M. Karpb,∗
aComputer Science Department, Princeton University, Princeton, NJ 08544, USA

bInternational Computer Science Institute, 1947 Center St., Berkeley, CA 94704, USA

Abstract

We consider the minimum entropy principle for learning data generated by a random source and observed with random noise.
In our setting we have a sequence of observations of objects drawn uniformly at random from a population. Each object in the

population belongs to one class. We perform an observation for each object which determines that it belongs to one of a given set
of classes. Given these observations, we are interested in assigning the most likely class to each of the objects.

This scenario is a very natural one that appears in many real life situations. We show that under reasonable assumptions finding
the most likely assignment is equivalent to the following variant of the set cover problem. Given a universe U and a collection
S= (S1, . . . , St) of subsets of U, we wish to find an assignment f : U → S such that u ∈ f (u) and the entropy of the distribution
defined by the values |f −1(Si)| is minimized.

We show that this problem is NP-hard and that the greedy algorithm for set cover s with an additive constant error with respect to
the optimal cover. This sheds a new light on the behavior of the greedy set cover algorithm. We further enhance the greedy algorithm
and show that the problem admits a polynomial time approximation scheme (PTAS).

Finally, we demonstrate how this model and the greedy algorithm can be useful in real life scenarios, and in particular, in problems
arising naturally in computational biology.
© 2005 Published by Elsevier B.V.

1. Introduction

The Shannon entropy function is a measure of the concentration of a distribution which plays an important role in
various fields of computer science, such as coding theory, compression, learning, speech recognition and others. In
many applications, one is given a data set that has been corrupted by noise and wishes to extract the true data. In this
paper we use a minimum entropy principle to attack such problems.

Data classification is an important problem in learning theory. Given a data set generated by a random source, one
would like to learn the distribution of the source. Often, the data are generated by the source and then passes through
a noisy channel which adds ambiguity to the data. In such cases, one would like to learn both the distribution of the
source and the origin of each of the data points, thus removing the noise effects.

∗ Corresponding author. Tel.: +1 510 666 2973; fax: +1 510 666 2956.
E-mail addresses: heran@cs.princeton.edu (E. Halperin), karp@icsi.berkeley.edu (R.M. Karp).

1 Some of this work was done while the author was in UC Berkeley and ICSI, Berkeley, CA. The research was partly supported by NSF ITR Grant
CCR-0121555.

0304-3975/$ - see front matter © 2005 Published by Elsevier B.V.
doi:10.1016/j.tcs.2005.09.015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82414006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:heran@cs.princeton.edu
mailto:karp@icsi.berkeley.edu

E. Halperin, R.M. Karp / Theoretical Computer Science 348 (2005) 240 –250 241

We consider the following scenario for noisy data generated by a random source. We are given a sequence of
observations of objects drawn uniformly at random from a population. Each member of the population has a type. For
each object drawn from the population, we perform an observation which determines that the object’s type is one of a
given set of types. Given these observations, we are interested in assigning the most likely type to each of the objects.

These types might be code words in an erasure code, phonemes, letters of an alphabet, words in a limited lexicon,
insurance risk categories, genomic haplotypes, alleles of a gene, different types of a disease such as leukemia, or any
phenotype or trait, as long as each object has only one type. In the case of code words for example, the observation we
perform on each object might be the output of an erasure channel.

We show that under some reasonable assumptions the most likely assignment is the one that minimizes the entropy
of the distribution of the types. The problem of finding the most likely assignment via minimum entropy is of great
practical importance. A number of approaches to this and related problems have been suggested, including the EM
algorithm, Markov Chain Monte Carlo and convex optimization (see e.g. [9,17,16,20]), but we are not aware of any
prior work on the computational complexity of solving the problem exactly or approximately.

The problem of finding the assignment which minimizes the entropy of the distribution of the types can be for-
mulated as the following variant of the well-known minimum-cardinality set cover problem. We are given a uni-
verse U and a collection S = (S1, S2, . . . , St) of subsets of U. A cover of U is a function f : U → S such
that u ∈ f (u). The objective of the problem is to find a cover f which minimizes the entropy of the distribution
(|f −1(S1)|/|U |, |f −1(S2)|/|U |, . . . , |f −1(St)|/|U |). Similarly, the minimum-cardinality set cover problems aims in
finding a cover which minimizes the non-zero entries in of the above vector.

The minimum-cardinality set cover problem is well studied, and it is well known that the greedy algorithm achieves
a ln n approximation [1] and that this is best possible unless NP ⊆ ZTIME[npolylog(n)] [14,4,11]. Although the greedy
algorithm’s worst-case performance for the minimum-cardinality set cover problem is far from optimal, when one looks
closely at its behavior, it does not seem to give a totally unreasonable solution in the sense that most of the universe U
is usually covered by relatively large sets. In fact, it has been shown that, for any t, the number of elements covered by
the t largest sets in the greedy set cover is at least 1 − ((t − 1)/t)t of the number of elements covered by the t largest
sets in any set cover. In this paper we explore the greedy algorithm further, and show that it approximates the minimum
entropy cover within a small additive constant. Thus, in this sense, the greedy algorithm actually finds a cover which
explains the data nearly as well as the optimal distribution.

We further show that one can actually enhance the greedy algorithm to a polynomial time approximation scheme
(PTAS) for the minimum entropy cover problem. Finally, we show how we can use the PTAS and the greedy algorithm
in various scenarios arising in computational biology, and we explore the theoretical and empirical behavior of the
greedy algorithm in these special cases.

2. The minimum entropy cover problem

The problem we consider in this paper is a variant of the minimum-cardinality set cover problem. We begin by
formally defining the problem. In the next section, we give the main motivation for the problem.

We first need some notations and definitions. Throughout the paper, all logarithms are taken to base 2. For the sake
of clarity, we will assume that the value of the function x log x at zero is zero (formally, we could define a different
function which is x log x for x > 0 and zero for x = 0). The concentration of a multiset n1, n2, . . . , nk of natural
numbers is defined as

∑k
i=1 ni log ni . If N = n1 + · · · + nk , then the entropy of {ni} is

∑k
i=1 ni/N log N/ni , which

is simply the entropy of the distribution (p1, . . . , pk) where pi = ni/N .
A set system is a universe U and a collection S = (S1, . . . , St) of subsets of U. A cover is a function f : U → S such

that, for all u ∈ U , u ∈ f (u). The entropy of the cover f, denoted by ENT(f), is the entropy of the sequence of numbers
{|f −1(Si)|}. Similarly, the concentration of the cover f, denoted by CON(f) is the concentration of {|f −1(Si)|}.

We are now ready to define the minimum entropy cover problem.

Definition 1. The Minimum Entropy Cover Problem (MIN-ENT)
Input: A set system (U, S).
Output: A cover f : U → S.
Goal: Minimize ENT(f).

242 E. Halperin, R.M. Karp / Theoretical Computer Science 348 (2005) 240 –250

Informally, in the minimum entropy cover problem we are interested in finding a cover such that the distribution
of the cover is as concentrated as possible. Thus, a related problem is the maximum concentration problem, which is
formally defined as follows.

Definition 2. The maximum concentration cover problem.
Input: A set system (U, S).
Output: A cover f : U → S.
Goal: Maximize CON(f).

Clearly, a cover of maximum concentration is also a cover of minimum entropy and vice versa, since there is an
affine relationship between the entropy and the concentration. In particular, ENT(f) = log N − CON(f)/N .

3. A random generative model

In this section we introduce a probabilistic model for classification or identification problems with noisy data, and
show that these problems can be formulated as instances of the maximum concentration problem. The setting for this
model is as follows. We are given a set of objects drawn uniformly at random from a population. Each member of the
population has a type. We are not told the types of the given objects, but we perform an observation on each object
which determines that its type lies within some set of types. Given these observations we would like to find the most
likely assignment of types to the objects.

Let T be the set of types, � the set of objects, and A the set of possible observations. Each observation a ∈ A

consists of a pair (�(a), COMPAT(a)), where �(a) ∈ � is an object and COMPAT(a) ⊆ T is a subset of the types. If
i ∈ COMPAT(a) then type i is said to be compatible with observation a. Let P(a|i) be the conditional probability of
observation a, given that the object observed is of type i. Our key assumption is that for each a ∈ A there is a positive
real number q(a) such that, for every i ∈ COMPAT(a), P(a|i) = q(a), and for every i /∈ COMPAT(a), P(a|i) = 0.
Thus, we assume that, for all types compatible with observation a, the conditional probability of observation a is the
same. We also assume that these conditional probabilities are fixed (but not necessarily known). In the important case
where each type is specified by a vector of attributes and a randomly chosen subset of the attributes get observed, our
assumption holds provided that the random choice of attributes to be observed is independent of the type of the object.

Suppose N objects are drawn from the population and aj is the observation of object j. An assignment is a function
f which assigns to each object j a type compatible with its observation. Let pi be the (unknown) frequency of type i
in the population. Then the joint probability of the observations (a1, a2, . . . , aN) and the event that each object j is of
type f (j) is given by �N

j=1 q(aj)p(f (j)). We call this quantity the joint likelihood of the assignment of types and

the observations of the objects. Note that �N
j=1 q(aj) is fixed, by the assumption that the sets COMPAT(a) are part

of the specification of the model, and that the probabilities q(a) are fixed. Thus the joint likelihood is maximized by
maximizing the product �N

j=1 p(f (j)). For each type i, let ni = |f −1(i)| Then we wish to maximize �ip
ni

i . Using
simple calculus, one can verify that this quantity is maximized by choosing pi = ni/N . With this choice the function
to be maximized becomes �i (ni/N)ni . Taking logarithms and using the fact that the ni sum to N, this is equivalent to
maximizing the concentration

∑
i ni log ni . Thus, the problem of maximizing the joint likelihood is an instance of the

maximum concentration problem where, for each i, Si = {j | i ∈ COMPAT(aj)}.

4. The complexity of MIN-ENT

As noted above, a maximum concentration cover is also a minimum entropy cover, and thus, if one of these problems
is solvable in polynomial time then so is the other. Unfortunately, the problems are NP-hard. In fact, we prove the
following stronger theorem:

Theorem 1. Maximum concentration cover is APX-hard.

E. Halperin, R.M. Karp / Theoretical Computer Science 348 (2005) 240 –250 243

Proof. We use a reduction from the 3-set packing problem. In the 3-set packing problem we are given a 3-uniform
hypergraph H = (V , E), where |V | = n, and the goal is to find a maximum pairwise disjoint set of edges. The problem
is equivalent to finding a maximum matching in a 3-uniform hypergraph (recall that a matching is a set of pairwise
disjoint edges). In [13] (see also [8]) it is proven that there is a constant c < 1, such that it is NP-hard to distinguish
between the case that there exists a perfect matching, that is a matching of size n/3 and the case that the maximum
matching is of size at most c · (n/3).

Given an input to the 3-set packing problem, we treat it as an input to the maximum concentration cover problem,
where the universe is V and the sets are the edges. Consider first the case in which there is a perfect matching of size
n/3. In this case the concentration of the corresponding cover is n log 3.

Consider the other case where the maximum matching is of size at most c(n/3). Let f be a maximum concentration
cover in this set system. Let A be the set of edges which cover exactly three vertices. The concentration of the cover f
is at most 3|A| log 3 + (n − 3|A|) log 2. On the other hand, |A|�c(n/3). Therefore, the concentration of f is at most

cn(log 3 − log 2) + n log 2 = c′n log 3,

where c′ = c + (1 − c) log 2/ log 3 < 1 is a fixed constant.
Therefore, it is NP-hard to distinguish between the case that the concentration is n log 3 and the case that the

concentration is smaller that c′n log 3. Thus, the maximum concentration problem is APX-hard. �

Note that the fact that approximating the concentration within an arbitrary constant is hard does not imply that
approximating MIN-ENT within an arbitrary constant is hard! It simply implies that MIN-ENT is NP-hard. In fact, we
will actually show that MIN-ENT admits a PTAS.

4.1. The greedy algorithm

Although it is hard to approximate the maximum concentration cover within an arbitrarily small constant factor, we
shall prove a surprising property: the greedy algorithm provides an approximation with a small additive error.

The greedy algorithm constructs a cover fG : U → S in the following way. We iteratively add a set Si ∈ S
which covers the maximum number of elements of U. We remove all its elements from U and from the other sets
of S, and recurse on the resulting set system. Thus, if Si1 , Si2 , . . . , are the sets chosen by the greedy algorithm, then
f −1

G (Si1) = Si1 , f
−1
G (Si2) = Si2 \ Si1 , and in general, f −1

G (Sik) = Sik \ (Si1 ∪ · · · ∪ Sik−1).
Let N = |U |. We now prove the following theorem.

Theorem 2. Let fOPT be a cover of maximum concentration. Let fG be the cover produced by the greedy
algorithm. Then ENT(fG)�ENT(fOPT) + 3. Equivalently, by the definition of CON(fG) and ENT(fG), CON(fG)�
CON(fOPT) − 3N .

Theorem 2 may not seem intuitive at first sight in view of the log n approximation factor for the performance of
the greedy algorithm on the minimum-cardinality set cover problem. The theorem gives a new interpretation for the
greedy algorithm: it finds a cover with an almost minimum entropy. In many real life situations, a minimum-entropy
cover seems more ‘natural’ than a minimum-cardinality cover.

Before proving Theorem 2 we need to introduce some more notations and definitions. For two non-increasing
sequences {ni} and {mi} of non-negative real numbers, we say that {ni} majorizes {mi} if for every k�1, their partial
sums satisfy n1 + · · · + nk �m1 + · · · + mk . The following is a standard fact about convex functions, and it will be
repeatedly used in our proof (see e.g. [7]):

Lemma 1. Let F be a non-decreasing convex function such that F(0) = 0, and let {ni} and {mi} be two non-increasing
sequences of non-negative real numbers such that {ni} majorizes {mi}. Then

∑
i F (ni)�

∑
i F (mi), where each sum

is taken over all the elements of the sequence.

Let Si1 , Si2 , . . ., be the sets chosen by the greedy algorithm. Furthermore, let gj = |f −1
G (Sij)| be the size of the jth

set covered by the greedy algorithm. By definition of the greedy algorithm, g1 �g2 � · · ·. Let B1, B2, . . ., be the sets
chosen by an optimal cover fOPT , that is, for each j, there exists some i such that Bj = f −1

OPT (Si). Finally, let nj = |Bj |

244 E. Halperin, R.M. Karp / Theoretical Computer Science 348 (2005) 240 –250

and assume without loss of generality that n1 �n2 � · · ·. Theorem 2 states that
∑

gi log gi �
∑

ni log ni − 3N . In
order to prove the theorem, we show that {gi} majorizes a certain multiset which is directly defined by {ni}, and we
then bound the concentration of that multiset.

Lemma 2. For all i, gi+1 �
⌈

maxk

[(∑k
j=1 nj −∑i

j=1 gj

)
/k
]⌉

.

Proof. For every k, the number of elements covered by the largest k sets of fOPT is n1 + · · · + nk , where the sets of
fOPT are B1, B2, . . ., as before. On the other hand, the number of elements covered by the first i sets of the greedy
algorithm is g1 + · · · + gi . Therefore, before the i + 1th iteration of greedy, there are at least

∑k
j=1 nj − ∑i

j=1 gj

uncovered elements in B1 ∪ · · · ∪ Bk . By averaging, there is at least one set Bl for some l ∈ {1, . . . , k} such that the

number of uncovered elements in Bl is at least
(∑k

j=1 nj −∑i
j=1 gj

)
/k, and thus gi+1 �

∑k
j=1 nj −

∑i
j=1 gj

k
. Since

this is true for every k, the lemma follows. �

Motivated by Lemma 2, we define a multiset {mi} in the following way. Let m1 = n1, and for i�2 let

mi+1 =
⌈

max
k

[∑k
j=1 nj −∑i

j=1 mj

k

]⌉
.

We call this multiset the extremal greedy multiset.

Lemma 3. The concentration of the greedy cover is at least the concentration of the extremal greedy multiset.

Proof. We prove by induction on i that
∑i

j=1 mj �
∑i

j=1 gj for all i. By Lemma 2, we get that m1 �g1. Assume for

induction that
∑i

j=1 mj �
∑i

j=1 gj . Let k be such that mi+1 = ⌈(∑k
j=1 nj −∑i

j=1 mj

)
/k
⌉

. Then, by Lemma 2,

mi+1 =
⌈∑k

j=1 nj −∑i
j=1 mj

k

⌉
�
⌈∑k

j=1 nj −∑i
j=1 gj

k

⌉
+
⌈∑i

j=1 gj −∑i
j=1 mj

k

⌉

� gi+1 +
⌈∑i

j=1 gj −∑i
j=1 mj

k

⌉
,

and so

i+1∑
j=1

mj �
i∑

j=1
mj + gi+1 +

⌈∑i
j=1 gj −∑i

j=1 mj

k

⌉

=
i+1∑
j=1

gj +
(

i∑
j=1

mj −
i∑

j=1
gj

)
+
⌈∑i

j=1 gj −∑i
j=1 mj

k

⌉
�

i+1∑
j=1

gj ,

where the last inequality follows from the induction hypothesis and the fact that gj and mj are integers. Since∑i
j=1 mj �

∑i
j=1 gj , then by Lemma 1,

∑
gj log gj �

∑
mj log mj , that is, the concentration of greedy is greater

than the concentration of the extremal greedy multiset. �

We now describe another intermediate multiset {ri} whose concentration is at most that of the extremal greedy
multiset. We then proceed to show that the concentration of {nj } exceeds that of {ri} by at most N. For each i, ri will be

equal to
⌈(∑ki

j=1 nj −∑i−1
j=1 rj

)
/ki

⌉
, where the choice of the index ki is as follows. Let Jl = {j | 2l−1 < N/nj �2l},

let Wl = ∑
j∈Jl

nj and let tl = maxj∈Jl
j . Then, we set ki = min{tl | W1 + W2 + · · · + Wl > r1 + r2 + · · · + ri−1}.

Lemma 4. The concentration of the extremal greedy multiset is greater than or equal to
∑

i ri log(ri) − N . In other
words,

∑
i ri log(ri)�N +∑

j mj log(mj).

Proof. For every l�1, let Rl = {i | ki = tl}. Let rl,1 �rl,2, . . . be the set of ri ∈ Rl . Then, rl,i+1 = �Wl − (rl,1 +
· · · + rl,i)/tl�.

E. Halperin, R.M. Karp / Theoretical Computer Science 348 (2005) 240 –250 245

We consider another intermediate multiset {ai} which is defined by applying the following modifications to the
multiset {mi}. We define a breakpoint at mi if for some l, m1 +· · ·+mi−1 < W1 +· · ·+Wl �m1 +· · ·+mi . We replace
the element mi by a new element m′

i such that m1+· · ·+m′
i = W1+· · ·+Wl . We then replace mi+1 by mi+1+mi −m′

i .
It is easy to see that the resulting multiset {ai} satisfies that

∑
mi log mi �

∑
ai log ai −N log 2 = ∑

ai log ai −N and
that in every interval Wl , if al1 �al2 � · · · are the elements of {ai} in that interval, then al,i+1 ��Wl−(al1+· · ·+ali)/tl�.

Since for every l�1, {ali} majorizes {rl,i} then by Lemma 1,
∑

ai log ai �
∑

ri log ri , and thus the lemma
follows. �

Since the multiset {ri} is explicitly given, we can lower bound its concentration by a simple calculation.

Lemma 5. For every l�1,
∑

i∈Rl
ri log ri �Wl log Wl − Wl log tl − Wl .

Proof. First, recall that if rl,1 �rl,2, . . . are the set of ri ∈ Rl , then rl,i+1 = ⌈(
Wl − (rl,1 + · · · + rl,i)

)
/tl
⌉

. Therefore,

one can show by induction that r1,1 + · · · + rl,i �
∑i

j=1 Wl/tl(1 − (1/tl))
j−1. Thus, by Lemma 1 we have

∑
j∈Rl

rj lg rj �
∞∑
i=1

Wl

tl

(
1 − 1

tl

)i−1

log

(
Wl

tl

(
1 − 1

tl

)i−1
)

= Wl log

(
Wl

tl

)
+ Wl

tl
log

(
1 − 1

tl

) ∞∑
i=1

(i − 1)

(
1 − 1

tl

)i−1

= Wl log

(
Wl

tl

)
+ Wl(tl − 1) log

(
1 − 1

tl

)

� Wl log

(
Wl

tl

)
− Wl. �

The proof of the following claim is straightforward by the definition of Wl and tl .

Claim 1. (tl − tl−1)N/2l < Wl �(tl − tl−1)N/2l−1.

We now upper bound the concentration of fOPT in each of the intervals Wl .

Lemma 6.
∑

j∈Jl
nj log nj �Wl log(Wl/(tl − tl−1)) .

Proof. For a set of t = tl − tl−1 numbers a1, . . . , at such that a1 + · · · + at = Wl , it is easy to see that
∑

ai log ai

is maximized when for every i, ai = Wl/t , and in that case,
∑

ai log ai = Wl log Wl/t . Therefore, the lemma
follows. �

Lemmas 6 and 5 allow us to bound the difference between the concentration of {ri} and that of {ni}.

Lemma 7.
∑

i ni log ni −∑
j rj log rj �2N .

Proof. By the lemmas above,

∑
i

ni log ni −∑
j

rj log rj �
∑
l

Wl

(
log

(
tl

tl − tl−1

)
+ 1

)

= N +∑
l Wl log

(
tl

tl − tl−1

)

� N +∑
l Wl

tl−1

tl − tl−1
�N + N

∑
l

tl−1

2l−1 ,

where the last inequality follows from Claim 1. But note that
∑

l (tl − tl−1)/2l−1 �
∑

j nj /N = 1, and thus,∑
l tl/2l �1. �

246 E. Halperin, R.M. Karp / Theoretical Computer Science 348 (2005) 240 –250

We can now prove Theorem 2:

Proof. By Lemmas 3 and 4, CON(fG)�
∑

ri log ri − N . On the other hand, by Lemma 7, CON(fOPT) − 2N �∑
ri log ri . Thus, CON(fG)�CON(fOPT) − 3N . �

Theorem 2 shows that the greedy algorithm comes within an additive constant of the optimal entropy. In order to
implement the greedy algorithm, one has to solve the subroutine that finds a set S ∈ S which covers the maximum
number of elements of U. If the collection S is given explicitly, then this subroutine can be done by enumerating
over all possible sets. But in some scenarios, the sets are given implicitly, and then finding the set which covers the
maximum number of uncovered elements may be NP-hard. If this subroutine admits an �-approximation algorithm for
some � < 1, then by tracing the proof of Theorem 2, one can verify that CON(fG)�CON(fOPT) − (3 + log(1/�))N .
Examples where this result is applicable include covering the edges of a graph by cut-sets, covering the vertices of a
graph by dominating sets, and covering a finite set of points in Rn by balls of a given radius.

4.2. A PTAS for MIN-ENT

The greedy algorithm finds a cover with relatively small entropy, but there is a family of instances in which the ratio
between the optimal entropy and the entropy of the greedy cover is bounded above by a constant smaller than one.
Consider for example the following instance. Let U = {1, . . . , n} and let S = {S0, S1, . . . , St }, where Si is a random
subset of U of size n/2 and S0 is the complement of St . The optimum cover uses S0 and St , and its entropy is log 2.
On the other hand, the solution of the greedy algorithm may result in the sequence of sets S1, S2, . . . , St and in this
case the entropy would be 1

2 log 2 + 1
4 log 4 + 1

8 log 8 + · · · > log 2. Note that in this case the difference between the
entropy of the greedy and the optimal entropy is still bounded above by 3, and therefore there is no contradiction with
Theorem 2.

In this section we show how can one enhance the greedy algorithm and find a polynomial time approximation scheme
for MIN-ENT, that is, we show that for every constant � > 0 one can approximate MIN-ENT within a factor of 1 + �.

We keep the notations from the previous section. We let OPT = ENT(fOPT), and a = 3/�. We say that f is a large
partial cover of U, if the following three properties hold:

• The domain of f (denoted Df) is a subset of U (that is, the cover does not have to cover all of U).
• For every S ∈ S, either f −1(S) is empty or |f −1(S)|�N/2a .
• If f −1(S) is not empty, then S ⊆ Df .

The support of a large partial cover f is Xf = {S ∈ S | f −1(S)
= ∅}. Note that if the support of f is Xf , then
∪S∈Xf

S = Df . Let f be a large partial cover, and let Xf = {S′
1, . . . , S

′
l} be its support and Df its domain. f is called

a maximal partial cover if for every x, y ∈ Df such that f (x)
= f (y) there is i� l, such that x ∈ S′
i , y /∈ S′

i or
x /∈ S′

i , y ∈ S′
i . A cover g of U is an extension of f if for every i ∈ Df , g(i) = f (i). The algorithm is the following:

1. Apply the greedy algorithm. Let the concentration of the resulting cover be CON0.
2. For every large maximal partial cover f, find an extension g of f by applying the greedy algorithm to all the sets that

are not entirely covered by f.
3. Output the cover with maximum concentration among CON0 and all the covers found in step 2

We first prove that the algorithm indeed gives a 1+� approximation. First note that if OPT > 3/�, then by Theorem 2,
the greedy algorithm finds a cover f such that ENT(f)�OPT + 3 < (1 + �)OPT . We thus assume that OPT �3/�.

Let k = maxnj >N/2a j , that is k is the maximal index such that nj > N/2a . Let X = ∑
j �k+1 nj . Then,

N log N − N · OPT = CON(fOPT)�X(log N − a) + (N − X) log N,

and thus, X�N · OPT/a.

It is easy to see that if Bj is the set corresponding to nj in the optimal solution, then the projection of the optimal
cover to B1 ∪· · ·∪Bk is a large maximal partial cover. Therefore, in step 2 of the algorithm, one possible large maximal
partial cover is the one defined by the multiset n1, n2, . . . , nk . For this specific partial cover, the algorithm extends it

E. Halperin, R.M. Karp / Theoretical Computer Science 348 (2005) 240 –250 247

to a cover g such that its concentration satisfies

CON(g)�
k∑

j=1
nj log nj + ∑

j �k+1
nj log nj − 3

∑
j �k+1

nj �CON(fOPT) − 3
N · OPT

a
.

Thus,

ENT(g) = log N − CON(g)

N
� log N − CON(fOPT)

N
+ 3

OPT

a
= OPT

(
1 + 3

a

)
= OPT(1 + �).

Finally, it remains to show that the algorithm can be implemented in polynomial time. Clearly, the greedy algorithm
can be implemented in polynomial time. Thus, it suffices to show that one can enumerate over all large maximal partial
covers in polynomial time.

Note that the support of a large partial cover contains at most 2a sets. Hence, we can enumerate over all possible
supports of these covers since there are at most t2a = t23/�

such supports. Let X = {S′
1, . . . , S

′
l}, where l�2a . We bound

the number of large maximal partial covers with support X and domain D = S′
1 ∪ · · · ∪S′

l . Let A = {A1, A2, . . . , A2l }
be the subsets of D defined by the possible intersections of sub-collections of X . It is easy to see that by enumerating
over all partitions of D by sets of A, we enumerate over all large maximal partial covers with support X . There are at

most 22l �222a

such partitions. We thus get the following theorem:

Theorem 3. For every � > 0, there is a (1 + �)-approximation algorithm for MIN-ENT which runs in time

O(2223/� · t23/� · (Nt)O(1)).

5. Applications

In this section, we introduce two scenarios where the random generative model is helpful.

5.1. The haplotype resolution problem

We introduce an application which naturally arises in computational biology, but can also be viewed as a more
general string-oriented problem.

A partial haplotype is a string over {0, 1, ∗}k . A complete haplotype is simply a binary string of size k. A complete
haplotype h is compatible with a partial haplotype h′ if and only if for each i, if h′(i)
= ∗ then h(i) = h′(i).

In the haplotype resolution problem, we are given a set U = {h1, h2, . . . , hm} of partial haplotypes of length k. For
each complete haplotype h ∈ {0, 1}k , let Sh = {hi ∈ U | h is compatible with hi}. The set U together with its collection
of subsets S = {Sh | h ∈ {0, 1}k} forms a set system. We wish to find a minimum-entropy cover for this system.

The problem arises in the following biological context. A geneticist conducts an experiment, in which one of the steps
is to sequence the DNA of a sample of individuals from the population. Unfortunately, current sequencing technology
often gives the DNA sequence with some missing nucleotide bases at some positions. Our goal is to complete these
missing bases. In terms of the notations above, each partial haplotype hi ∈ U corresponds to the DNA sequence of
one individual, and the ∗ values correspond to missing bases. Clearly, the data observed by the geneticist follows the
random generative model described in Section 3, where the types are the complete haplotypes, the observations are the
partial haplotypes in U, and for each hi ∈ U , COMPAT(hi) = {h ∈ {0, 1}k | hi ∈ Sh}. Thus, by the analysis given in
Section 3, the most likely completion of the partial haplotypes is the one defined by the minimum entropy cover.

Since the haplotype resolution cover is a special case of MIN-ENT, there is hope to find a polynomial-time algorithm
for it. We now show that this is not possible in the general case.

Theorem 4. The haplotype resolution problem is APX-hard.

Proof. In [10], Khanna et al. introduce a graph G = (V , E), such that there exists r = |V |1/c for some c > 1, for
which distinguishing between the following two cases is NP-hard:

• The case that G is r-colorable and the maximum independent set of G is of size rc−1.
• The case where the maximum independent set of G is of size at most r�(c−1), for some constant �.

248 E. Halperin, R.M. Karp / Theoretical Computer Science 348 (2005) 240 –250

Consider such a graph G. We construct an instance of the haplotype resolution problem from this graph. The construction
is similar to a construction given by [18] for a different problem. In this instance, we set the length of the strings to be
k = |V |, where each position corresponds to a vertex in G. For each vertex v in G, we add a partial haplotype hv to
U which has a value 1 in v, a value 0 in every neighbor of v, and a value ∗ in any other position. It is easy to see that
an independent set in G corresponds to a complete haplotype covering the set of partial haplotypes corresponding to
the vertices of the independent set. Thus, if G is r-colorable and the maximum independent set of G is of size rc−1,
one can find a cover of entropy log r , and if the maximum independent set of G is of size r�(c−1), then the entropy of
the minimum entropy cover is at least (c − �(c − 1)) log r . Thus, it is NP-hard to distinguish between the case that the
minimum entropy is log r , and the case that the minimum entropy is (c − �(c − 1)) log r , and therefore, finding the
minimum-entropy cover is APX-hard. �

In the context of haplotype resolution, the greedy algorithm iteratively finds the complete haplotype which covers the
maximum number of partial haplotypes in the data set. It then completes these partial haplotypes to that haplotype, and
removes them from the data set. When k = O(log m), finding the complete haplotype can be done in polynomial time,
simply by enumerating over all possible complete haplotypes. For an arbitrary k, this is NP-hard [18]. For practical data
sets, the length of the DNA sequences is quite short (around 10) due to some practical considerations. 2 Therefore, for
such regions, one can efficiently apply the greedy algorithm. In Section 6 we report some successful results over real
biological data.

5.2. The genotype phasing problem

The genotype phasing problem is another problem arising from the field of computational biology. The motivation
of this problem is similar to the haplotype resolution problem—the setting is where a geneticist is sequencing DNA
sequences randomly sampled from a population. Recall that each chromosome in our cells has two copies, one trans-
mitted from the mother and the other from the father. Current technology applicable for large-scale sequencing gives
the information from both copies at the same time and not the information from each chromosome separately. That is,
in each position, if both copies share the same value we know which value it is, and if they differ, we know their two
values, but we do not know which copy has which value. The goal is to resolve these ambiguities.

Recall that a haplotype is a string over {0, 1}k . A genotype is a string over {0, 1, 2}k . A genotype g is compatible
with the (complete) haplotypes (h1, h2) if in every position i, if g(i) ∈ {0, 1} then h1(i) = h2(i) = g(i), and otherwise
h1(i)
= h2(i). In this case we say that g is covered by h1 and h2. A cover f of a set of genotypes G, is a function
f : G → {0, 1}k × {0, 1}k where for each g ∈ G, if f (g) = (h1, h2) then g is compatible with (h1, h2). For each
haplotype h ∈ {0, 1}k , the coverage of h (denoted COV (h, f)) is the number of genotypes g such that for some
haplotype h′, f (g) = (h, h′) or f (g) = (h′, h), where g is counted twice if f (g) = (h, h).

In the genotype phasing problem we are given a set of genotypes, G = (g1, . . . , gn) of length k each. We are
interested in finding a cover f : G → {0, 1}k × {0, 1}k such that the entropy of {COV (h, f)} is minimized. This
problem does not correspond exactly to our random generative model, but we next show how our results imply an
approximation algorithm for the minimum entropy cover of genotypes when k = O(log n).

Theorem 5. Assume k = O(log n). Then there is a polynomial-time algorithm for the maximum concentration genotype
problem, such that if OPT is the maximum possible concentration, then the concentration given by the algorithm is
at least OPT/2 − O(n).

Proof. For every genotype g and haplotype h where there is h′ such that (h, h′) is compatible with g, we say that h′ is
the complement of h under g. Consider the following algorithm. In each step find a haplotype which is compatible with
the maximum number of uncovered genotypes. Cover these genotypes using this haplotype and its complement. Let
CON be the concentration of the algorithm, and let fOPT be the optimal cover. Let X1 be a multiset derived by taking the
first haplotype covering each genotype, and X2 be the multiset derived by taking the second haplotype covering each

2 The number of sequenced individuals is usually not very large, and a long sequence would mean that each DNA sequence appeared only once
in the data set (and thus, there is no information). Another reason to use short regions is that there are strong correlations among different positions
in the DNA that are physically close to each other.

E. Halperin, R.M. Karp / Theoretical Computer Science 348 (2005) 240 –250 249

Fig. 1. The performance of the greedy algorithm under the different data sets and the different missing data ratio. The first column specifies the data
set on which the experiment was done. The second column specifies the total missing data given to the algorithm—this missing data contain the
added missing data and the missing data of the original data. The third column specifies the value of p, and the fourth column specifies the error rate
of the algorithm, that is the number of incorrectly reconstructed masked positions divided by the total number of masked positions.

Fig. 2. The results for the genotype phasing algorithm. Each column corresponds to a different algorithm and each row corresponds to a different
data set. Evidently, on the Daly et al. data set, the greedy algorithm outperforms the other algorithms. On the other hand, on the Gabriel data set the
greedy algorithm does not perform as well, although its error rate is comparable to the other algorithms.

genotype. Then, the concentration of fOPT is at most CON(X1)+CON(X2)+2n. Assume that CON(X1)�CON(X2).
By Theorem 2, CON �CON(X1) − 3n. Thus, CON �(CON(fOPT) − 7n)/2. �

6. Experimental results

We measured the performance of the greedy algorithm in practice, both for genotype phase reconstruction and for
haplotype missing data completion. Our results show that the greedy algorithm, which is very simple to state and to
implement, performs reasonably well, and for certain data it is even better then previous phase reconstruction algorithms
such as PHASE [19], HAPLOTYPER [12] and HAP [3,6].

The data sets: We applied our algorithm to two haplotype data sets from [2,15] and population D of [5]. Both these
data sets have a significant portion of the genotype data (about 10%) missing. The data of [2] are partitioned into
blocks. We arbitrarily partitioned the data of [5] into blocks of length 10. We performed our experiments on each of
these blocks.

Completing missing haplotypes: We measured the performance of the greedy algorithm on haplotypes with about
10% missing data. We added random missing data by masking each position independently with probability p for
different values of p. We gave the greedy algorithm as input the resulting haplotypes, and then compared the resulting
haplotypes of the greedy algorithm to the original haplotypes. We considered each masked position and we observed
if it was correctly reconstructed or not. We found that the error rate in the reconstruction is only a few percent in both
data sets, even when the missing data consists of about 25% of the data. The results are given in Fig. 1.

Phasing genotype data: We used the greedy algorithm to phase genotype data. We compared our results to the results
given by three other phasing algorithms, namely HAP [3,6], PHASE [19] and HAPLOTYPER [12]. The results of the
comparison are given in Fig. 2.

The results achieved by the greedy algorithm are competitive with the previous results. In fact, for the data taken
from [2], the performance of the greedy algorithm is superior to the performance of all the other algorithms. For the
Gabriel [5] data, the greedy algorithm is inferior to the other algorithms, but it still gives reasonable results, given its
simplicity with respect to the other algorithms.

References

[1] V. Chvátal, A greedy heuristic for the set-covering problem, Math. Oper. Res. 4 (1979) 233–235.
[2] M.J. Daly, J.D. Rioux, S.F. Schaffner, T.J. Hudson, E.S. Lander, High-resolution haplotype structure in the human genome, Nature Genetics

29 (2) (2001) 229–232.

250 E. Halperin, R.M. Karp / Theoretical Computer Science 348 (2005) 240 –250

[3] E. Eskin, E. Halperin, R. Karp, Efficient reconstruction of haplotype structure via perfect phylogeny, J. Bioinformatics Comput. Biol. 1 (1)
(2003) 1–20.

[4] U. Feige, A threshold of ln n for approximating set cover, J. ACM 45 (1998).
[5] G.B. Gabriel, S.F. Schaffner, H. Nguyen, J.M. Moore, J. Roy, B. Blumenstiel, J. Higgins, M. DeFelice, A. Lochner, M. Faggart, S.N. Liu-

Cordero, C. Rotimi, A. Adeyemo, R. Cooper, R. Ward, E.S. Lander, M.J. Daly, D. Altshuler, The structure of haplotype blocks in the human
genome, Science 296 (2002) 2225–2229.

[6] E. Halperin, E. Eskin, Haplotype reconstruction from genotype data using imperfect phylogeny, Bioinformatics, 2003.
[7] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge University Press, Cambridge, England, 1934.
[8] E. Hazan, M. Safra, O. Schwartz, On the complexity of approximating k-dimensional matching, in: Proc. of the sixth Internat. Workshop on

Approximation Algorithms for Combinatorial Optimization (APPROX), 2003.
[9] E.H. Herskovits, G.F. Cooper, Kutato: an entropy-driven system for construction of probabilistic expert systems from database, in: Proc. Sixth

Conf. on Uncertainty in Artificial Intelligence, 1990, pp. 54–62.
[10] S. Khanna, N. Linial, S. Safra, On the hardness of approximating the chromatic number, in: Proc. second Israel Symp. on Theory and Computing

Systems, Natanya, Israel, 1993, pp. 250–260.
[11] C. Lund, M.Yannakakis, On the hardness of approximating minimization problems, in: Proc. 25th Annu. ACM Symp. on Theory of Computing,

San Diego, CA, 1993, pp. 286–293.
[12] Niu, Qin, Xu, Liu, In silico haplotype determination of a vast set of single nucleotide polymorphisms, Technical report, Department of Statistics,

Harvard University, 2001.
[13] E. Petrank, The hardness of approximation: gap location, Comput. Complexity 4 (1994) 133–157.
[14] R. Raz, S. Safra, A sub-constant error-probability low-degree test, in: Proc. 29th Annu. ACM Symp. on Theory of Computing, El Paso, TX,

1997, pp. 475–484.
[15] J.D. Rioux, M.J. Daly, M.S. Silverberg, K. Lindblad, H. Steinhart, Z. Cohen, T. Delmonte, K. Kocher, K. Miller, S. Guschwan, E.J. Kulbokas, S.

O’Leary, E. Winchester, K. Dewar, T. Green, V. Stone, C. Chow, A. Cohen, D. Langelier, G. Lapointe, D. Gaudet, J. Faith, N. Branco, S.B. Bull,
R.S. McLeod, A.M. Griffiths, A. Bitton, G.R. Greenberg, E.S. Lander, K.A. Siminovitch, T.J. Hudson, Genetic variation in the 5q31 cytokine
gene cluster confers susceptibility to Crohn disease, Nature Genetics 29 (2) (2001) 223–228.

[16] S. Roberts, R. Everson, I. Rezek, Minimum entropy data partitioning, in: Proc. Ninth Internat. Conf. on Artificial Neural Networks, 1999,
pp. 844–849.

[17] S.J. Roberts, C. Holmes, D. Denison, Minimum-entropy data partitioning using reversible jump markov chain Monte carlo, IEEE Trans. Pattern
Anal. Mach. Intell. 23 (8) (2001) 909–914.

[18] R. Sharan, Personal communication, 2003.
[19] M. Stephens, N. Smith, P. Donnelly, A new statistical method for haplotype reconstruction from population data, Amer. J. Human Genetics 68

(2001) 978–989.
[20] Y. Xiang, S.K.M. Wong, N. Cercone, A “microscopic” study of minimum entropy search in learning decomposable markov networks,

Mach. Learn. 26 (1) (1997) 65–92.

