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More than twenty years ago, Manickam, Miklós, and Singhi
conjectured that for any integers n, k satisfying n � 4k, every set of
n real numbers with nonnegative sum has at least

(n−1
k−1

)
k-element

subsets whose sum is also nonnegative. In this paper we discuss
the connection of this problem with matchings and fractional
covers of hypergraphs, and with the question of estimating the
probability that the sum of nonnegative independent random
variables exceeds its expectation by a given amount. Using these
connections together with some probabilistic techniques, we verify
the conjecture for n � 33k2. This substantially improves the best
previously known exponential lower bound n � eck log log k . In
addition we prove a tight stability result showing that for every k
and all sufficiently large n, every set of n reals with a nonnegative
sum that does not contain a member whose sum with any other
k − 1 members is nonnegative, contains at least

(n−1
k−1

)+ (n−k−1
k−1

)− 1
subsets of cardinality k with nonnegative sum.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let {x1, . . . , xn} be a set of n real numbers whose sum is nonnegative. It is natural to ask the
following question: how many subsets of nonnegative sum must it always have? The answer is quite
straightforward, one can set x1 = n − 1 and all the other xi = −1, which gives 2n−1 subsets. This
construction is also the smallest possible since for every subset A, either A or [n]\A or both must
have a nonnegative sum. Another natural question is, what happens if we further restrict all the
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subsets to have a fixed size k? The same example yields
(n−1

k−1

)
nonnegative k-sums consisting of n − 1

and (k − 1) −1’s. This construction is similar to the extremal example in the Erdős–Ko–Rado theorem
[8] which states that for n � 2k, a family of subsets of size k in [n] with the property that every two
subsets have a nonempty intersection has size at most

(n−1
k−1

)
. However the relation between k-sum

and k-intersecting family is somewhat subtle and there is no obvious way to translate one problem
to the other.

Denote by A(n,k) the minimum possible number of nonnegative k-sums over all possible choices
of n numbers x1, . . . , xn with

∑n
i=1 xi � 0. For which values of n and k, is the construction x1 =

n − 1, x2 = · · · = xn = −1 best possible? In other words, when can we guarantee that A(n,k) = (n−1
k−1

)
?

This question was first raised by Bier and Manickam [4,5] in their study of the so-called first distri-
bution invariant of the Johnson scheme. In 1987, Manickam and Miklós [15] proposed the following
conjecture, which in the language of the Johnson scheme was also posed by Manickam and Singhi
[16] in 1988.

Conjecture 1.1. For all n � 4k, we have A(n,k) = (n−1
k−1

)
.

In the Erdős–Ko–Rado theorem, if n < 2k, all the k-subsets form an intersecting family of size(n
k

)
>

(n−1
k−1

)
. But for n > 2k, the star structure, which always takes one fixed element and k − 1 other

arbitrarily chosen elements, will do better than the set of all k-subsets of the first 2k − 1 elements.
For a similar reason we have the extra condition n � 4k in the Manickam–Miklós–Singhi conjecture.(n−1

k−1

)
is not the best construction when n is very small compared to k. For example, take n = 3k + 1

numbers, 3 of which are equal to −(3k − 2) and the other 3k − 2 numbers are 3. It is easy to see that
the sum is zero. On the other hand, the nonnegative k-sums are those subsets consisting only of 3’s,
which gives

(3k−2
k

)
nonnegative k-sums. It is not difficult to verify that when k > 2,

(3k−2
k

)
<

(
(3k+1)−1

k−1

)
.

However this kind of construction does not exist for larger n.
The Manickam–Miklós–Singhi conjecture has been open for more than two decades. Only a few

partial results of this conjecture are known so far. The most important one among them is that the
conjecture holds for all n divisible by k. This claim can be proved directly by considering a random
partition of our set of numbers into pairwise disjoint sets, each of size k, but it also follows imme-
diately from Baranyai’s partition theorem [2]. This theorem asserts that if k | n, then the family of
all k-subsets of [n] can be partitioned into disjoint subfamilies so that each subfamily is a perfect k-
matching. Since the total sum is nonnegative, among the n/k subsets from each subfamily, there must
be at least one having a nonnegative sum. Hence there are no less than

(n
k

)
/(n/k) = (n−1

k−1

)
nonnegative

k-sums in total. Besides this case, the conjecture is also known to be true for small k. It is not hard
to check it for k = 2, and the case k = 3 was settled by Manickam [14], and by Marino and Chiaselotti
[17] independently.

Let f (k) be the minimal number N such that A(n,k) = (n−1
k−1

)
for all n � N . The Manickam–Miklós–

Singhi conjecture states that f (k) � 4k. The existence of such function f was first demonstrated by
Manickam and Miklós [15] by showing f (k) � (k − 1)(kk + k2) + k. Bhattacharya [3] found a new
and shorter proof of existence of f later, but he didn’t improve the previous bound. Very recently,
Tyomkyn [20] obtained a better upper bound f (k) � k(4e log k)k ∼ eck log log k , which is still exponential.

In this paper we discuss a connection between the Manickam–Miklós–Singhi conjecture and a
problem about matchings in dense uniform hypergraph. We call a hypergraph H r-uniform if all
the edges have size r. Denote by ν(H) the matching number of H , which is the maximum number of
pairwise disjoint edges in H . For our application, we need the fact that if a (k−1)-uniform hypergraph
on n − 1 vertices has matching number at most n/k, then its number of edges cannot exceed c

(n−1
k−1

)
for some constant c < 1 independent of n,k. This is closely related to a special case of a long-standing
open problem of Erdős [7], who in 1965 asked to determine the maximum possible number of edges
of an r-uniform hypergraph H on n vertices with matching number ν(H). Erdős conjectured that the
optimal case is when H is a clique or the complement of a clique, more precisely, for ν(H) < �n/r�
the maximum possible number of edges is given by the following equation:

max e(H) = max

{(
r[ν(H) + 1] − 1

r

)
,

(
n

r

)
−

(
n − ν(H)

r

)}
. (1)
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For our application to the Manickam–Miklós–Singhi conjecture, it suffices to prove a weaker state-
ment which bounds the number of edges as a function of the fractional matching number ν∗(H)

instead of ν(H). To attack the latter problem we combine duality with a probabilistic technique to-
gether with an inequality by Feige [9] which bounds the probability that the sum of an arbitrary
number of nonnegative independent random variables exceeds its expectation by a given amount.
Using this machinery, we obtain the first polynomial upper bound f (k) � 33k2, which substantially
improves all the previous exponential estimates.

Theorem 1.2. Given integers n and k satisfying n � 33k2 , for any n real numbers {x1, . . . , xn} whose sum is
nonnegative, there are at least

(n−1
k−1

)
nonnegative k-sums.

Recall that earlier we mentioned the similarity between the Manickam–Miklós–Singhi conjecture
and the Erdős–Ko–Rado theorem. When n � 4k, the conjectured extremal example is x1 = n − 1, x2 =
· · · = xn = −1, where all the

(n−1
k−1

)
nonnegative k-sums use x1. For the Erdős–Ko–Rado theorem when

n > 2k, the extremal family also consists of all the
(n−1

k−1

)
subsets containing one fixed element. It is a

natural question to ask if this kind of structure is forbidden, can we obtain a significant improvement
on the

(n−1
k−1

)
bound? A classical result of Hilton and Milner [12] asserts that if n > 2k and no element

is contained in every k-subset, then the intersecting family has size at most
(n−1

k−1

) − (n−k−1
k−1

) + 1, with
the extremal example being one of the following two.

• Fix x ∈ [n] and X ⊂ [n]\{x}, |X | = k. The family F1 consists of X and all the k-subsets containing
x and intersecting with X .

• Take Y ⊂ [n], |Y | = 3. The family F2 consists of all the k-subsets of [n] which intersects Y with
at least two elements.

It can be easily checked that both families are intersecting and |F1| = (n−1
k−1

) − (n−k−1
k−1

) + 1, |F2| =
3
(n−3

k−2

) + (n−3
k−3

)
. When k = 3, |F1| = |F2| and their structures are non-isomorphic. For k � 4, |F1| >

|F2|, so only the first construction is optimal.
Here we prove a Hilton–Milner type result about the minimum number of nonnegative k-sums.

Call a number xi large if its sum with any other k − 1 numbers x j is nonnegative. We prove that if no
xi is large, then the

(n−1
k−1

)
bound can be greatly improved. We also show that there are two extremal

structures, one of which is maximum for every k and the other only for k = 3. This result can be
considered as an analogue of the two extremal cases mentioned above in the Hilton–Milner theorem.

Theorem 1.3. For any fixed integer k and sufficiently large n, and for any n real numbers x1, . . . , xn with∑n
i=1 xi � 0, where no xi is large, the number N of different nonnegative k-sums is at least

(n−1
k−1

)+(n−k−1
k−1

)−1.

For large n, Theorem 1.3 (whose statement is tight) improves the
(n−1

k−1

)
bound in the nonnegative

k-sum problem to
(n−1

k−1

)+(n−k−1
k−1

)−1 when large numbers are forbidden. This bound is asymptotically

(2 + o(1))
(n−1

k−1

)
.

Call a number xi (1 − δ)-moderately large, if there are at least (1 − δ)
(n−1

k−1

)
nonnegative k-sums

using xi , for some constant 0 � δ < 1. In particular, when δ = 0 this is the definition of a large number.
If there is no (1 − δ)-moderately large number for some positive δ, we can prove a much stronger
result asserting that at least a constant proportion of the

(n
k

)
k-sums are nonnegative. More precisely,

we prove the following statement.

Theorem 1.4. There exists a positive function g(δ,k), such that for any fixed k and δ and all sufficiently large n,
the following holds. For any set of n real numbers x1, . . . , xn with nonnegative sum in which no member is
(1 − δ)-moderately large, the number N of nonnegative k-sums in the set is at least g(δ,k)

(n
k

)
.
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The rest of this paper is organized as follows. In the next section we present a quick proof of a
slightly worse bound for the function f (k) defined above, namely, we show that f (k) � 2k3. The proof
uses a simple estimate on the number of edges in a hypergraph with a given matching number. The
proof of Theorem 1.2 appears in Section 3, where we improve this estimate using more sophisticated
probabilistic tools. In Section 4 we prove the Hilton–Milner type results Theorems 1.3 and 1.4. The
last section contains some concluding remarks and open problems.

2. Nonnegative k-sums and hypergraph matchings

In this section we discuss the connection of the Manickam–Miklós–Singhi conjecture and hyper-
graph matchings, and verify the conjecture for n � 2k3.

Without loss of generality, we can assume
∑n

i=1 xi = 0 and x1 � x2 � · · · � xn with x1 > 0. If the
sum of x1 and the k − 1 smallest numbers xn−k+2, . . . , xn is nonnegative, there are already

(n−1
k−1

)
nonnegative k-sums by taking x1 and any other k − 1 numbers. Consequently we can further assume
that x1 + xn−k+2 + · · · + xn < 0. As all the numbers sum up to zero, we have

x2 + · · · + xn−k+1 > 0. (2)

Let m be the largest integer not exceeding n − k which is divisible by k, then n − 2k + 1 � m � n − k.
Since the numbers are sorted in descending order, we have

x2 + · · · + xm+1 � m

n − k
(x2 + · · · + xn−k+1) > 0. (3)

As mentioned in the introduction, the Manickam–Miklós–Singhi conjecture holds when n is divisi-
ble by k by Baranyai’s partition theorem, thus there are at least

(m−1
k−1

)
�

(n−2k
k−1

)
nonnegative k-sums

using only numbers from {x2, . . . , xm+1}. From now on we are focusing on counting the number of
nonnegative k-sums involving x1. If this number plus

(n−2k
k−1

)
is at least

(n−1
k−1

)
, then the Manickam–

Miklós–Singhi conjecture is true.
Recall that in the proof of the case k | n, if we regard all the negative k-sums as edges in a k-

uniform hypergraph, then the assumption that all numbers add up to zero provides us the fact that
this hypergraph does not have a perfect k-matching. One can prove that there are at least

(n−1
k−1

)
edges

in the complement of such a hypergraph, which exactly tells the minimum number of nonnegative k-
sums. We utilize the same idea to estimate the number of nonnegative k-sums involving x1. Construct
a (k − 1)-uniform hypergraph H on the vertex set {2, . . . ,n}. The edge set E(H) consists of all the
(k − 1)-tuples {i1, . . . , ik−1} corresponding to the negative k-sum x1 + xi1 + · · · + xik−1 < 0. Our goal
is to show that e(H) = |E(H)| cannot be too large, and therefore there must be lots of nonnegative
k-sums involving x1.

Denote by ν(H) the matching number of our hypergraph H , which is the maximum number of
disjoint edges in H . By definition, every edge corresponds to a (k − 1)-sum which is less than −x1,
thus the sum of the (k − 1)ν(H) numbers corresponding to the vertices in the maximal matching is
less than −ν(H)x1. On the other hand, all the remaining n − 1 − (k − 1)ν(H) numbers are at most x1.
Therefore −x1 = x2 +· · ·+ xn � −ν(H)x1 + (n − 1 − (k − 1)ν(H))x1. By solving this inequality, we have
the following lemma.

Lemma 2.1. The matching number ν(H) is at most n/k.

If the matching number of a hypergraph is known and n is large with respect to k, we are able to
bound the number of its edges using the following lemma. We denote by H the complement of the
hypergraph H .

Lemma 2.2. If n > k3 , any (k − 1)-uniform hypergraph H on n − 1 vertices with matching number at most
n/k has at least 1

k+1

(n−1
k−1

)
edges missing from it.
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Proof. Consider a random permutation σ on the n − 1 vertices v1, . . . , vn−1 of H . Let the random
variables Z1 = 1 if (σ (v1), . . . , σ (vk−1)) is an edge in H and 0 otherwise. Repeat the same process for
the next k − 1 indices and so on. Finally we will have at least m � n−k

k−1 random variables Z1, . . . , Zm .
Let Z = Z1 + · · · + Zm . Z is always at most n/k since there is no matching of size larger than n/k.
On the other hand, EZi is the probability that k − 1 randomly chosen vertices form an edge in H ,
therefore EZi = e(H)/

(n−1
k−1

)
. Hence,

n

k
� EZ = m

e(H)(n−1
k−1

) � n − k

k − 1

e(H)(n−1
k−1

) . (4)

The number of edges missing is equal to e(H) = (n−1
k−1

) − e(H). By (4), e(H) � (1 − 1
k ) n

n−k

(n−1
k−1

)
, there-

fore

e(H) �
[

1 −
(

1 − 1

k

)
n

n − k

](
n − 1

k − 1

)

�
[

1 −
(

1 − 1

k

)
k3

k3 − k

](
n − 1

k − 1

)

= 1

k + 1

(
n − 1

k − 1

)
. � (5)

Now we can easily prove a polynomial upper bound for the function f (k) considered in the intro-
duction, showing that f (k) � 2k3.

Theorem 2.3. If n � 2k3 , then for any n real numbers {x1, . . . , xn} whose sum is nonnegative, the number of
nonnegative k-sums is at least

(n−1
k−1

)
.

Proof. By Lemma 2.2, there are at least 1
k+1

(n−1
k−1

)
edges missing in H , which also gives a lower bound

for the number of nonnegative k-sums involving x1. Together with the previous
(n−2k

k−1

)
nonnega-

tive k-sums without using x1, there are at least 1
k+1

(n−1
k−1

) + (n−2k
k−1

)
nonnegative k-sums in total. We

claim that this number is greater than
(n−1

k−1

)
when n � 2k3. This statement is equivalent to proving(n−2k

k−1

)
/
(n−1

k−1

)
� 1 − 1/(k + 1), which can be completed as follows:(

n − 2k

k − 1

)
/

(
n − 1

k − 1

)
=

(
1 − 2k − 1

n − 1

)(
1 − 2k − 1

n − 2

)
· · ·

(
1 − 2k − 1

n − k + 1

)

� 1 − (2k − 1)(k − 1)

n − k + 1

� 1 − (2k − 1)(k − 1)

2k3 − k + 1

� 1 − 1

k + 1
. (6)

The last inequality is because (2k − 1)(k − 1)(k + 1) = 2k3 − k2 − 2k + 1 � 2k3 − k + 1. �
3. Fractional covers and small deviations

The method above verifies the Manickam–Miklós–Singhi conjecture for n � 2k3 and improves
the current best exponential lower bound n � k(4e log k)k by Tyomkyn [20]. However if we look at
Lemma 2.2 attentively, there is still some room to improve it. Recall our discussion of Erdős’ conjec-
ture in the introduction: if the conjecture is true in general, then in order to minimize the number
of edges in a (k − 1)-hypergraph of a given matching number ν(H) = n/k, the hypergraph must be
either a clique of size (k − 1)(n/k + 1) − 1 or the complement of a clique of size n − n/k.
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e(H) ∼ min

{(
(1 − 1/k)n

k − 1

)
,

(
n − 1

k − 1

)
−

(
n − n/k

k − 1

)}

∼
(

1 − 1

k

)k−1(n − 1

k − 1

)
� 1

2

(
n − 1

k − 1

)
. (7)

In this case, the number of edges missing from H must be at least 1
2

(n−1
k−1

)
, which is far larger than

the bound 1
k+1

(n−1
k−1

)
in Lemma 2.2. If in our proof of Theorem 2.3, the coefficient before

(n−1
k−1

)
can be

changed to a constant instead of the original 1
k+1 , the theorem can also be sharpened to n � Ω(k2).

Based on this idea, in the rest of this section we are going to prove Lemma 3.3, which asserts that
e(H) � c

(n−1
k−1

)
for some constant c independent of n and k, and can be regarded as a strengthening of

Lemma 2.2. Then we use it to prove our main result of this paper, Theorem 3.5. In order to improve
Lemma 2.2, instead of using the usual matching number ν(H), it suffices to consider its fractional
relaxation, which is defined as follows.

ν∗(H) = max
∑

e∈E(H)

w(e), w : E(H) → [0,1]

subject to
∑
i∈e

w(e) � 1 for every vertex i. (8)

Note that ν∗(H) is always greater or equal than ν(H). On the other hand, for our hypergraph we
can prove the same upper bound for the fractional matching number ν∗(H) as in Lemma 2.1. Recall
that H is the (k − 1)-uniform hypergraph on the n − 1 vertices {2, . . . ,n}, whose edges are those
(k − 1)-tuples (i1, . . . , ik−1) corresponding to negative k-sums x1 + xi1 + · · · + xik < 0.

Lemma 3.1. The fractional matching number ν∗(H) is at most n/k.

Proof. Choose a weight function w : E(H) → [0,1] which optimizes the linear program (8) and gives
the fractional matching number ν∗(H), then ν∗(H) = ∑

e∈E(H) w(e). Two observations can be easily
made: (i) if e ∈ E(H), then

∑
i∈e xi < −x1; (ii) xi � x1 for any i = 2, . . . ,n since {xi} are in descending

order. Therefore we can bound the fractional matching number in a few steps.

x1 + x2 + · · · + xn = x1 +
n∑

i=2

(∑
i∈e

w(e)

)
xi +

n∑
i=2

(
1 −

∑
i∈e

w(e)

)
xi

� x1 +
∑

e∈E(H)

(∑
i∈e

xi

)
w(e) +

n∑
i=2

(
1 −

∑
i∈e

w(e)

)
x1

� x1 +
∑

e∈E(H)

w(e)(−x1) +
(

n − 1 −
∑

e∈E(H)

∑
i∈e

w(e)

)
x1

= x1 − ν∗(H)x1 + (
n − 1 − (k − 1)ν∗(H)

)
x1

= (
n − kν∗(H)

)
x1. (9)

Lemma 3.1 follows from this inequality and our assumption that x1 + · · · + xn = 0 and x1 > 0. �
The determination of the fractional matching number is actually a linear programming problem.

Therefore we can consider its dual problem, which gives the fractional covering number τ ∗(H).

τ ∗(H) = min
∑

i

v(i), v : V (H) → [0,1]

subject to
∑

v(i) � 1 for every edge e. (10)

i∈e
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By duality we have τ ∗(H) = ν∗(H) � n/k. Getting an upper bound for e(H) is equivalent to finding
a function v : V (H) → [0,1] satisfying

∑
i∈V (H) v(i) � n/k that maximizes the number of (k − 1)-

tuples e where
∑

i∈e v(i) � 1. Since this number is monotone increasing in every v(i), we can assume
that it is maximized by a function v with

∑
i∈V (H) v(i) = n/k.

The following lemma was established by Feige [9], and later improved by He, Zhang, and
Zhang [11]. It bounds the tail probability of the sum of independent nonnegative random variables
with given expectations. It is stronger than Markov’s inequality in the sense that the number of vari-
ables m does not appear in the bound.

Lemma 3.2. Given m independent nonnegative random variables X1, . . . , Xm, each of expectation at most 1,
then

Pr

(
m∑

i=1

Xi < m + δ

)
� min

{
δ/(1 + δ),

1

13

}
. (11)

Now we can show that the complement of the hypergraph H has at least constant edge density,
which implies as a corollary that a constant proportion of the k-sums involving x1 must be nonnega-
tive.

Lemma 3.3. If n � Ck2 with C � 1, and H is a (k − 1)-uniform hypergraph on n − 1 vertices with fractional

covering number τ ∗(H) = n/k, then there are at least ( 1
13 − 1

2C )
(n−1)k−1

(k−1)! (k − 1)-sets which are not edges
in H.

Proof. Choose a weight function v : V (H) → [0,1] which optimizes the linear programming prob-
lem (10). Define a sequence of k − 1 independent and identically distributed random variables
X1, . . . , Xk−1, such that for any 1 � j � k − 1, 2 � i � n, X j = v(i) with probability 1/(n − 1). It is
easy to compute the expectation of Xi , which is

EXi = 1

n − 1

n∑
i=2

v(i) = n

k(n − 1)
. (12)

Now we can estimate the number of (k − 1)-tuples with sum less than 1. The probability of the
event {∑k−1

i=1 Xi < 1} is basically the same as the probability that a random (k − 1)-tuple has sum
less than 1, except that two random variables Xi and X j might share a weight from the same vertex,
which is not allowed for forming an edge. However, we assumed that n is much larger than k, so this
error term is indeed negligible for our application. Note that for i1 < · · · < ik−1, the probability that
X j = v(i j) for every 1 � j � k − 1 is equal to 1/(n − 1)k−1.

e(H) = ∣∣{i1 < · · · < ik−1: v(i1) + · · · + v(ik−1) < 1
}∣∣

= (n − 1)k−1

(k − 1)!
∑

distinct i1,...,ik−1

Pr

[
X1 = v(i1), . . . , Xk−1 = v(ik−1);

k−1∑
i=1

Xi < 1

]

� (n − 1)k−1

(k − 1)!

[
Pr

(
k−1∑
i=1

Xi < 1

)
−

∑
l

∑
i 	= j

Pr
(

Xi = X j = v(il)
)]

� (n − 1)k−1

(k − 1)!

[
Pr

(
k−1∑
i=1

Xi < 1

)
−

(k−1
2

)
n − 1

]

� (n − 1)k−1

(k − 1)!

[
Pr

(
k−1∑

Xi < 1

)
− 1

2C

]
. (13)
i=1
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The last inequality is because n � Ck2 and −1 � −3Ck + 2C for C � 1, k � 1, and the sum of these
two inequalities implies that (k−1)(k−2)

2(n−1)
� 1

2C .
Define Yi = Xi · k(n − 1)/n to normalize the expectations to EYi = 1. Yi ’s are nonnegative be-

cause each vertex receives a nonnegative weight in the linear program (10). Applying Lemma 3.2 to
Y1, . . . , Yk−1 and setting m = k − 1, δ = (n − k)/n, we get

Pr(X1 + · · · + Xk−1 < 1) = Pr
(
Y1 + · · · + Yk−1 < k(n − 1)/n

)
� min

{
n − k

2n − k
,

1

13

}
. (14)

When n > Ck2 and k � 2, C � 1, we have

n − k

2n − k
>

Ck2 − k

2Ck2 − k
= Ck − 1

2Ck − 1
� 1

13
. (15)

Combining (13) and (14) we immediately obtain Lemma 3.3. �
Corollary 3.4. If n � Ck2 with C � 1, then there are at least ( 1

13 − 1
2C )

(n−1)k−1

(k−1)! nonnegative k-sums involv-
ing x1 .

Now we are ready to prove our main theorem:

Theorem 3.5. If n � 33k2 , then for any n real numbers x1, . . . , xn with
∑n

i=1 xi � 0, the number of nonnega-

tive k-sums is at least
(n−1

k−1

)
.

Proof. By the previous discussion, we know that there are at least
(n−2k

k−1

)
nonnegative k-sums using

only x2, . . . , xn . By Corollary 3.4, there are at least ( 1
13 − 1

2·33 )
(n−1)k−1

(k−1)! � 2
33

(n−1)k−1

(k−1)! nonnegative k-sums

involving x1. In order to prove the theorem, we only need to show that for n � 33k2,

2

33

(n − 1)k−1

(k − 1)! +
(

n − 2k

k − 1

)
�

(
n − 1

k − 1

)
. (16)

Define an infinitely differentiable function g(x) = ( x
k−1

) = x(x−1)···(x−k+2)
(k−1)! . It is not difficult to see that

g′′(x) > 0 when x > k − 1. Therefore

(
n − 1

k − 1

)
−

(
n − 2k

k − 1

)
= g(n − 1) − g(n − 2k) �

[
(n − 1) − (n − 2k)

]
g′(n − 1)

= (2k − 1)g′(n − 1), (17)

g′(x) = (x − 1)(x − 2) · · · (x − k + 2)

(k − 1)! + x(x − 2) · · · (x − k + 2)

(k − 1)! + · · ·

+ x(x − 1) · · · (x − k + 3)

(k − 1)!
� (k − 1)

x(x − 1) · · · (x − k + 3)

(k − 1)!

� (k − 1)
xk−2

(k − 1)! . (18)
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Combining (17) and (18),(
n − 1

k − 1

)
−

(
n − 2k

k − 1

)
� (2k − 1)g′(n − 1) � (2k − 1)(k − 1)

(n − 1)k−2

(k − 1)!
� 2

33

(n − 1)k−1

(k − 1)! . (19)

The last inequality follows from our assumption n � 33k2. �
4. Hilton–Milner type results

In this section we prove two Hilton–Milner type results about the minimum number of nonneg-
ative k-sums. The first theorem asserts that for sufficiently large n, if

∑n
i=1 xi � 0 and no xi is large,

then there are at least
(n−1

k−1

) + (n−k−1
k−1

) − 1 nonnegative k-sums.

Proof of Theorem 1.3. We again assume that x1 � · · · � xn and
∑n

i=1 xi is zero. Since x1 is not large,
we know that there exists a (k − 1)-subset S1 not containing 1, such that x1 + ∑

i∈S1
xi < 0. Suppose

t is the largest integer so that there are t subsets S1, . . . , St , such that for any 1 � j � t , S j is disjoint
from {1, . . . , j}, has size at most j(k − 1) and

x1 + · · · + x j +
∑
i∈S j

xi < 0.

As we explained above t � 1 and since x1 � · · · � xn we may also assume that S j consists of
the last |S j | indices in {1, . . . ,n}. By Corollary 3.4, for sufficiently large n, there are at least 1

14

(n−1
k−1

)
nonnegative k-sums using x1. Note also that after deleting x1 and {xi}i∈S1 , the sum of the remaining
n − 1 − |S1| � n − k numbers is nonnegative. Therefore, again by Corollary 3.4, there are at least

1
14

(n−k−1
k−1

)
nonnegative k-sums using x2 but not x1. In the next step, we delete x1, x2 and {xi}i∈S2 and

bound the number of nonnegative k-sums involving x3 but neither x1 or x2 by 1
14

(n−2k−1
k−1

)
. Repeating

this process for 30 steps, we obtain

N � 1

14

[(
n − 1

k − 1

)
+

(
n − k − 1

k − 1

)
+ · · · +

(
n − 29k − 1

k − 1

)]

>
30

14

(
n − 29k − 1

k − 1

)
> 2

(
n − 1

k − 1

)
>

(
n − 1

k − 1

)
+

(
n − k − 1

k − 1

)
− 1,

where here we used the fact that 30
14 > 2 and n is sufficiently large (as a function of k).

If 2 � t < 30, by the maximality of t , we know that the sum of xt+1 with any (k − 1) numbers
with indices not in {1, . . . , t +1}∪ St is nonnegative. This gives us

(n−(t+1)−|St |
k−1

)
�

(n−tk−1
k−1

)
nonnegative

k-sums. We can also replace xt+1 by any xi where 1 � i � t and the new k-sum is still nonnegative
since xi � xt+1. Therefore,

N � (t + 1)

(
n − tk − 1

k − 1

)
� (t + 1)

(
n − 29k − 1

k − 1

)
> 2

(
n − 1

k − 1

)
for sufficiently large n. Thus the only remaining case is t = 1.

Recall that x1 is not large, and hence x1 + (xn−k+2 + · · · + xn) < 0. Suppose I is a (k − 1)-subset of
[2,n] such that x1 +∑

i∈I xi < 0. If 2 ∈ I , then x1 + x2 +∑
i∈I\{2} xi < 0, this contradicts the assumption

t = 1 since |I\{2}| = k − 2 � 2(k − 1). Hence we can assume that all the (k − 1)-subsets I1, . . . , Im
corresponding to negative k-sums involving x1 belong to the interval [3,n]. Let N1 be the number
of nonnegative k-sums involving x1, and let N2 be the number of nonnegative k-sums using x2 but
not x1, then

N � N1 + N2 =
[(

n − 1

k − 1

)
− m

]
+ N2.
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In order to prove N �
(n−1

k−1

) + (n−k−1
k−1

) − 1, we only need to establish the following inequality

N2 �
(

n − k − 1

k − 1

)
+ m − 1. (20)

Observe that the subsets I1, . . . , Im satisfy some additional properties. First of all, if two sets Ii and I j
are disjoint, then by definition, x1 + ∑

l∈Ii
xl < 0 and x2 + ∑

l∈I j
xl � x1 + ∑

l∈I j
xl < 0, summing them

up gives x1 + x2 + ∑
l∈Ii∪I j

xl < 0 with |Ii ∪ I j| = 2(k − 1), which again contradicts the assumption
t = 1. Therefore we might assume that {Ii}1�i�m is an intersecting family. By the Erdős–Ko–Rado
theorem,

m �
(

(n − 2) − 1

(k − 1) − 1

)
=

(
n − 3

k − 2

)
.

The second observation is that if a (k − 1)-subset I ⊂ [3,n] is disjoint from some Ii , then x2 +∑
i∈I xi � 0. Otherwise if x2 + ∑

i∈I xi < 0 and x1 + ∑
k∈Ii

xk < 0, for the same reason this con-
tradicts t = 1. Hence N2 is bounded from below by the number of (k − 1)-subsets I ⊂ [3,n] such
that I is disjoint from at least one of I1, . . . , Im . Equivalently we need to count the distinct (k − 1)-
subsets contained in some J i = [3,n]\Ii , all of which have sizes n − k − 1. By the real version of
the Kruskal–Katona theorem (see Ex. 13.31(b) in [13]), if m = ( x

n−k−1

)
for some positive real number

x � n − k − 1, then N2 �
( x

k−1

)
. On the other hand, it is already known that 1 � m �

(n−3
k−2

) = ( n−3
n−k−1

)
,

thus n − k − 1 � x � n − 3. The only remaining step is to verify the following inequality for x in this
range, (

x

k − 1

)
�

(
n − k − 1

k − 1

)
+

(
x

n − k − 1

)
− 1. (21)

Let f (x) = ( x
k−1

) − ( x
n−k−1

)
, note that when x � n − 4 = (k − 2) + (n − k − 2),

f (x + 1) − f (x) =
[(

x + 1

k − 1

)
−

(
x + 1

n − k − 1

)]
−

[(
x

k − 1

)
−

(
x

n − k − 1

)]

=
(

x

k − 2

)
−

(
x

n − k − 2

)
� 0.

The last inequality is because when n is large, x � n − k − 1 > 2(k − 2). Moreover,
(x

t

)
is an increasing

function for 0 < t < x/2, so when x � n − 4,
( x

n−k−2

) = ( x
x−(n−k−2)

)
�

( x
k−2

)
.

Therefore we only need to verify (21) for n − k − 1 � x < n − k, which corresponds to 1 � m �
n − k − 1. For m = 1, (21) is obvious, so it suffices to look at the case m � 2. The number of distinct
(k − 1)-subsets of J1 or J2 is minimized when | J1 ∩ J2| = n −k − 2, which, by the inclusion–exclusion
principle, gives

N2 � 2

(
n − k − 1

k − 1

)
−

(
n − k − 2

k − 1

)
=

(
n − k − 1

k − 1

)
+

(
n − k − 2

k − 2

)
.

So (20) is also true for 2 � m �
(n−k−2

k−2

) + 1. It is easy to see that for k � 3 and n sufficiently large,

n − k − 1 �
(n−k−2

k−2

) + 1. For k = 2, we have x = n − 3 and (21) becomes
(n−3

1

)
�

(n−3
1

) + (n−3
n−3

) − 1,
which is true and completes the proof. �
Remark 1. In order for all the inequalities to be correct, we only need n > Ck2. By carefully analyzing
the above computations, one can check that C = 500 is enough.

Remark 2. Note that in the proof, the equality (20) holds in two different cases. The first case is when
m = 1, which means x1 + xn−k+2 + · · · + xn < 0 but any other k-sums involving x1 are nonnegative.
All the other nonnegative k-sums are formed by x2 together with any (k − 1)-subsets not containing
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xn−k+2, . . . , xn . This case is realizable by the following construction: x1 = k(k − 1)n, x2 = n − 2, x3 =
· · · = xn−k+1 = −1, xn−k+2 = · · · = xn = −(kn + 1). The second case is in (21) when x = n − 4 and
x = n−k −1 holds simultaneously, which gives k = 3. In this case, m = (n−3

n−4

) = n−3, and the Kruskal–
Katona theorem holds with equality for the (n − 4)-subsets J1, . . . , Jn−3. That is to say, the negative
3-sums using x1 are x1 + xi + xn for 3 � i � n − 1, while the nonnegative 3-sums containing x2 but
not x1 are x2 + xi + x j for 3 � i < j � n − 1. This case can also be achieved by setting x1 = x2 = 1,
x3 = · · · = xn−1 = 1

2(n−3)
, and xn = − 3

2 . For large n, these are the only two possible configurations
achieving equality in Theorem 1.3.

Next we prove Theorem 1.4, which states that if
∑

i xi � 0 and no xi is moderately large, then at
least a constant proportion of the

(n
k

)
k-sums are nonnegative.

Proof of Theorem 1.4. Suppose t is the largest integer so that there are t subsets S1, . . . , St such that
for any 1 � j � t , S j is disjoint from {1, . . . , j}, has at most j(k − 1) elements, and

x1 + · · · + x j +
∑
i∈S j

xi < 0.

By the maximality of t , the sum of xt+1 and any k − 1 numbers xi with indices from [n]\({1, . . . ,

t + 1} ∪ St) is nonnegative, so there are at least
(n−tk−1

k−1

)
nonnegative k-sums using xt+1. Since xt+1 is

not (1 − δ)-moderately large,(
n − tk − 1

k − 1

)
< (1 − δ)

(
n − 1

k − 1

)
.

For sufficiently large n, this is asymptotically equivalent to(
1 − tk

n

)k−1

< 1 − δ.

Since (
1 − tk

n

)k−1

> 1 − tk(k − 1)

n
,

we have

t >
n

k2
δ.

Recall that by Corollary 3.4, for each i = 1, . . . , n
k2 δ, xi gives at least 1

14

(n−(i−1)k−1
k−1

)
nonnegative k-

sums, therefore

N � 1

14

[(
n − 1

k − 1

)
+ · · · +

(
n − ( n

k2 δ)k − 1

k − 1

)]

� nδ

14k2

(
n − ( n

k2 δ)k − 1

k − 1

)

= δ

14k

(
n

k

)(
1 − δn/k

n − 1

)
· · ·

(
1 − δn/k

n − k + 1

)

� δ

14k

(
n

k

)(
1 − δn

n − k + 1

)
.

Since δ < 1, when n � k−1
1−√

δ
, we have δn

n−k+1 �
√

δ. Therefore setting g(δ,k) = δ(1−√
δ )

14k completes the

proof. �
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5. Concluding remarks

• In this paper, we have proved that if n > 33k2, any n real numbers with a nonnegative sum have
at least

(n−1
k−1

)
nonnegative k-sums, thereby verifying the Manickam–Miklós–Singhi conjecture in

this range. Because of the inequality
(n−2k

k

) + C
(n−1

k−1

)
�

(n−1
k−1

)
we used, our method will not give

a better range than the quadratic one, and we did not try hard to compute the best constant in
the quadratic bound. It would be interesting to decide if the Manickam–Miklós–Singhi conjecture
can be verified for a linear range n > ck. Perhaps some algebraic methods or structural analysis
of the extremal configurations will help.

• Feige [9] conjectures that the constant 1/13 in Lemma 3.2 can be improved to 1/e. This is a
special case of a more general question suggested by Samuels [18]. He asked to determine, for
a fixed m, the infimum of Pr(X1 + · · · + Xk < m), where the infimum is taken over all possible
collections of k independent nonnegative random variables X1, . . . , Xk with given expectations
μ1, . . . ,μk . For k = 1 the answer is given by Markov’s inequality. Samuels [18,19] solved this
question for k � 4, but for all k � 5 his problem is still completely open.

• Another intriguing objective is to prove the conjecture by Erdős which states that the maximum
number of edges in an r-uniform hypergraph H on n vertices with matching number ν(H) is
exactly

max

{(
r[ν(H) + 1] − 1

r

)
,

(
n

r

)
−

(
n − ν(H)

r

)}
.

The first number corresponds to a clique and the second case is the complement of a clique.
When ν(H) = 1, this conjecture is exactly the Erdős–Ko–Rado theorem [8]. Erdős also verified it
for n > crν(H) where cr is a constant depending on r. Recall that in our graph H we have ν(H) �
n/k and r here is equal to k − 1, so if Erdős’ conjecture is true in general, we can give a direct
proof of constant edge density in the complement of H . In this way we can avoid using fractional
matchings in our proof. But even without the application here, this conjecture is interesting in
its own right. The fractional version of Erdős’ conjecture is also very interesting. In its asymptotic
form it says that if H is an r-uniform n-vertex hypergraph with fractional matching number
ν∗(H) = xn, where 0 � x < 1/r, then

e(H) �
(
1 + o(1)

)
max

{
(rx)r,1 − (1 − x)r}(n

r

)
. (22)

• As pointed out to us by Andrzej Ruciński, part of our reasoning in Section 3 implies that the
function A(n,k) defined in the first page is precisely

(n
k

)
minus the maximum possible number of

edges in a k-uniform hypergraph on n vertices with fractional covering number strictly smaller
than n/k. Indeed, given n reals x1, . . . , xn with sum zero and only A(n,k) nonnegative k-sums, we
may assume that the absolute value of each xi is smaller than 1/k (otherwise simply multiply all
of them by a sufficiently small positive real). Next, add a sufficiently small positive ε to each xi ,
keeping each xi smaller than 1/k and keeping the sum of any negative k-tuple below zero (this
is clearly possible). Note that the sum of these new reals, call them x′

i , is strictly positive and
the number of positive k-sums is A(n,k). Put ν(i) = 1/k − x′

i and observe that
∑

i ν(i) < n/k and
the k-uniform hypergraph whose edges are all k-sets e for which

∑
i∈e ν(i) � 1 has exactly

(n
k

) −
A(n,k) edges. Therefore, there is a k-uniform hypergraph on n vertices with fractional covering
number strictly smaller than n/k and at least

(n
k

) − A(n,k) edges. Conversely, given a k-uniform
hypergraph H on n vertices and a fractional covering of it ν : V (H) �→ [0,1] with

∑
i ν(i) =

n/k − δ < n/k and
∑

i∈e ν(i) � 1 for each e ∈ E(H), one can define xi = 1
k − δ

n −ν(i) to get a set of
n reals whose sum is zero, in which the number of nonnegative k-sums is at most

(n
k

)−|E(H)| (as

the sum of the numbers xi for every k-set forming an edge of H is at most 1 − kδ
n − 1 < 0). This

implies the desired equality, showing that the problem of determining A(n,k) is equivalent to that
of finding the maximum possible number of edges of a k-uniform hypergraph on n vertices with
fractional covering number strictly smaller than n/k. Note that this is equivalent to the problem
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of settling the fractional version of the conjecture of Erdős for the extremal case of fractional
matching number < n/k.

• Although the fractional version of Erdős’ conjecture is still widely open in general, our techniques
can be used to make some progress on this problem. Combining the approach from Section 3
and the above mentioned results of Samuels we verified, in joint work with Frankl, Rödl and
Ruciński [1], conjecture (22) for certain ranges of x for 3 and 4-uniform hypergraphs. These results
can be used to study a Dirac-type question of Daykin and Häggkvist [6] and of Hán, Person and
Schacht [10] about perfect matchings in hypergraphs.
For an r-uniform hypergraph H and for 1 � d � r, let δd(H) denote the minimum number of
edges containing a subset of d vertices of H , where the minimum is taken over all such subsets.
In particular, δ1(H) is the minimum vertex degree of H . For r that divides n, let md(r,n) denote
the smallest number, so that any r-uniform hypergraph H on n vertices with δd(H) � md(r,n)

contains a perfect matching. Similarly, let m∗
d(r,n) denote the smallest number, so that any r-

uniform hypergraph H on n vertices with δd(H) � m∗
d(r,n) contains a perfect fractional matching.

Together with Frankl, Rödl and Ruciński [1] we proved that for all d and r, md(r,n) ∼
max{m∗

d(r,n), 1
2

(n−d
r−d

)} and further reduced the problem of determining the asymptotic behav-
ior of these numbers to some special cases of conjecture (22). Using this relation we were able
to determine md(r,n) asymptotically for several values of d and r, which have not been known
before. Moreover, our approach may lead to a solution of the general case as well, see [1] for the
details.
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