
Discrete Applied Mathematics 102 (2000) 223–243

Parallel machine scheduling with a common server

Nicholas G. Halla ; ∗, Chris N. Pottsb, Chelliah Sriskandarajahc
aDepartment of Management Sciences, The Ohio State University, 2100, Neil Avenue, Columbus,

OH 43210-1144, USA
bFaculty of Mathematical Studies, University of Southampton, High Field, Southampton, 5O9 5NH, UK

cSchool of Management, The University of Texas at Dallas, 2601 N. Floyd Road, Richardson,
TX 75083-06888, USA

Received 15 August 1997; revised 16 April 1999; accepted 28 June 1999

Abstract

This paper considers the nonpreemptive scheduling of a given set of jobs on several identi-
cal, parallel machines. Each job must be processed on one of the machines. Prior to process-
ing, a job must be loaded (setup) by a single server onto the relevant machine. The paper
considers a number of classical scheduling objectives in this environment, under a variety of
assumptions about setup and processing times. For each problem considered, the intention is
to provide either a polynomial- or pseudo-polynomial-time algorithm, or a proof of binary or
unary NP-completeness. The results provide a mapping of the computational complexity of these
problems. ? 2000 Elsevier Science B.V. All rights reserved.

MSC: 90B35

Keywords: Deterministic parallel machine scheduling; Common server; Polynomial-time
algorithm; NP-complete

1. Introduction

We consider a deterministic scheduling environment with m identical, parallel ma-
chines. Each of n given jobs must be processed nonpreemptively on one of the ma-
chines. The loading of a job on a machine, which we call a setup, is performed by
a single server, and cannot occur while the machine is processing a job. However,
machines can process jobs unattended. Therefore, having completed a setup, the server
is free to perform other setup operations. Simultaneous requests by machines for the
server will necessarily result in machine idle time.
In this environment, we consider a variety of possibilities for the setup time. Specif-

ically, this can require unit time for all jobs, or an equal but arbitrary time for all jobs,

∗ Corresponding author.
E-mail address: halln@cob.ohio-state.edu (N.G. Hall)

0166-218X/00/$ - see front matter ? 2000 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(99)00206 -1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82413922?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

224 N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243

or can vary between jobs. Problems with unit processing times, and with processing
times that vary between jobs, are analyzed. A variety of classical scheduling objec-
tives, including the minimization of makespan, maximum lateness, total completion
time, and the number of late jobs, as well as weighted versions of some of these, are
considered.
The type of server varies according to the production environment. The setup or

loading of a machine may be undertaken by a human operator. In modern manufacturing
systems, however, it would be usual for a robot or an automated guided vehicle (AGV)
to perform the setups. More generally, some resource such as a piece of equipment may
be required throughout the setup process. Each of these situations de�nes a scheduling
problem with a common server. The reasons for the use of only a single, common
server include cost, physical space limitations and the need to simplify the production
process.
Useful general references on machine scheduling include the works of Conway

et al. [3], and Baker [2]. Of particular relevance to our study is the machine in-
terference problem [1,27,28,35]. This problem involves �nding the optimal number of
machines to be assigned to a single operator, in order to minimize operator interference,
which occurs when several machines simultaneously request the operator’s services.
There have been numerous studies of robots [32] and AGVs [6] in di�erent schedul-

ing environments. Inaba and Sakakibara [15], Hartley [13], and Hull [14] discuss
several applications in which the use of robots has signi�cantly enhanced productiv-
ity. Wilhelm and Sarin [36] study the computational complexity of several robot-served
manufacturing environments. Hall et al. [10,11], Kamoun et al. [17] and
Sriskandarajah et al. [34] provide many theoretical results for scheduling in a robotic
cell, which is equivalent to a owshop with a single robot server and no intermediate
bu�ers.
Heuristics for parallel machine scheduling with a common server have been the

subject of four studies. Koulamas and Smith [20] propose a look ahead heuristic for
an environment with continuously arriving jobs. Koulamas [19] proposes a beam search
heuristic for a static environment with two machines. So far as we are aware, there is no
previous study of algorithmic and computational complexity issues in this environment.
Kravchenko and Werner [21] subsequently resolve the complexity of one open problem
from this paper, and discuss some related problems. Also in subsequent work, Glass
et al. [8] consider related models with parallel machines to which jobs are dedicated,
and provide algorithmic, complexity and heuristic analysis results.
Our objective is to provide a map of the computational complexity of these problems.

Thus, we attempt to provide an e�cient algorithm, or prove a computational complexity
result which shows that such an algorithm is unlikely to exist. Some of these results
are obtained by adapting the classical algorithms of Jackson [16], Smith [33], Lawler
[22–24], Moore [30], Emmons [5], Lawler and Moore [25] and Monma [29] to the
problem of scheduling the common server.
In Section 2, we describe our notation and classi�cation scheme, de�ne two useful

scheduling concepts, and provide an overview of the algorithmic and computational

N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243 225

complexity results in the paper. Section 3 analyzes the relationship between problems
with unit processing times and classical single-machine scheduling problems. Sections 4–8
describe the algorithmic and computational complexity results in detail, organized by
objective function. Finally, Section 9 contains some conclusions and suggestions for
future research.

2. Preliminaries

Here we summarize our notation and problem classi�cation scheme, de�ne the useful
concepts of active and list schedules, and provide an overview of the results in the
paper.

2.1. Notation and classi�cation

We begin with some notation. Let N = {1; : : : ; n} denote the set of jobs. There are
m identical parallel machines, and we let Mi denote the ith machine. Let pj denote
the processing time, dj the nonnegative due date, and wj the nonnegative weight (or
value), of job j for j ∈ N . Also, let sj denote the time for the server to perform a
setup for job j. No interruption in a setup or in the processsing of a job is allowed.
We assume throughout that all pj and sj are integer, for j ∈ N . In the derivation of
algorithms, we assume that pj¿1 and sj¿1, for j ∈ N . Some of the computational
complexity proofs in the paper allow pj = 0. However, this is permitted for clarity of
exposition only, and can be avoided by rescaling.
We also de�ne the following measures for each job j of any schedule �:

Cj(�) = the time at which job j is completed;

Lj(�) = Cj(�)− dj; the lateness of job j;

Uj(�) =
{
1 if job j is completed by its due date;
0 otherwise;

Tj(�) = max{Cj(�)− dj; 0}; the tardiness of job j:
Where no ambiguity arises, we simplify Cj(�) to Cj; Lj(�) to Lj; Uj(�) to Uj, and
Tj(�) to Tj.
The standard classi�cation scheme for scheduling problems [9] is �|�|, where �

indicates the scheduling environment, � describes the job characteristics or restrictive
requirements, and de�nes the objective function to be minimized. Our classi�cation
scheme is similar, but it also allows for the existence of a single server (S) in �. Thus,
� = Pm; S if there are a �xed number, m, of identical parallel machines; otherwise,
� = P; S indicates that the number of machines is arbitrary. Under �, we use pj = 1
to denote unit processing times, sj =1 to denote unit setup times, and sj = s to denote
that all setup times are equal to an arbitrary, positive integer s. The default assumption
is that processing and setup times are arbitrary.

226 N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243

The objective functions that we consider are as follows:

Cmax = max
j=1;:::; n

{Cj}; the latest completion time of any job; or the makespan;

Lmax = max
j=1;:::; n

{Cj − dj}; the maximum lateness of any job;

n∑
j=1

Cj = the total completion time of jobs;

n∑
j=1

wjCj = the total weighted completion time of jobs;

n∑
j=1

Uj = the number of jobs not completed by their due dates;

n∑
j=1

wjUj = the total weight of jobs not completed by their due dates;

n∑
j=1

Tj = the total tardiness of jobs;

n∑
j=1

wjTj = the total weighted tardiness of jobs:

2.2. Active and list schedules

We say that a schedule is active if, for a given sequence of jobs, it is not possible
to reduce the completion time of any job without increasing the completion time of
another job.
We will also make use of the following generic list scheduling algorithm.

Algorithm List
Initialization

Order the jobs in some sequence �.
Schedule construction

Execute the following for j = 1; : : : ; n.
Add job �(j) to form an active schedule.

In the Schedule Construction step, job �(j) is assigned to the �rst machine, Mi, to
become available. Moreover, if the server is free, the setup for �(j) starts when Mi
completes any previous processing; otherwise, the start of the setup is delayed until
the server becomes available.
We will make use of List at various points in the paper, with a variety of de�nitions

for �.

N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243 227

Table 1
The complexity of the problems

Objective m pj = 1 sj Complexity results

2 No 1 Binary NPC, Opena Theorem 4.1
Cmax 2 No s Unary NPC Theorem 4.2

Arb Yes Arb O(1) Theorem 4.3
2 No 1 Unary NPC Theorem 5.1

Lmax
Arb Yes Arb O(n log n) Theorem 5.2
2 No 1 O(n log n) Theorem 6.1
2 No s Unary NPC Theorem 6.2∑n

j=1
Cj Arb No Any Open

Arb Yes s O(1) Theorem 6.3
Arb Yes Arb O(n log n) Theorem 6.4
2 No 1 Binary NPC, Open Theorem 6.5∑n

j=1
wjCj

Arb Yes Arb O(n log n) Theorem 6.6
2 No 1 Unary NPC Corollary 7.1∑n

j=1
Uj Arb Yes s O(n) Table 2

Arb Yes Arb O(n log n) Table 2
Arb Yes s O(n log n) Table 2∑n

j=1
wjUj

Arbb Yes Arb Binary NPC, O(n
∑n

j=1
sj) Table 2

2 No 1 Unary NPC Corollary 8.1∑n
j=1

Tj Arb Yes s O(n log n) Table 3

Arbb Yes Arb Binary NPC, O(n4
∑n

j=1
sj) Table 3

Arb Yes s O(n3) Table 3∑n
j=1

wjTj
2 Yes Arb Unary NPC Table 3

aKravchenko and Werner [21] subsequently describe a pseudo-polynomial-time algorithm.
bBinary NPC even for m = 2.

2.3. Overview of the results

Table 1 presents the results of this paper. We use Unary (respectively, Binary) NPC
to indicate that the equivalent recognition version of a problem is NP-complete with
respect to a unary (resp., binary) encoding of the data. Related de�nitions can be found
in [7,31]. The second column indicates either a �xed number of machines, or the fact
that the number of machines is arbitrary (denoted by “Arb”). A “No” in the third
column indicates that processing times may vary between jobs, and a “Yes” indicates
that all processing times are one unit. A “1” in the fourth column shows that all setup
times are one unit, an “s” shows that all setup times are equal but their length may vary
with problem input, “Arb” shows that setup times are arbitrary, and “Any” indicates
all three of these possibilities. Included in each complexity result cell is a reference to
where a proof of that result can be found.
Note that a problem with unit setup times is a special case of the corresponding

problem with all setup times equal to a positive integer s, which in turn is a spe-
cial case of the corresponding problem with arbitrary setup times. When stating an
NP-completeness result, we assume that the corresponding result also holds for its

228 N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243

generalizations. Similarly, an algorithm for a more general problem is also applicable
to a special case.

3. Unit processing times

In this section, we provide links between problem P; S|pj = 1|, where is one
of the objective functions introduced in Section 2.1, and the corresponding classical
single-machine problem 1| |′. For problem 1| |′, we let N ′ = {1; : : : ; n′} denote the
set of jobs, and p′

j the processing time of job j for j ∈ N ′. Moreover, if applicable,
the due date and weight of job j, for j ∈ N ′, are denoted by d′j and w

′
j, respectively.

Theorem 3.1. Problem P; S|pj = 1| (respectively; P; S|pj = 1; sj = s|); where ∈
{Cmax;

∑n
j=1 Cj;

∑n
j=1 wjCj}; is equivalent to problem 1| |′ with n′ = n; and p′

j = sj
and (if applicable) w′

j=wj; for j=1; : : : ; n; (resp. 1|p′
j=p

′|′ with n′=n; and p′
j=p

′=s

and (if applicable) w′
j = wj; for j = 1; : : : ; n); where

′ ∈ {Cmax;
∑n′

j=1 Cj;
∑n′

j=1 w
′
jCj}.

Proof. Consider an active schedule for problem P; S|pj = 1| or P; S|pj = 1; sj = s|
in which the completion time of job j, for j ∈ N , is Cj. Since each set-up time is at
least as long as any processing time, the server forms a bottleneck and is continuously
busy throughout the interval [0;

∑n
j=1 sj]. Let C

′
j denote the completion time of the

set-up for job j, for j∈N . Note that C′
j is the completion time of job j in problem

1| |′ or 1|p′
j = p

′|′ for an active schedule in which the processing order for the
server de�nes the job sequence. Since Cj = C′

j + 1, minimizing maxj∈{1;:::; n}{Cj} is
equivalent to minimizing maxj∈{1;:::; n′}{C′

j}, and minimizing
∑n

j=1(wj)Cj is equivalent

to minimizing
∑n′

j=1(w
′
j)C

′
j .

Theorem 3.2. Problem P; S|pj = 1| (respectively; P; S|pj = 1; sj = s|); where ∈
{Lmax;

∑n
j=1Uj;

∑n
j=1 wjUj;

∑n
j=1 Tj;

∑n
j=1 wjTj}; is equivalent to problem 1| |′ with

n′ = n; and p′
j = sj; d

′
j = dj − 1 and (if applicable) w′

j = wj; for j = 1; : : : ; n; (resp.
1|p′

j = p
′|′with n′ = n); and p′

j = p
′ = s; d′j = dj − 1 and (if applicable) w′

j = wj;

for j=1; : : : ; n; where ′ ∈ {Lmax;
∑n′

j=1Uj;
∑n′

j=1 w
′
jUj;

∑n′

j=1 Tj;
∑n′

j=1 w
′
jTj}. Moreover;

the objective function values for the two problems are identical.

Proof. As in the proof of Theorem 3.1, there is a one-to-one correspondence between
active schedules for problems P; S|pj = 1| and 1| |′, and for problems P; S|pj = 1;
sj= s| and 1|p′

j=p
′|′. As before, Cj=C′

j+1, where Cj and C
′
j , respectively, denote

the completion times of job j in these two schedules. Since Cj − dj = C′
j − d′j, the

objective function values in the two problems are identical.

In view of Theorems 3.1 and 3.2, an algorithm for a classical problem 1| |′ or
1|p′

j=p
′|′ provides an algorithm with the same time complexity for the corresponding

problem P; S|pj=1| or P; S|pj=1; sj = s|. Similarly, a proof of NP-completeness of

N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243 229

the decision version of problem 1| |′ or 1|p′
j =p

′|′ implies that the decision version
of the corresponding problem P; S|pj=1| or P; S|pj=1; sj = s| is also NP-complete.
We use these observations extensively in the subsequent sections.

4. Makespan problems

We begin by showing that problem P2; S|sj = 1|Cmax is intractable.

Theorem 4.1. The recognition version of problem P2; S|sj = 1|Cmax is binary NP-
complete.

Proof. Consider the following problem which is known to be binary NP-complete.
Partition [7]: given r elements with integer sizes a1; : : : ; ar , does there exist a parti-

tion of the index set {1; : : : ; r} into subsets A1 and A2, such that
∑

i∈A1 ai =
∑

i∈A2 ai?
Given an arbitrary instance of Partition, consider the following instance of P2; S|sj=

1|Cmax:

n= r;

pj = 4naj; j = 1; : : : ; r;

C = 2n− 1 + 2n
r∑
j=1

aj;

where C is the threshold cost.
We now show that there exists a solution to the scheduling problem with Cmax6C

if and only if there exists a solution to Partition.
(⇒) If there exists a solution A1; A2 to Partition, then the jobs corresponding to

indices in A1 can be scheduled on machine M1, and the other jobs on machine M2.
The total processing time on each machine is 2n

∑n
j=1 aj. Note that no more than

n − 1 jobs are processed on either machine in an optimal schedule. Therefore, on
each machine, the total setup time is at most n− 1, and the possibility of one unit of
machine idle time due to the unavailability of the server occurs at most n − 1 times.
Thus, Cmax62n

∑n
j=1 aj + (n− 1) + (n− 1)¡C.

(⇐) Since the processing time of each job is a multiple of 4n, the non-existence
of a solution to Partition implies that the sum of processing times on one machine
must be at least 4n(

∑n
j=1 aj=2 + 1=2)¿C. Therefore, if there exists a solution to the

scheduling problem with Cmax6C, then there exists a solution to Partition.

The pseudo-polynomial-time solvability of this problem is discussed in Section 9.

Theorem 4.2. The recognition version of problem P2; S|sj = s|Cmax is unary NP-
complete.

230 N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243

Proof. Consider the following problem, which is known to be unary NP-complete.
Numerical Matching with Target Sums [7]: given three sets X = {x1; : : : ; xr}; Y =
{y1; : : : ; yr} and Z={z1; : : : ; zr} of positive integers, where

∑r
i=1 zi=

∑r
i=1 xi+

∑r
i=1 yi,

do there exist permutations (j1; : : : ; jr) and (k1; : : : ; kr) of the indices 1; : : : ; r such that
zi = xji + yki for i = 1; : : : ; r?
We assume as part of this de�nition that r is even, and that if there does exist a

solution to Numerical Matching with Target Sums, then the jobs are indexed such that
zi = xi + yi for i = 1; : : : ; r.
Given an arbitrary instance of Numerical Matching with Target Sums, consider the

following instance of P2; S|sj = s|Cmax:
n= 3r + 1;
sj = K2; pj = K + xj; j = 1; : : : ; r;
sj = K2; pj = 2K + yj−r ; j = r + 1; : : : ; 2r;
sj = K2; pj = 3K2 + 3K + zj−2r ; j = 2r + 1; : : : ; 3r;
sj = K2; pj = 0; j = 3r + 1;

C = (3r + 1)K2 + 3rK +
r∑
j=1

zj;

where K =
∑r

j=1(xj + yj + zj) + 1.
We now show that there exists a solution to this instance of the scheduling problem

with Cmax6C if and only if there exists a solution to Numerical Matching with Target
Sums.
(⇒) Consider the schedule in Fig. 1, where setup times and processing times are

shown for each job, and machine M1 is idle in the interval [0; K2]. While one machine
processes job 2r + j, for j = 1; : : : ; r − 1, the other machine performs a setup and
processing for jobs j and r + j and performs a setup for job 2r + j+ 1. Thus, Cmax =
s2r+1 +

∑3r
j=2r+1 pj6C.

(⇐) We note that either machine M1 or machine M2 must begin with K2 units of idle
time. Adding this unavoidable idle time to all the setup and processing times of jobs
gives a total time of (3r+1)K2+3rK2+6rK+

∑r
j=1 xj+

∑r
j=1 yj+

∑r
j=1 zj+K

2=2C.
Since there are only two machines, it follows that the only idle time possible in a
schedule with Cmax6C is the unavoidable idle time in the interval [0; K2] on one
machine.
The simultaneous processing of jobs i; j ∈ {1; : : : ; 2r} is impossible, since the server

would be needed for setups of both jobs i and j at the same time. Similarly, a setup
cannot overlap with the processing of job i ∈ {1; : : : ; 2r} on the other machine, because
the server would be needed for the setup either of job i or of the job that is processed
on the same machine immediately after i.
Thus, during all processing of jobs in {1; : : : ; 2r} on one machine, and during all

setups, the other machine must be processing jobs in {2r+1; : : : ; 3r}. Note that C can be
viewed as a setup time of (3r+1)K2, plus a remaining time of 3rK+

∑r
i=1 xi+

∑r
i=1 yi,

which is equal to the total processing time of jobs in {1; : : : ; 2r}. Since a pair of jobs
in {1; : : : ; 2r} cannot be processed simultaneously, it follows that, whenever a setup is

N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243 231

not being performed, a job in {1; : : : ; 2r} must be in process. Thus, any simultaneous
processing of two jobs in {2r + 1; : : : ; 3r} implies that Cmax¿C.
Since the total processing time of jobs in {2r + 1; : : : ; 3r} is C − K2, these jobs

must be scheduled so that the �rst starts processing immediately after its setup at
time K2, while each subsequent job starts processing immediately upon completion
of the previous one. Assume without loss of generality that some job k, where k ∈
{2r + 1; : : : ; 3r}, is processed �rst on M2 and completes at time 4K2 + 3K + zk−2r .
On M1, the �rst setup of some job in N \ {2r + 1; : : : ; 3r} starts at time K2, and a
setup starts at time 3K2 + 3K + zk−2r to allow another job in {2r + 1; : : : ; 3r} to start
processing upon completion of job k.
Therefore, in a schedule with Cmax6C, the interval [K2; 3K2+3K+zk−2r] is exactly

�lled with setups and processing for jobs in {1; : : : ; 2r}. This time interval is too short
for setups of three or more jobs, or for the setup and processing of two jobs in
{r + 1; : : : ; 2r}. Moreover, a single job in {1; : : : ; 2r} by itself or combined with job
3r + 1, or two jobs in {1; : : : ; r}, cannot exactly �ll the interval. Therefore, some jobs
i and j, where i ∈ {1; : : : ; r} and j ∈ {r+1; : : : ; 2r}, are scheduled in [K2; 3K2 + 3K +
zk−2r]. For this interval to be exactly �lled, xi + yj−r = zk−2r . Repeating this argument
for each group of three jobs shows that the existence of a schedule with Cmax6C
implies the existence of a solution to Numerical Matching with Target Sums.

We now turn our attention to unit processing time problems.

Theorem 4.3. Problem P; S|pj =1|Cmax can be solved optimally in constant time by
scheduling the setup and processing for job j in the interval [

∑j−1
i=1 si;

∑j
i=1 si+1] on

machine M1 if j is odd; or on machine M2 if j is even; for j = 1; : : : ; n.

Proof. From the total workload of the server and the one unit of processing that occurs
after all setups are complete, we deduce a lower bound on the makespan of

∑n
j=1 sj+1.

Since the constructed schedule achieves this lower bound, it is optimal.

5. Maximum lateness problems

As in the previous section, we start our analysis by considering problems with arbi-
trary processing times.

Theorem 5.1. The recognition version of problem P2; S|sj = 1|Lmax is unary NP-
complete.

Proof. Consider the following problem which is known to be unary NP-complete.
3-Partition [7]: given 3r elements with integer sizes a1; : : : ; a3r , where

∑3r
i=1 ai= ry,

and y=4¡ai ¡y=2 for i=1; : : : ; 3r, does there exist a partition Q1; : : : ; Qr of the index
set {1; : : : ; 3r} such that |Qj|= 3 and

∑
i∈Qj ai = y for j = 1; : : : ; r?

232 N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243

As part of this de�nition, we assume that, if there does exist a solution to 3-partition,
then the elements are numbered such that a3j−2 + a3j−1 + a3j = y for j = 1; : : : ; r.
Given an arbitrary instance of 3-Partition, consider the following instance of P2; S|sj=

1|Lmax:
n= r(2y + 1) + 1;
pj = 2aj; dj = r(2y + 1); j = 1; : : : ; 3r;
pj = 1; dj = k(2y + 1) + 1; j = 3r + k; k = 1; : : : ; r;
pj = 0; dj = k(2y + 1); j = 4r + (k − 1)(2y − 3) + 1; : : : ; 4r + k(2y − 3);
k = 1; : : : ; r;

pj = 0; dj = r(2y + 1) + 1; j = r(2y + 1) + 1;
C = 0:

Let J1 = {1; : : : ; 3r}; J2 = {3r+1; : : : ; 4r} and J3 = {4r+1; : : : ; r(2y+1)}. Also, we
refer to a job of J3 that has due date k(2y + 1) as being of type k, for k = 1; : : : ; r.
We now show that there exists a solution to this instance of the scheduling problem
with Lmax60 if and only if there exists a solution to 3-Partition.
(⇒) Consider the following schedule, illustrated in Fig. 2, where job numbers are

shown, and where machine M1 is idle throughout the interval [0; 1].
M1: (4r + 1; : : : ; 4r + 2a1 − 1; 2; 4r + 2a1 + 2a2 − 1; : : : ; 4r + 2a1 + 2a2 + 2a3 − 3;

3r + 1; : : : ; 4r + (r − 1)(2y − 3) + 1; : : : ; 4r + (r − 1)(2y − 3)
+2a3r−2 − 1; 3r − 1; 4r + (r − 1)(2y − 3) + 2a3r−2 + 2a3r−1 − 1; : : : ; 4r
+(r − 1)(2y − 3) + 2a3r−2 + 2a3r−1 + 2a3r − 3; 4r):

M2: (1; 4r + 2a1; : : : ; 4r + 2a1 + 2a2 − 2; 3; : : : ; 3r − 2; 4r + (r − 1)(2y − 3)
+2a3r−2; : : : ; 4r + (r − 1)(2y − 3) + 2a3r−2 + 2a3r−1 − 2; 3r; r(2y + 1) + 1):

Job 2 is scheduled so that its setup is in parallel with the last unit of processing
of job 1. Similarly, the setup for job 3 occurs during the last unit of processing of
job 2. The 2y − 3 jobs of J3 which are of type 1 are setup while jobs 1, 2 and 3
are processed. Also, job 3r + 1 is setup in parallel with the last unit of processing of
job 3. This pattern repeats for each group of three jobs of J1. Moreover, each job is
completed either at or before its due date; therefore, Lmax = 0.
(⇐) We note that there is unavoidable idle time in the interval [0; 1] on one

machine. The total of this idle time and all job processing and setup time is (2ry
+ r +1)+ (2ry+ r) + 1= 4ry+2r +2. Since there are two machines, a lower bound
on the maximum completion time is therefore 2ry + r + 1 = maxj=1;:::; n{dj}. Thus, a
schedule with Lmax60 has no idle time on either machine after time 1.
Jobs 4r and 2ry+ r+1 must be scheduled last, since any other jobs in last position

would be completed after their due dates. Since the total setup time of all jobs is
equal to 2ry + r + 1, the server can have no idle time in a schedule with Lmax60. It
follows that, throughout the processing of each job of J1, the server must be performing
setups. Moreover, the setups that are performed in parallel with the �rst 2aj − 1 units
of processing of each such job j correspond to jobs with zero processing times, while
the setup which is in parallel with the �nal unit of processing is for a job with a
strictly positive processing time, or else machine idle time results. Thus, all jobs of J3

N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243 233

234 N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243

must be setup in parallel with the processing of jobs of J1, but not during their last
unit of processing.
Within the time interval [0; 2y+1], the 2y−3 type 1 jobs of J3 are setup in parallel

with the processing of some jobs of J1. Since the processing time of each of these jobs
is less than y and the last unit of processing time is not performed in parallel with one
of these setups, at least three jobs of J1 with total processing time at least 2y are required.
Furthermore, since d3r+1 = 2y+ 2, job 3r + 1 must be setup by time 2y+ 1. Thus, in
the interval [0; 2y+1], there is one unit of unavoidable machine idle time, three setups
and 2y units of processing for jobs in J1, the setup of 2y − 3 type 1 jobs in J3, and
the setup of job 3r+1, the total time for which is 1+(3+2y)+(2y−3)+1=4y+2.
Thus, no further setup or processing operations are possible in the interval [0; 2y+1],
so job 3r + 1 must be processed in the interval [2y + 1; 2y + 2]. Since the server is
always busy, there is also a setup in [2y + 1; 2y + 2]. It follows that the processing
of the three jobs in {1; : : : ; 3r} which are processed in [0; 2y + 1] does not continue
after time 2y+1. Thus, the processing times of these three jobs sum to exactly 2y. A
similar argument for each subsequent time interval of length 2y+1 shows that Lmax60
implies the existence of a solution to 3-Partition.

We now consider problems with unit processing times. The EDD sequence in which
jobs appear in nondecreasing order of their due dates is useful in this analysis.

Theorem 5.2. Problem P; S|pj = 1|Lmax can be solved optimally in O(n log n) time;
by using List; with � denoting an EDD sequence of the jobs.

Proof. Theorem 3.2 shows that problem P; S|pj = 1|Lmax is equivalent to problem
1| |Lmax with n′=n, and p′

j=sj and d
′
j=dj−1, for j=1; : : : ; n. Jackson [16] shows that

an optimal solution of problem 1| |Lmax is obtained in O(n′ log n′) time by sequencing
the jobs in EDD order.

6. Total completion time problems

We begin by considering problems with arbitrary processing times. For problem
P2; S|sj = 1|

∑n
j=1 Cj, we propose an algorithm, SPT, which is simply List with

� denoting an SPT sequence in which jobs appear in nondecreasing order of their
processing times.

Theorem 6.1. Algorithm SPT solves problem P2; S|sj = 1|∑n
j=1 Cj optimally in

O(n log n) time.

Proof. We note that, in any schedule, there is unavoidable idle time in the interval
[0; 1] on one of the machines. We therefore assume, without loss of generality, that
machine M2 becomes available at time 1. From the SPT ordering, the schedule on
machine M1 is longer than that on machine M2 immediately after the scheduling of

N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243 235

job �(1) by Algorithm SPT. Similarly, the schedule on M2 is longer than that on M1
immediately after job �(2) has been scheduled. The same argument can be applied
to each machine alternately, i.e., after job �(3) on M1, after job �(4) on M2, and
so on. It follows that the completion times of any two jobs scheduled by SPT do
not coincide, and consequently no server interference (when two or more machines
simultaneously need the server) occurs. Thus, machine idle time never occurs after
time 1. Consequently, the total completion time of the solution delivered by SPT is
the same as in an instance of the classical scheduling problem P2| |∑n′

j=1 Cj with
n′= n and processing times de�ned by p′

j =pj +1 for j=1; : : : ; n, where machine M2
again becomes available at time 1. The latter problem is a relaxation of the problem
being considered, since server interference is not considered there. Since SPT generates
an optimal schedule for P2| |∑n′

j=1 Cj [3], it also generates an optimal schedule for
problem P2; S|sj=1|

∑n
j=1 Cj. The dominant time requirement is for ordering the jobs

by SPT, which takes O(n log n) time.

Algorithm SPT does not generalize to give an optimal solution for problem Pm; S|sj=
1|∑n

j=1 Cj, for m¿ 2. The complexity of this problem remains open.
We next consider a more general problem.

Theorem 6.2. The recognition version of problem P2; S|sj = s|∑n
j=1 Cj is unary

NP-complete.

Proof. We use a reduction from Numerical Matching with Target Sums, as de�ned
in the proof of Theorem 4.2. Given an arbitrary instance of Numerical Matching with
Target Sums, consider the following instance of P2; S|sj = s|

∑n
j=1 Cj:

n= 2K3 + 3r;
sj = K2; pj = K + xj; j = 1; : : : ; r;
sj = K2; pj = 2K + yj−r ; j = r + 1; : : : ; 2r;
sj = K2; pj = 3K2 + 3K + zj−2r ; j = 2r + 1; : : : ; 3r;
sj = K2; pj = K6 − K2; j = 3r + 1; : : : ; 3r + 2K3;
C = C′ + C′′;

where K =
∑r

j=1 (xj + yj + zj) + 20r
2; b =

∑r
j=1 (xj + yj + zj); C

′ = r=2[(4K2 + 3K
+b)+(5K2 +4K +b)+(6K2 +6K +b)]+3(6K2 +6K)[1+ · · ·+(r=2−1)]+ r=2[(2K2
+K + b)+ (3K2 + 3K + b)+ (7K2 + 6K + b)] + 3(6K2 + 6K)[1+ · · ·+ (r=2− 1)], and
C′′ = K9(K3 + 1) + K3[(r=2)(6K2 + 6K) + b=2] + K3[(r=2)(6K2 + 6K) + b=2 + K2].
We now show that there exists a schedule for the constructed instance of P2; S|sj=

s|∑n
j=1 Cj with

∑n
j=1 Cj6C if and only if there exists a solution to Numerical Match-

ing with Target Sums.
(⇒) Note that jobs 1; : : : ; 3r are identical to those used in the proof of Theorem 4.2.

Therefore, consider a schedule similar to that shown in Fig. 1, where jobs 3r
+1; : : : ; 3r+2K3 follow the others, with K3 of them being processed on each machine.
Further, no idle time will occur following the completion of jobs 1; : : : ; 3r. To obtain

236 N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243

an upper bound on
∑n

j=1 Cj, we replace the contribution to Cj that involves a sum
of the elements of Numerical Matching with Target Sums, for j ∈ {1; : : : ; 3r}, by its
upper bound b. The setups for jobs of {3r + 1; : : : ; 3r + 2K2} start on M1 and M2 at
times (r=2)(6K2 + 6K) + b=2 + K2 and (r=2)(6K2 + 6K) + b=2, respectively. A simple
computation therefore shows that

∑n
j=1 Cj6C =C

′ +C′′, where C′ and C′′ represent
the contributions of jobs 1; : : : ; 3r and 3r + 1; : : : ; 3r + 2K2, respectively.
(⇐) First, we show that, in any schedule with ∑n

j=1 Cj6C, jobs 1; : : : ; 3r are each
completed before the long jobs 3r + 1; : : : ; 3r + 2K3. It is useful for this analysis to
derive upper bounds on C′ and C′′. By noting that b¡K , we obtain

C′¡ 9rK2(1 + r)=2 + rK(9r + 11)=2¡ 9rK2(1 + r)=2 + K2¡K3; (1)

and also using K ¡K2 we deduce that

C′′¡K9(K3 + 1) + K3(12rK2 + 2K2)¡K9(K3 + 1) + K6 − K3: (2)

Consider any schedule in which one or more of the jobs 1; : : : ; 3r is completed after a
long job and therefore has a completion time of at least K6. To obtain a lower bound
on the total completion time of the long jobs, we schedule K3 jobs on each machine
with completion times at least K6; 2K6; : : : ; K9. Thus, the total completion time of this
schedule is bounded by

n∑
j=1

Cj ¿K9(K3 + 1) + K6¿C;

where the last inequality is obtained from (1) and (2). It follows that, on each machine,
no long job is scheduled before any of the jobs 1; : : : ; 3r.
We now show that, apart from during the interval [0; K2], there is no machine

idle time before the long jobs are processed. We derive a lower bound on the total
completion time of an optimal schedule by using a relaxation which allow setups on
both machines to be performed simultaneously. Algorithm SPT generates an optimal
schedule for this relaxed problem in which no long job is scheduled to start before one
of the jobs 1; : : : ; 3r. Note that half of the long jobs are scheduled on each machine. If
processing of the long jobs starts on M1 and M2 at times t1 and t2, respectively, then
a lower bound from the completion times of the long jobs is

n∑
j=1

Cj¿K9(K3 + 1) + K3(t1 + t2);

from which we use (1) and the de�nition of C′′ to deduce that
n∑
j=1

Cj − C¿K3(t1 + t2 − r(6K2 + 6K)− b− K2 − 1): (3)

Since the total setup and processing time of jobs 1; : : : ; 3r is r(6K2 + 6K) + b, and
the unavoidable machine idle time is K2, we have t1 + t2¿r(6K2 + 6K) + b + K2.
Moreover, if there is inserted idle time, then since t1 + t2 is integer, t1 + t2¿r(6K2

+6K)+b+K2+1, and thus from (3) we have
∑n

j=1 Cj ¿C. Therefore, in any schedule

N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243 237

with
∑n

j=1 Cj6C, jobs 1; : : : ; 3r are scheduled without machine idle time (except in
the interval [0; K2]) and none is preceded by a long job on the same machine.
We now show that the schedule for jobs 1; : : : ; 3r is of the form shown in

Fig. 1. Consider the allocation of jobs 1; : : : ; 3r between machines M1 and M2. Pro-
vided that there is no machine idle time, the total completion time of the long jobs
is equal to C′′, and is not a�ected by this allocation. Any schedule that starts with
some job j, for j ∈ {1; : : : ; 2r}, will have machine idle time because the server is
required throughout the interval [K2; 2K2] for a setup on the other machine. Thus, all
jobs are completed after time 2K2. Also, the completion of two jobs within an interval
[hK2; (h + 1)K2), for h = 2; : : : ; 3r + 1, causes idle time because of the simultaneous
requirement for the server to setup the two following jobs. Thus, 2K2; : : : ; (3r + 1)K2

are lower bounds on the completion times of the �rst 3r jobs. If there is some interval
[hK2; (h + 1)K2), where h ∈ {2; : : : ; 3r + 1}, within which no job is completed, then
lower bounds on the completion times of the �rst 3r jobs are 2K2; : : : ; 3rK2; (3r+2)K2.
Thus,

∑n
j=1 Cj − C′′¿9rK2(1 + r)=2 + K2¿C′ using (1). Therefore, in a schedule

with
∑n

j=1 Cj6C, one of the jobs 1; : : : ; 3r is completed in each of the intervals
[hK2; (h+ 1)K2), for h= 2; : : : ; 3r + 1.
As observed above, neither any of the jobs 1; : : : ; 2r, nor a long job, can be processed

�rst. Thus, some job k ∈ {2r + 1; : : : ; 3r} is processed �rst, for example on M2. Then
the �rst two jobs processed on M1 are i and j, where each is chosen from the subset
{1; : : : ; 2r}, since completion of jobs in each of the intervals [2K2; 3K2) and [3K2; 4K2)
is impossible for any other choice. Moreover, the third job processed on M1 is from
the subset {2r+1; : : : ; 3r}, since otherwise one of the jobs 1; : : : ; 2r would be processed
and two jobs would complete in the interval [4K2; 5K2), causing server interference
and thus idle time. A similar argument is used for the other groups of three jobs. Thus,
while each job from {2r +1; : : : ; 3r} is processed, two jobs from {1; : : : ; 2r} are setup
and processed, and there is an additional setup for a later job.
Finally, we show that pi+pj=3K+zk−2r . If pi+pj ¿ 3K+zk−2r , then machine idle

time results from the simultaneous requirement on both machines for the server at time
4K2 +3K + zk−2r . On the other hand, if pi+pj ¡ 3K + zk−2r , then from the de�nition
of Numerical Matching with Target Sums there exist some subsequent jobs i′, j′ and
k ′, which are de�ned analogously to i, j and k, for which pi′ + pj′ ¿ 3K + zk′ , and
machine idle time results. Therefore pi +pj =3K + zk−2r , from which we deduce that
i ∈ {1; : : : ; r} and j ∈ {r + 1; : : : ; 2r}, or vice versa. Thus, xi + yj−r = zk−2r . Applying
the same argument to each subsequent group of three jobs, we obtain a solution to
Numerical Matching with Target Sums.

We now consider unit processing time problems with
∑n

j=1 Cj objective.

Theorem 6.3. Problem P; S|pj=1; sj=s|
∑n

j=1 Cj can be solved optimally in constant
time by scheduling the setup and processing for job j in the interval [(j− 1)s; js+1]
on machine M1 if j is odd; or on M2 if j is even; for j = 1; : : : ; n.

238 N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243

Proof. Theorem 3.1 shows that problem P; S|pj = 1; sj = s|
∑n

j=1 Cj is equivalent

to problem 1|p′
j = p

′|∑n′

j=1 Cj with n
′ = n and p′

j = p
′ = s for j = 1; : : : ; n. Since

all jobs are identical, an optimal solution for problem 1|p′
j = p

′|∑n′

j=1 Cj schedules
job j in the interval [(j − 1)p′; jp′], which provides the desired schedule for problem
P; S|pj = 1; sj = s|

∑n
j=1 Cj.

Theorem 6.4. Problem P; S|pj = 1|
∑n

j=1 Cj can be solved optimally in O(n log n)
time by using List, with � denoting a nondecreasing setup time ordering of the jobs.

Proof. Theorem 3.1 shows that problem P; S|pj=1|
∑n

j=1 Cj is equivalent to problem

1| |∑n′

j=1 Cj with n
′= n, and p′

j= sj for j=1; : : : ; n. Smith [33] shows that an optimal

solution of problem 1| |∑n′

j=1 Cj is obtained in O(n
′ log n′) time by sequencing the

jobs in nondecreasing processing time order.

Turning now to problems with weighted sum of completion times objective, or∑n
j=1 wjCj, we begin with a negative result.

Theorem 6.5. The recognition version of problem P2; S|sj = 1|
∑n

j=1 wjCj is binary
NP-complete.

Proof. Consider the following classical scheduling problem which is known to be
binary NP-complete.
P2| |∑n′

j=1 w
′
jCj [26]: given n

′ jobs, each job j having processing time p′
j and pos-

itive weight w′
j, and an integer C

′, does there exist a nonpreemptive two machine

schedule for which
∑n′

j=1 w
′
jCj6C

′?

Given an arbitrary instance of P2| |∑n′

j=1 w
′
jCj, consider the following instance of

P2; S|sj = 1|
∑n

j=1 wjCj:

n= n′;

pj = n′

 n′∑
i=1

w′
i

p′

j − 1; j = 1; : : : ; n;

wj = w′
j; j = 1; : : : ; n;

C = n′(C′ + 1)
n′∑
j=1

w′
j − 1:

We now show that there exists a schedule for this instance of P2; S|sj=1|
∑n

j=1 wjCj
with

∑n
j=1 wjCj6C if and only if there exists a schedule for the instance of

P2| |∑n′

j=1 w
′
jCj with

∑n′

j=1 w
′
jCj6C

′.

(⇒) Any schedule for P2| |∑n′

j=1 wjCj with
∑n′

j=1 wjCj6C
′ can be used to create a

schedule for P2; S|sj=1|
∑n

j=1 wjCj by �rst multiplying all processing and completion

times by n′
∑n′

j=1 w
′
j and then changing the �rst unit of processing time into a setup

N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243 239

time. When there are simultaneous requests for the server, one unit of idle time is
inserted on one of the machines. Since at most n′ − 1 units of idle time are inserted,
we obtain

∑n
j=1 wjCj6n

′C′ ∑n′

j=1 w
′
j+(n

′−1)∑n
j=1 w

′
j6n

′(C′+1)
∑n′

j=1 w
′
j−1=C.

(⇐) Consider a schedule for P2; S|sj=1|
∑n

j=1 wjCj with
∑n

j=1 wjCj6C. To con-

struct a schedule for P2| |∑n′

j=1 wjCj, �rst regard each of the setup times as part of the
processing time, and remove all idle time from the schedule. Then divide all processing
and completion times by n′

∑n′

j=1 w
′
j. Since by assumption p

′
j is integer for j=1; : : : ; n

′,

this yields a schedule for P2| |∑n′

j=1 w
′
jCj with

∑n′

j=1 w
′
jCj6bC=(n′ ∑n′

j=1 w
′
j)c= b(C′

+ 1)− 1=n′ ∑n′

j=1 w
′
jc= C′.

This problem remains open as to unary NP-completeness. However, the assumption
of unit processing times makes problems with this objective much more tractable.

Theorem 6.6. Problem P; S|pj = 1|
∑n

j=1 wjCj can be solved optimally in O(n log n)
time by using List; with � denoting a nondecreasing sj=wj ordering of the jobs.

Proof. Theorem 3.1 shows that problem P; S|pj=1|
∑n

j=1 wjCj is equivalent to prob-

lem 1| |∑n′

j=1 w
′
jCj with n

′ = n, and p′
j = sj and w

′
j = wj, for j = 1; : : : ; n. Smith [33]

shows that an optimal solution of problem 1| |∑n′

j=1 w
′
jCj is obtained in O(n

′ log n′)
time by sequencing the jobs in nondecreasing p′

j=w
′
j order.

7. Number of late jobs problems

We begin with a negative result.

Corollary 7.1. The recognition version of problem P2; S|sj = 1|
∑n

j=1 Uj is unary
NP-complete.

Proof. The recognition versions of problems P2; S|sj = 1|
∑n

j=1 Uj and P2; S|sj =
1|Lmax with threshold costs of zero in both cases are equivalent. Since Theorem 5.1
shows that this recognition version of problem P2; S|sj=1|Lmax is unary NP-complete,
it follows that this recognition version of problem P2; S|sj =1|

∑n
j=1 Uj is also unary

NP-complete.

For problems of minimizing the (weighted) number of late jobs with unit processing
times, we deduce polynomial time algorithms and NP-completeness results from The-
orem 3.2. Speci�cally, by setting n′ = n; d′j = dj − 1 and w′

j = wj for j = 1; : : : ; n, we
obtain that problem P; S|pj = 1|

∑
(wj)Uj is equivalent to problem 1| |∑(w′

j)Uj with
p′
j = sj for j=1; : : : ; n, and that problem P; S|pj =1; sj = s|

∑
(wj)Uj is equivalent to

problem 1|p′
j = p

′|∑(w′
j)Uj with p

′
j = p

′ = s for j = 1; : : : ; n. The complexity results
which follow from this discussion appear in Table 2.

240 N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243

Table 2
Equivalence results for number of late jobs problems

Common Equivalent Reference Complexity Complexity
server classical to classical of classical of common
problem problem result problem server problem

P; S|pj = 1; sj = s|
∑n

j=1
Uj 1|p′

j = p
′|
∑n′

j=1
Uj Monma [29] O(n′) O(n)

P; S|pj = 1|
∑n

j=1
Uj 1| |

∑n′
j=1

Uj Moore [30] O(n′ log n′) O(n log n)

P; S|pj = 1; sj = s|
∑n

j=1
wjUj 1|p′

j = p
′|
∑n′

j=1
w′
jUj Lawler [23] O(n′ log n′) O(n log n)

P; S|pj = 1|
∑n

j=1
wjUj 1| |

∑n′
j=1

w′
jUj Karp [18] Binary NPC Binary NPC

Lawler and

Moore [25] O(n′
∑n′

j=1
p′
j) O(n

∑n
j=1

sj)

Table 3
Equivalence results for total tardiness problems

Common Equivalent Reference Complexity Complexity
server classical to classical of classical of common
problem problem result problem server problem

P; S|pj = 1; sj = s|
∑n

j=1
Tj 1|p′

j = p
′|
∑n′

j=1
Tj Emmons [5] O(n′ log n′) O(n log n)

P; S|pj = 1|
∑n

j=1
Tj 1| |

∑n′
j=1

Tj Du and

Leung [4] Binary NPC Binary NPC

Lawler [24] O(n′4
∑n′

j=1
p′
j) O(n4

∑n
j=1

sj)

P; S|pj = 1; sj = s|
∑n

j=1
wjTj 1|p′

j = p
′|
∑n′

j=1
w′
jTj Lawler [22] O(n′3) O(n3)

P; S|pj = 1|
∑n

j=1
wjTj 1| |

∑n′
j=1

w′
jTj Lawler [24] Unary NPC Unary NPC

8. Total tardiness problems

We begin with a negative result.

Corollary 8.1. The recognition version of problem P2; S|sj = 1|
∑n

j=1 Tj is unary
NP-complete.

Proof. The recognition versions of problems P2; S|sj=1|
∑n

j=1 Tj and P2; S|sj=1|Lmax
with threshold costs of zero in both cases are equivalent. Since Theorem 5.1 shows
that this recognition version of problem P2; S|sj = 1|Lmax is unary NP-complete, it
follows that this recognition version of problem P2; S|sj = 1|

∑n
j=1 Tj is also unary

NP-complete.

For the problems of minimizing the total (weighted) tardiness with unit processing
times, we use Theorem 3.2 in the same way as in Section 7. This analysis provides
the complexity results that appear in Table 3.

N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243 241

9. Concluding remarks

In this paper, we describe a number of results which map the computational complex-
ity of scheduling problems in a parallel machine environment with a common server.
The type of server will vary among production settings to which our models can be
applied. The server could, for example, be a human operator or a piece of equipment
used to initialize jobs.
One important application of these scheduling models occurs in modern manufactur-

ing systems, where the common server is a robot. With the increasing use of automated
material handling systems in manufacturing, it seems certain that robots will continue to
play an important part in the design of e�cient scheduling systems. Related works by
Hall et al. [10,11], Kamoun et al. [17] and Sriskandarajah et al. [34] resolve a number
of algorithmic, computational complexity, and practical, issues arising in robotic cells.
Hall and Sriskandarajah [12] review related scheduling issues in no-wait and bu�erless
environments. In the present paper, the server performs setups in a classical parallel
machine shop.
In subsequent work, Kravchenko and Werner [21] describe an O(n

∑n
j=1 pj) time

algorithm for problem P2; S|sj = 1|Cmax. Thus, the only remaining problems with
completely open complexity in the environment discussed here are P; S| |∑n

j=1 Cj and
its special cases with sj=1 and sj= s. In addition, problem P2; S|sj=1|

∑n
j=1 wjCj is

known to be binary NP-complete in its recognition form, but is open with respect to
pseudo-polynomial time solvability. There are also other topics worthy of consideration.
These include the computational complexity of scheduling problems with a common
server in owshop, jobshop and openshop environments. The owshop environment
di�ers from the robotic cell mentioned above, in that intermediate bu�ers may exist
between the machines in a owshop. In each of these environments, more general
problems involving the use of two or more servers may also be studied.

Acknowledgements

This research was supported in part by NATO Collaborative Research Grant CRG
950773, by the Summer Fellowship Program (Fisher College of Business, The Ohio
State University), by INTAS (Projects INTAS-93-257 and INTAS-93-257-Ext), and by
Natural Sciences and Engineering Research Council of Canada (Grant no. OGP0104900).
An anonymous referee provided helpful comments on an earlier draft of this paper.

References

[1] J.E. Aronson, Two heuristics for the deterministic, single operator, multiple machine, multiple run cyclic
scheduling problem, J. Oper. Management 4 (1984) 159–173.

[2] K.R. Baker, Introduction to Sequencing and Scheduling, Wiley, New York, 1974.
[3] R.W. Conway, W.L. Maxwell, L.W. Miller, Theory of Scheduling, Addison-Wesley, Reading, MA,

1967.

242 N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243

[4] J. Du, J.Y.-T. Leung, Minimizing total tardiness on one machine is NP-hard, Math. Oper. Res. 15
(1990) 483–495.

[5] H. Emmons, One-machine sequencing to minimize certain functions of job tardiness, Oper. Res. 17
(1969) 701–715.

[6] T. Ganesharajah, N.G. Hall, C. Sriskandarajah, Design and operational issues in AGV-served
manufacturing systems, Ann. Oper. Res. 76 (1998) 109–154.

[7] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
W.H. Freeman & Company, San Francisco, 1979.

[8] C.A. Glass, Y.M. Shafransky, V.A. Strusevich, Scheduling for parallel dedicated machines with a single
server, Working Paper OR86, Faculty of Mathematical Studies, University of Southampton, UK, 1996.

[9] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and approximation in
deterministic machine scheduling: a survey, Ann. Discrete Math. 5 (1979) 287–326.

[10] N.G. Hall, H. Kamoun, C. Sriskandarajah, Scheduling in robotic cells: classi�cation, two and three
machine cells, Oper. Res. 45 (1997) 421–439.

[11] N.G. Hall, H. Kamoun, C. Sriskandarajah, Scheduling in robotic cells: complexity and steady state
analysis, European J. Oper. Res. 109 (1998) 43–65.

[12] N.G. Hall, C. Sriskandarajah, A survey of machine scheduling problems with blocking and no-wait in
process, Oper. Res. 44 (1996) 510–525.

[13] J. Hartley, Robots at Work, North-Holland, Amsterdam, 1983.
[14] G.M. Hull, Case study of the design and installation of a robot-loaded machining cell, Proceedings of

the Fourth International Conference on Flexible Manufacturing Systems, 1985.
[15] H. Inaba, S. Sakakibara, Flexible automation — unmanned machining and assembly cells with robots,

Proceedings of the First International Conference on Flexible Manufacturing Systems, 1982.
[16] J.R. Jackson, Scheduling a production line to minimize maximum tardiness, Management Science

Research Project, University of California, Los Angeles, CA, 1955.
[17] H. Kamoun, N.G. Hall, C. Sriskandarajah, Scheduling in robotic cells: heuristics and cell design, Oper.

Res., 1999, to appear.
[18] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller, J.W. Thatcher (Eds.),

Complexity of Computer Computations, Plenum Press, New York, 1972, pp. 85–103.
[19] C.P. Koulamas, Scheduling two parallel semiautomatic machines to minimize machine interference,

Comput. Oper. Res. 23 (1996) 945–956.
[20] C.P. Koulamas, M.L. Smith, Look-ahead scheduling for minimizing machine interference, Internat.

J. Production Res. 26 (1988) 1523–1533.
[21] S.A. Kravchenko, F. Werner, Parallel machine scheduling problems with a single server, Math. Comput.

Modelling 26 (1997) 1–11.
[22] E.L. Lawler, On scheduling problems with deferral costs, Management Sci. 11 (1964) 280–288.
[23] E.L. Lawler, Sequencing to minimize the weighted number of tardy jobs, RAIRO Recherche

Op�erationnelle S10 (5) (1976) 27–33.
[24] E.L. Lawler, A “pseudopolynomial” algorithm for sequencing jobs to minimize total tardiness, Ann.

Discrete Math. 1 (1977) 331–342.
[25] E.L. Lawler, J.M. Moore, A functional equation and its application to resource allocation and sequencing

problems, Management Sci. 16 (1969) 77–84.
[26] J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker, Complexity of machine scheduling problems, Annals

of Discrete Mathematics 1 (1977) 343–362.
[27] J.G. Miller, W.L. Berry, Heuristic methods for assigning men to machines: an experimental analysis,

AIIE Trans. 6 (1974) 97–104.
[28] J.G. Miller, W.L. Berry, The assignment of men to machines: an application of branch and bound,

Decision Sci. 8 (1977) 56–72.
[29] C.L. Monma, Linear-time algorithms for scheduling on parallel processors, Oper. Res. 30 (1982) 116–

124.
[30] J.M. Moore, An n job, one machine sequencing algorithm for minimizing the number of late jobs,

Management Sci. 15 (1968) 102–109.
[31] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity,

Prentice-Hall, Englewood Cli�s, NJ, 1982.
[32] S.P. Sethi, C. Sriskandarajah, G. Sorger, J. Blazewicz, W. Kubiak, Sequencing of parts and robot moves

in a robotic cell, Internat. J. Flexible Manufacturing Systems 4 (1992) 331–358.

N.G. Hall et al. / Discrete Applied Mathematics 102 (2000) 223–243 243

[33] W.E. Smith, Various optimizers for single-stage production, Naval Res. Logistics Quart. 3 (1956) 59–
66.

[34] C. Sriskandarajah, N.G. Hall, H. Kamoun, Scheduling large robotic cells without bu�ers, Ann. Oper.
Res. 76 (1998) 287–321.

[35] K.E. Stecke, J.E. Aronson, Review of operator=machine interference models, Internat. J. Production
Res. 23 (1985) 129–151.

[36] W.E. Wilhelm, S.C. Sarin, A structure for sequencing robot activities in machine loading applications,
Internat. J. Production Res. 23 (1985) 47–64.

