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Abstracr 

Tai, S.C., M.W. Du and R.C.T. Lee, Transformation completeness properties of SVPC transfor- 

mation sets, Discrete Applied Mathematics 32 (1991) 263-273. 

A set I of permutations of a finite set %Q is said to be transformation complete if the orbits of 

CT), the group generated by T, acting on s(D), the power set of Q are exactly the set of subsets 

of D having the same cardinality, where the orbit of XE s(9) is {a(x) 1 a E (T)}. This paper 

studies the transformation completeness properties of suppressed variable permutation and com- 

plementation (SVPC) transformations which act on Boolean variables with domain being 

D = (41)“. An SVPC transformation with r control variables is an identity on the n-cube except 

on an (n - r)-subcube where the acting is like a variable permutation and complementation (VPC) 

transformation on n - r variables, 0 5 r<: n. Let P,? be the set of all SVPC transformations on n 

variables with r control variables. It is shown that PF is transformation complete for n>r? 1. 

In particular, it is shown that .S,,l = (I’/-r, = (P,“m2) > (P,‘m3) = (P;_4) = ... = (P;, = Az,l> 

(PO”), where .S,~J and AZ. are the symmetric group and alternating group of degree 2”. respective- 

ly. PO”, i.e., the VPC transformation group on n variables, is not transformation complete, 

however. Thus, one control variable is necessary and sufficient to make PF transformation 

complete. 
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1. Introduction 

Consider the transformation scheme shown in Fig. 1, where fi’s are n-variable 

Boolean functions and 1;‘s are transformations of Boolean variables (the coor- 

dinates of the n-cube). Each transformation tj corresponds to a substitution of the 

Boolean variable (coordinate of the n-cube) Xj by a Boolean function gj(Xl, . . . ,x,,), 

l<jln. That is, 

and 

fi+,(&,(X,, . . ..&I) ,..., g;,(xl,...,x,))=f,(x,,...,x,), 

where each g;j is a Boolean function of xl, . . . , x,. A transformation of the n-cube, 

f,, has the result of function transformation. By successive applications of 

transformations, the Boolean function f, can be transformed to another function 

f k+l. 

fi 
2!+f2Lf3-‘...- f k+l 

Fig. 1. Transformation scheme with each t, transforming f, to f, + 1. 

Since in the transformation scheme, each transformation t; corresponds to n 

Boolean functions, it can be realized by combinational circuits. Let fi be the 

Boolean function to be realized by combinational circuits. Then fi can be ac- 

complished by connecting a cascade realization of the sequence of transformations 

t,,t2,..., tk and the realization of fk + , . To obtain an economical realization off,, 

we require that each transformation can be realized economically. It is also very 

desirable that the set of transformations provided be powerful enough such that any 

Boolean function can be transformed to a very simple one. In the next section, we 

shall propose a special class of transformations, which can be realized economically, 

called suppressed variable permutation and complementation (SVPC) transforma- 

tions. Its transformation power is studied throughout this paper. 

2. Notations and preliminaries 

Let us relax temporarily from the Boolean functions and consider the general 

form of a binary valued function. An n-variable Boolean function is a special case 

of a map f : D -+ (0, l} where D is a finite domain, in fact 59 is the set (0, 1)” whose 

elements are the n-binary vectors which can be assimilated, via the binary coding, 

to integers, so that D is the set (0, 1, . . . , 2”- l}. Thus, the binary valued function 

f: (0, 1, . ..) k) --t (0, l} becomes an n-variable Boolean function when k = 2” - 1. 

Moreover, such a map f may be assimilated to a subset 3 c ‘X? where 3 is the set of 
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integers that have function values true under f. For example, the binary valued 

function f (0) = f (2) = 1 and f(1) = 0 is assimilated to the set 3 = {0,2}, where f is 

defined on the domain 5D = (0, 1,2}. 

Given any permutation t of 55 this extends to the set of all maps f : 59 + (0, l}. 

Since f can be assimilated to a subset 3rD, this extension can be viewed as the 

power set extension. That is, t(g) is the image of subset 3. Evidently, this extension 

shall preserve the cardinality. Conventionally, the cardinality of 3, i.e., 131, is said 

to be the weight of the function f. Therefore, t induces a function transformation 

that preserves the weight of the function it acts on. 

The problem is: let T be a set of permutations of 9 and (T) be the group 

generated by T. What are the necessary and sufficient conditions on T, in order that 

the orbits of (T) acting on S(D), the power set of D, are exactly the set of all 

subsets of X? having the same cardinality, where the orbit of XE s(D) is 

{a(x) 1 cry}? In th is case, T is said to be transformation complete. It can be 

easily checked that if ( T) =A,, the alternating group on D whose cardinality is at 

least 3, or (T)=S,, the symmetric group on D, then T is transformation com- 

plete. That is, 

Lemma 2.1 (Sufficient condition). Let T be a set of permutations of 9. If 
( T) = S,, or A, when ID/ 2 3, then T is transformation complete. 

The sufficient condition shown in Lemma 2.1 is not necessary, however. For ex- 

ample, the set {(01234),(0132)} is transformation complete on the set 

59 = (0, 1,2,3,4}, but (T) is a subgroup of order 20 which is less than that of A,. 
Note that ( T) is not a subgroup of A,, as (0132) is of odd parity. 

Let T be a transformation complete set of permutations. Since the orbits of ( T) 
acting on S(a) are exactly the set of subsets of 9 having the same cardinality i and 

thus each orbit contains ( y’> subsets of D, we have the following weak necessary 

condition [3] : 

Lemma 2.2 (Necessary condition). Let T be a transformation complete set of per- 
mutations. Then (T) has order a multiple of lcm[(‘y’), i= 1,2, . . . . /ml]. 

Since a Boolean function is a special case of a binary valued function, the condi- 

tions shown in Lemma 2.1 and Lemma 2.2 also hold for Boolean functions. We are 

thus ready to define the suppressed variable permutation and complementation 

(SVPC) transformations: 

Definition 2.3. In an SVPC transformation, a number of Boolean variables are 

selected to control the permutation and complementation of the remaining Boolean 

variables. Let the Boolean variable set be X= {xi, . . . ,x,,}. Without loss of generali- 

ty, we assume that x, to x, are selected to control the permutation and complemen- 
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tation of x,+i to x,,. Then an SVPC transformation t can be expressed as 

[Xi +x1 )..., x,+x,,x,+i +x;‘...x;x;{;:i, 

+ XC’ . . xFxr+ xr”xn} , 

where x7 is equal to either xj (Ci = 0) or ~j (c; = l), and p is a permutation on letters 

rs l,...,n. 

For the sake of convenience, t in Definition 2.3 is described as “When 

x,x2...x,.=b,b2...b,., where 

bj = 
0, if Xj”=Xj, 

1, if xT=xj, l<jlr, 

then xj+x&, rf llisn”. 

Definition 2.4. The set of all SVPC transformations on n variables with r control 

variables is denoted as P:. We use L: to denote the subset of P: that contains all 

the SVPC transformations of variables x1,x2, . . . ,x, that use xl, x2, . . . ,x, as control 

variables. 

Recall that P,” is just the classical isometry group of the n-cube, i.e., the variable 

permutation and complementation (VPC) transformation group on n variables 

which has been extensively studied in the literature [2]. Consider the transforma- 

tions of P,?. Each transformation in PF can be viewed as the identity on the n-cube 

except on an (n - r)-subcube (defined by r fixed coordinates) where it acts like a VPC 

transformation on n -r variables (the free variables). By now, it is clear that each 

SVPC transformation induces a permutation of the vertices on the n-cube. 

3. The permutation groups generated by PF and the transformation completeness 

properties of P,” 

Let us first consider the transformation power of VPC, i.e., P$, which seems to 

be the least powerful. In fact, since VPC transformation group has order n!x2” 

[2] which is less than lcm[(y), i= 1,2, . . . , 2’7 for ns2, we have, by Lemma 2.2, 

the following lemma: 

Lemma 3.1. The set VPC, i.e., PO”, is not transformation complete for n 2 2. 

It is because that VPC is not transformation complete that SVPC is introduced. 

Theorem3.2. (P~_l)=(P~_2)=S2~ for nz3. Thus P,“_, and P,“_, are both 
transformation complete. 
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Fig. 2. A sequence of transformations to exchange two adjacent vertices e and f on a 3-cube. 

Proof. (P,“-,) = & because by controlling n - 1 variables, we can exchange any 

two adjacent vertices of the n-cube. 

Figure 2 shows a five-step transformation sequence of Pf to exchange two adja- 

cent vertices on a 3-cube. Similarly we can control n - 2 variables and allow two 

variables to permute and complement to exchange any two adjacent vertices on an 

n-cube. Thus, <Pl_2) =&. We thus complete our proof. 0 

When n - r 2 3, Pr does not generate &, however. In fact, the transformations 

from P: are of even parity for n - r2 3. 

Lemma 3.3. Every permutation of PO”, n 2 3, is of even parity. 

Proof. Let the n variables be x1,x2, . . . , x,. Then VPC is generated by variable per- 

mutation (VP) set and (x1,x2, . . . ,x,) + (x,, x2, . . . , xn), where VP is generated in turn 

by {(x,x2)> (x,x3), . ..>W.Jl. 

The permutation induced by (x,7x2, . . . . x,)-(x1,x2,...,Xn) is 

(01)(23) ... (2’ - 2 2” - 1) and there are totally 3(2” - 2) + 1 = 2”- ’ transpositions 

contained in this permutation. Hence it is of even parity when n 2 2. 

It suffices to show now that any permutation induced by (x,x,) is of even parity. 

The vertices on the n-cube are permuted only when their xi and Xi are different. 

If they both contain “0” or “l”, then they are fixed by transposition (xix;). The 

transposition (x1x,) corresponds to the product of all transpositions induced by fix- 

ing the other n - 2 variables for binary codes ranging from 00.. .O to 11.. .l and ex- 

changing the contents of x1 and xi, i.e., b, and b;. The number of transpositions 

to be producted is 2np2, which is even for n 2 3. Hence, we complete our proof. 0 

Theorem 3.4. Every transformation of Pm, n -r-2 3, is of even parity. 
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Proof. The parity of a transformation in PF is the same as that of a corresponding 

transformation in P,” pr. Since n-rr3, by Lemma 3.3, we have that every 

transformation of PF, n - rz 3, is of even parity. This completes our proof. 0 

It is intuitively true that the more variables used as control variables, the more 

powerful the SVPC transformation group (P,?) will be. In the following, we shall 

show that a chain relation does exist. 

Lemma 3.5. VPCC(Pr’), for n>rll. 

Proof. Let the n variables be x1,x2, . . . , x,. Then VPC is generated by variable per- 

mutation (VP) set and (x1, x2, . . . ,x,) + (x1,x2, . . . , J&), where VP is generated in turn 

by {(xix& (x,x3), ... 5 (x,x,,)}. It is evident that any element of these generators can 

be generated by P: if n L r + 2, i.e., at least two variables are not used as control 

variables. For the special case that r = n - 1, it evidently holds since (P,“_ 1) = &I. 

It suffices to show that (PTfl) g VPC. This is evident since P,!‘gVPC. Hence, we 

complete our proof. 0 

Lemma3.6. (VPC,L:)=(P;), for n>r?l. 

Proof. By Lemma 3.5, it is evident that (VPC,L:) c (P,!!). 

We prove that any element of P,! can be generated by a combination of VPC and 

L:. This is evident since we can first use VPC (as a matter of fact, we use variable 

permutations only) to transform the r control variables to x1,x2, . . . ,x,, then do the 

desired suppressed variable permutation and complementation transformation of 

L:. After that, we use VPC to transform the r control variables back to their 

original locations. Hence (VPC, L:) 2 (P,!!). We thus complete our proof. 0 

Lemma 3.7. (P,!) c (Pm+,>, where .s> 1 and n>r. 

Proof. By Lemma 3.6, we suffice to show that L: C (Py+,). 

A transformation of L: is of the form: 

if x,x2...x,= b,b,...b,., then VPC x,., ,, . . . ,x, 

and a transformation of Pr*+, is of the form: 

if x,x2...x,=b,b2...b,, then Pfprx,.+, ,..., x, 

where b;=O or 1. Since VPC of n-r variables is a proper subset of (Psnp’) by 

Lemma 3.5, we thus complete our proof. 0 

By Theorem 3.2, Lemma 3.5 and Lemma 3.7, we have the following power chain 

relation: 
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Since every transformation of PF, n - r> 3, is of even parity, (Pm) is a subgroup 

of AZ,>. In the following, we shall show that (Pr), ~24, is exactly Ar. Thus, by 

the power chain relation and the fact that every transformation of P,“_3 is of even 

parity, we shall conclude that <Pm> = AZ” for n -r> 3 and rz 1. Let us start from 

some well-known results about permutations: 

Lemma 3.9. Let p be a permutation then 

p(il i, . . . i,)p-’ = (P@, 1 p(i2). . . ~(4)). 

Proof. See [3, p. 51, Exercise]. 0 

Lemma 3.10. (ab)(cd) = (cd)(ab). 

Proof. See [I, p. 14, Exercise]. q 

Lemma 3.11. Two circular permutations which have no letter in common are com- 
mutative. 

Proof. This result comes directly from Lemma 3.10 and the fact that 

(ala,... a,,-la,)=(a,a,)(a,a,~,)...(a,a,)(a,a,). 0 

Lemma 3.12. If PEP,“, then p.@?~Pr+‘, where j=qpq-‘, q=(O 2”)(1 2”+ 1) ... 

(i 2”+i) ... (2”-1 2”+’ - 1). That is, p and p have similar cycle forms except that 
p has i in its cycle form if and on/y if d has 2” + i in its cycle form. 

Proof. Let p be the permutation induced from t E PT. Also, let xn,xn_ t, . . . ,x2,x1 

be the n Boolean variables with x, being the most significant bit of the correspon- 

ding binary code. Since t EPr, there is a variable that is selected as the control 

variable. Let it be x, and let the constraint be x,= B, where 1 <Ron and B=O or 

1. Then 

c, 

t(X;) = X,(,)7 if x,=B and i#r, 

x,7 otherwise, 

where x(” a(l) =%(;) or j&c;, and Q is a permutation on letters n, n - 1, . . . , r-t 1, 
r-l ,..., 2,l. 

Thus, if b,= B then 

p(i)=p(b,b,_ ,... b,+,Bb,_ ,... b2b,) 

= b’” b”” /_ 
a(n) u(n I)... b ~(:It1,Bb~,,.i,,...b~~,,b~~,,=j, 



270 S. C. Tai et al. 

where b,b,_ , . . . B . . . b2bl is the binary code of i and 

b&b:&) . . . b;&,Bb&l,, . . . b&b&) 

is the binary code of j; otherwise, if b,= B then p(i) = i. 

NOW, let q be the permutation that is induced from t’ of P:‘l as: 

t’(x;) = 

(I 

40, if x,=B and i#r and i#n+ 1, 

x;, otherwise. 

Thus, if b,= B then 

else 

q(b,+Ab,-tBb,-, . . . bzbt) 

= b,,+,bc&i,,b:&, . . . b f;irL~Bb&‘~) . . . b&b&,; 

q(b,+lb,b,ml . . . b,+,Bb,_l . . . b2bl)=bn+,bnbn-1 . . . b,+l&_, 

That is, if b,= B then 

and 

q(i)=q(Ob,b,_, . . . b,+lBb,_, . . . b2b,) 

=Obc&i,,,b&Ll)... bs;k,,Bb&L,,... b&~b~cI)=j 

q(i+2”)=q(lb,b,_, . . . b,+lBb,_I . . . b,b,) 

= lb&b’&&_,,... b$l,,,Bbs;L1,... b&b&,=2”+j, 

but if b,.=B then q(i)=i and q(2”+i)=2”+i. 

. . . W1. 

Hence, p(i) = j iff q(i) = j and q(2” + i) = 2” + j, where i, j E [O, 2” - 11. Thus, we 

can express q as the product of permutations p and p such that for any letter i in 

p we have letter 2”+ i in p, i.e., q=p.a. We thus complete our proof. 0 

Lemma 3.13. If PE <P:>, then p.fi~ (P,“+‘), where ~5 is as in Lemma 3.12. 

Proof. Since p E (Pf), there exists a sequence of permutations p1,p2, . . . ,pk E P,” 
such thatp=p,.p2. . . . .p;+Thus, by Lemma 3.12, we have bl,d2, ...,& such that 

p,‘~,,l-72’dZ,...,Pk.dkEP, . Thus (P,‘d,).(P2.1J2)‘...‘(Pk.~k?k)E(P~+1). But, 

by Lemma 3.11, we have 

(P1*A).(172.!52)..*- bk’@k) =P1’P2’P,‘62’ ‘*’ ‘Pk’dk 

= (p, ‘&’ . . . ‘pk)’ (13, ‘fi2’ ..:fik) 

=p.pE(P;+‘). 

Thus, we complete our proof. 0 
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Lemma 3.14. If (pqr)e(Pr), then (pqW”+p 2”+q ~“+I~E<P(I+‘). 

Proof. This comes directly from Lemma 3.13. 0 

Lemma 3.15. (Pr) >Ar, for n2 3. 

Proof. We prove it by induction. 

(1) For n = 3, <Pf) =S, 2 A,, by Theorem 3.2. 

(2) Suppose that (P:) > A,n. We prove that (P:' ‘) 2 A,A + I. 

Since (P:) >Ay, (ah) E <P:> and thus by Lemma 3.14, we have (abc) x 

(2k+a2k+b2k+c)E(P:+1) for all a,b,c~[O,2~-11. 

Consider the following transformation of P/’ ’ : 

if xk+’ = 1, then x3+x1, 

x,+x3. 

Let p be the permutation thus induced. Then p(0) =0, p(l) = 1, p(2) =2, 

~(29=2~, ~(2~+ l)=2k+4 and ~(2~+2)=2~+2. Then 

q’=p(012)(2k 2k+1 2k+2)p-‘=(012)(2k 2k+4 2k+2)~(P;+1) 

since (012)(2” 2k + 1 2k + 2) is an element of P:’ ’ . 
Thus, 

(024)(2k 2k + 2 2k + 4)q’ = (024)(2k 2k + 2 2k + 4)(O12)(2k 2k + 4 2k + 2) 

= (024)(O12)(2k 2k + 2 2k + 4)(2k 2k + 4 2k + 2) 

= (014) E (P:+‘) 

since (024)(2k 2k+2 2k+4) is an element of P:+‘. 

Let (abc) = (42i) E (P:>. 

i~[3,2~-l]-{(4). 
Then p = (42i)(2k + 4 2k + 2 2k + i) E (P:” >, where 

Let q=(O14). Thenpqp-‘=(012)E(P:+‘). 

Let q = (012), p = (42i)(2k + 4 2k + 2 2k + i). 
Vi~[3,2~-l]-{(4). 

Then pqp-’ = (Oli) E <P:’ ’ ), 

Thus, (Oli) E ,P/+’ 

ViE[2k,2k+‘-1]. 
), Vie [2,2k- 11. We suffice to show that (Oli)~ (P:“), 

Consider the following transformation of P:’ ’ : 

if Xl =o then xk+’ ‘xk, 

xk’xk+l. 

Let p be the permutation thus induced. Then p(0) = 0, p(1) = 1, ~(2~~ ‘) = 2k, 

~(2~-‘+2)=2~+2. Thus p(0 1 2kp1)p-1 =(0 1 2k)~(P:+1) and p(0 1 2k-‘+2)pp’= 

(0 1 2k+2)E(P:+1). 

Consider the following transformation of P:+‘: 
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if xr = 1 then xk+r +xk, 

XktXk+l. 

Let p be the permutation thus induced. Then p(O)=O, p(l)= 1, 

p(2k- ’ +l)=2k+l. Thusp(0 1 2k-‘+l)p+=(0 1 2k+1)~(P;+‘). 

Let q be (0 1 2” + 2), p = (23i)(2k + 2 2” + 3 2k + i), where i E [4, 2k - 11. Then 

and 
PqP-’ =(0 1 2k+3)~(P;+1) 

p(0 1 2k+3)p-‘=(0 1 2k+i)~(P:+‘), Vi~[4,2~-11. 

Thus (Oli)~($+‘), Vi~[2,2~+‘-11. Since ((Oli) 1 21i52k+1-l} is a set of 

generators of A*A - I [4], we have AZ” - I c (PI k+‘). This completes our proof. 0 

Theorem 3.16. (Pp) =A,,,, for n24. Thus, Pr is transformation complete. 

Proof. By Lemma 3.15, we have Arz C (P/) for nr4. By Theorem 3.4, we have 

(Pf>cA2,, for n24. Thus, (Pr)=A2~t. By Lemma 2.1, P,” is thus transformation 

complete. This completes our proof. 0 

Corollary 3.17. 

(P/.9 = 
S2” 9 ifn-r=l,2andrll, 

AY, if n-r>3 and rz 1. 

Proof. We suffice to show that (Pr’) = Ar for n - r> 3. 
By Theorem 3.16 and Theorem 3.2, we have 

AZ,,= (Pl”) c (P,“) C ... c (Pr”) C ..’ C (P,np3). 

But (Pnnpj) c A,,, by Theorem 3.4. Thus we have 

AZ,,= (Pl”) c (P,“) c ... c (P;) c ... c (P;_j) c AI,>. 

This concludes that (Ps) = AZ,, if n - r2 3. 0 

Since (P,!) = A,,?, for n-r? 3 and rz 1, PF is transformation complete. The 

following theorem summarizes the results. 

Theorem 3.18. 
(1) s~,~=(P,“_,)=(P,~_~)>(P~~_~)=(P,~_~>= ... =<P;>= ... =(p,“)=AyXp,“). 

(2) pm is transformation complete for n > t-2 1. 

The results of this section are interesting. We now know that SVPC is very power- 

ful because one control variable is necessary and sufficient for it to induce function 
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transformations that will transform a Boolean function to any other Boolean func- 

tion of the same weight in stages. Since P: is not transformation complete, we thus 

conclude that the minimal value of Y to make P,! transformation complete is 1. 
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