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Amplitude Analysis of two photon production of ππ and K K , using S-matrix constraints and fitting all 
available data, including the latest precision results from Belle, yields a single partial wave solution up 
to 1.4 GeV. The two photon couplings of the σ/ f0(500), f0(980) and f2(1270) are determined from the 
residues of the resonance poles. These amplitudes are a key input into the newly developed dispersive 
approach to calculating hadronic light-by-light scattering for (g − 2) of the muon.
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1. Introduction

Two photon reactions play a special role in the study of QCD: 
photons pick out the charged components of hadrons and so probe 
their structure. In this Letter we present the results of a compre-
hensive Amplitude Analysis of all data on γ γ → π+π−,π0π0,

K K up to 1.4 GeV. This includes for the first time the high statis-
tics data from Belle on π+π− [1], π0π0 [2] and the very new 
Ks Ks [3] channels in a coupled channel analysis. The data have 
limited angular coverage and no polarization information. Nev-
ertheless, unitarity links these two photon reactions to the cor-
responding meson–meson scattering processes. When combined 
with the other basic S-matrix principles of analyticity and cross-
ing, these constraints make up for the limitations of the data, and 
make an Amplitude Analysis feasible. At present this can be imple-
mented where the ππ and K K saturate unitarity, which is roughly 
up to 1.4–1.5 GeV. At higher energies multi-meson production be-
comes important, for which we do not yet have precise enough 
information to extend the analysis further.

Unitarity provides the main constraint on the determination 
of the partial wave amplitudes. For each amplitude with definite 
spin J , helicity λ and isospin I , unitarity for the two photon pro-
cess to hadrons requires

Im F I
Jλ(γ γ → ππ ; s)

=
∑

i

ρi(s)F I
Jλ

∗
(γ γ → i; s) · T I

J (i → ππ ; s), (1)

where s is the square of the c.m. energy, ρi is the standard phase 
space for channel i and the sum is over all open channels. The 
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hadronic amplitudes for reaction i → j, T I
J (i → j; s), themselves 

satisfy partial wave unitarity, so that

Im T I
J (i → ππ ; s) =

∑

i

ρi(s)T I
J
∗
(i → k; s) · T I

J (k → ππ ; s), (2)

with a slightly more complicated form if the final state particles 
have spin. The relations set out in Eqs. (1), (2) are fulfilled by the 
simple condition:

F I
Jλ(γ γ → ππ) =

∑

i

αi
I
Jλ(s) · T I

J (i → ππ ; s), (3)

with obvious generalizations from ππ , to K K we need here, and 
to any other final states. To satisfy the unitarity relations, Eqs. (1), 
(2), the coupling functions α I, J ,λ

i (s) in Eq. (3) must be real for real 
values of the c.m. energy 

√
s above the lowest threshold. Impor-

tantly, these functions only have left hand cuts, thereby ensuring 
that the two photon amplitudes have the same right hand cut 
structure as the hadronic amplitudes, as required by unitarity. This 
separation of α and T -matrix elements is closely related to the 
N–D separation of the N/D method. However, it is far simpler in 
practice to impose Eq. (3) in an analysis of experimental data. Once 
zeros of the hadron scattering amplitudes are divided out, the cou-
pling functions, α(s), are readily parametrized by polynomials over 
the limited energy region we consider here. For a larger energy do-
main a conformal mapping would be more efficient. The zeros that 
are divided out are: for the S-waves the process-dependent Adler 
zeros of pseudoscalar scattering, and for higher waves the usual 
angular momentum threshold factors, reflecting the difference in 
threshold behavior between the hadron reactions and the interac-
tion of spin-1 photons.1

1 In general one has to divide out any zeros of the sub-determinants of the 
T -matrix [4].
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Importantly, the unitarity constraint given by Eq. (3) ensures 
that Watson’s theorem is fulfilled in the region of elastic uni-
tarity, when all amplitudes with ππ final states in the same 
quantum numbers have the same phase. It also ensures that the 
poles of the hadronic T -matrix transmit to the two photon re-
action in exactly the same positions. For the constraint implied 
by Eq. (3) to be used, one needs, of course, detailed informa-
tion on the hadronic T -matrix elements. Considerable progress 
has been made over the past decades in refining knowledge of 
the key meson–meson scattering amplitudes for ππ → ππ and 
ππ → K K . This has come about by new experimental informa-
tion on near threshold ππ scattering from K → (ππ)eν from 
NA48/2 [5] (with input too from the DIRAC experiment [6]) at 
CERN, combined with data from the classic meson–meson scat-
tering experiments on ππ → ππ from CERN-Munich [7], and the 
ππ → K K from Argonne [8] and Brookhaven [9]. The hadronic 
amplitudes we need have been constructed by incorporating these 
data in dispersive analyses as recently done in [10,11]. An outcome 
of this is a rather precise knowledge of the hadronic scattering am-
plitudes and in turn of pole positions of the key resonances in the 
energy region studied. These poles are automatically built into our 
two photon amplitudes, not through some simplistic Breit–Wigner 
forms, but through the detailed parametrization of the underly-
ing meson–meson scattering amplitudes in Eq. (3). The positions 
of the dominant poles are listed in Table 1. Their uncertainties are 
typically ±10 MeV or less in both the real and imaginary parts.

These scattering amplitudes embodied in a K -matrix frame-
work, are key inputs into unitarity for the two photon production 
of these same hadronic final states. As already mentioned, the 
two photon data have limited angular coverage, only 60% for the 
charged pions and 80% for neutral, and no polarization information 
make an Amplitude Analysis challenging. As set out in Ref. [12], 
the partial wave amplitudes are anchored at low energy by the fact 
that they can be accurately calculated close to threshold by the use 
not just of unitarity, Eqs. (1), (3), but by the application of the dis-
persion relations to the two photon partial waves imposing the low 
energy theorem of Compton scattering. The uncertainties in these 
calculations of the absolute two photon cross-section increase with 
increasing energy as shown in Refs. [12–17]. In a longer paper [18], 
we confirm that below 600 MeV the partial wave amplitudes are 
calculationally under good control. Above that energy we rely en-
tirely on the experimental data constrained by the unitarity rela-
tion, Eq. (1), implemented using Eq. (3), to determine the possible 
amplitudes.

When this method was applied 25 years ago to the then 
available two photon data on ππ production from SLAC and 
DESY [19–23], and with more uncertain hadronic inputs, several 
distinct classes of two photon to ππ solutions were possible. 
These had the f0(980) appearing as a peak of different sizes, or 
as a dip structure (as in ππ → ππ ) of different sizes, and with a 
range of helicity zero and two components for the f2(1270) (so-
lutions A–E in [24], 1 and 2 in [25]). The new data from Belle on 
π+π− in 5 MeV bins displayed the peaking of the f0(980), but 
still admitted a range of solutions, A and B in [26]. With the two 
photon results from the B-factories, showing a clear structure for 
the f0(980), Figs. 1, 2, we need to ensure our underlying meson–
meson scattering amplitudes have this resonance built in correctly. 
While some aspects of the f0(980) are constrained by the disper-
sive analyses mentioned above [10,11], these ignore the isospin 
breaking engendered by the kaon mass difference. With Belle pro-
viding two photon results on π+π− production in 5 MeV bins, it 
is essential that our hadronic amplitudes also take into account the 
8 MeV mass splitting between K + K − and K̄ 0 K 0 thresholds. This 
we do by requiring our hadronic amplitudes also fit the results of 
partial wave analyses of the BaBar results on Ds decay into S-wave 
di-pion and di-kaon systems [27,28].

With the constraint of unitarity encoded in Eq. (3) and the low 
partial waves anchored at low energy by dispersive constraints, the 
present 3000 two photon data points for the ππ channels and 350 
data on K K , both integrated and differential cross-sections, are fit-
ted. It is the addition of the π0π0 and K K results from Belle, 
particularly their latest Ks Ks data, which are the first with accurate 
coverage from threshold upwards with angular information out to 
cos θ = 0.6–0.8, that dramatically reduces the range of solutions 
in this coupled channel analysis below 1.5 GeV to the single so-
lution (Solution I) presented here. Above that energy the addition 
of multi-pion production information would be absolutely crucial. 
The partial wave decomposition of such reactions is unfortunately 
missing in the hadronic scattering sector.

Each data set has systematic uncertainties. In the case of that 
from Cello, these have been folded with the statistical errors in 
their publication. In other cases, like that of Mark II and Belle ππ
cross-sections, the main systematic uncertainty is in the absolute 
normalization of the cross-sections. A possible shift in normaliza-
tion beyond 700 MeV between experimental datasets is included 
in our fitting procedure. The Belle charged pion results are used 
to set the scale. Their systematic shift of ∼ ±5% should then be 
assigned to our solutions.

2. Two photon couplings

Having data on both the charged and neutral pion final states 
allows a separation of the I = 0 and 2 components of the γ γ →
ππ amplitudes, and the determination of the individual partial 
waves with helicity-0 and 2 within narrower ranges than previ-
ously possible. The ππ partial wave cross-sections for J = 0, 2 are 
shown in Fig. 1. How these describe the Belle integrated cross-
sections is shown in Fig. 2 for π+π− , π0π0 and Ks Ks production. 
While only the comparison with Belle data are shown here, our 
amplitudes describe all the available data from Mark II, CELLO, 
Crystal Ball, TASSO, ARGUS and TPC [19–23,29–34] too.

The publication of the Belle π0π0 results have highlighted 
some systematic “imperfections” in the Belle π+π− data, already 
apparent when compared with Mark II and Cello results. The 
charged particle mode is dominated by μ+μ− production by or-
ders of magnitude. Belle present results above 800 MeV where 
they believe they can separate μ’s from π ’s. This may not be cor-
rect with their acceptance, as their data have a strange angular 
dependence around cos θ ∼ 0.6 below 1 GeV, which in turn pro-
duces the upward sweep of the integrated cross-section seen in 
Fig. 2, not found by Mark II and Cello, discussed further in [18]. 
Which π+π− results are correct will be checked by a forthcoming 
measurement by KLOE-II at DAPHNE [35,36].

While only even isospins occur for the ππ channel, the K +K −

and K
0

K 0 have I = 0, 1. The isoscalar channels are highly con-
strained by unitarity. However, the isovector channel has to be 
freely parametrized. Nevertheless, the input of the K K data fixes 
the isoscalar partial waves. The way our amplitudes describe the 
angular distributions for π+π− , π0π0 and Ks Ks is illustrated 
in Fig. 3 at a number of representative energies. The complete 
datasets used, the treatment of systematic errors and the disper-
sive technology used, together with the full results are described 
fully in a longer paper [18].

The outcome of this analysis is the set of partial wave ampli-
tudes, the cross sections for which are shown in Fig. 1. In turn, 
these fix the two photon couplings of the resonance poles that 
occur in these channels. These are dominated by the σ/ f0(500), 
f0(980) and f2(1270). As mentioned already these have been de-
termined to ±10 MeV for the σ and f2, and to ±3 MeV for the 
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Fig. 1. Individual partial wave components of the γ γ → ππ integrated cross-section.

Fig. 2. Solution I compared with the integrated cross-section datasets of Belle. The γ γ → π+π− process [1] is integrated over | cosθ | ≤ 0.6, γ γ → π0π0 [2] is 0.7 and for 
γ γ → Ks Ks [3] it is 0.6.
f0(980) by the analyses of the hadronic scattering amplitudes. The 
residues of these poles on the appropriate nearby sheet of the 
energy plane determine the two photon coupling gγ γ for each 
state. The two photon width, Γ (R → γ γ ), is readily defined for 
an isolated, narrow state with a nearby pole in the complex en-
ergy plane, well-separated from threshold cuts. For the states that 
dominate the channels studied here, that are broad and overlap-
ping each other with strongly coupled thresholds, we still use the 
same definition, viz:

Γ (R → γ γ ) = α2

4(2 J + 1)mR
|gγ γ |2, (4)

where α is the usual QED fine structure constant, J is the spin of 
the resonance, and mR its mass. Here we take mR to be the mod-
ulus of the pole position in the energy plane. Other definitions are 
folded into the uncertainties discussed below. This Γ (R → γ γ ) is, 
of course, not a physical quantity, but merely an intuitive way of 
re-expressing |gγ γ |. These values are listed in Table 1. The uncer-
tainties of the residues are from the two photon amplitudes, see 
Eq. (3), the error being mainly caused by the uncertainties in the 
αi

I
Jλ(s). The T -matrix elements contribute to the errors too, but 

these add only a few percent from the pole locations and the ππ
couplings.

Let us emphasize that the present work is the only robust 
determination of the two photon couplings of the f0(980) and 
f2(1270) from a partial wave analysis that genuinely separates 
the S-waves from the D-waves, and D-waves with helicity two 
from that with helicity zero. Indeed, the values given in Table 1
are specified from the residues of the resonance poles rather than 
resonance plus background fits to data on a single charged chan-
nel, as for instance published by Belle [1]. Continuing to the pole 
is the only rigorous way to determine resonance parameters. This 
is particularly apparent for the σ with its very deep pole. The 
PDG values for its two photon “width” follow from determina-
tions that use the method we have advocated [37], implemented 
by others [14,26,15], and updated here. That results now converge 
is reassuring.

3. Discussion

Model calculations have been made for these states depend-
ing on their “primordial” composition. How these are related to 
those in the real world of important meson final state interactions 
do not yet exist beyond models. Kaon loop modeling by Achasov 
and Shestakov [38] favors a tetraquark composition for the f0(980)

with a γ γ width predicting ∼ 270 eV [39]. This is not very dif-
ferent from the prediction for a largely K K composition for the 
f0(980) by Hanhart et al. [40] of 220 eV. Both model predic-
tions are reasonably close to our extracted result of (320 ± 50) eV, 
but quite different from the older prediction of Barnes [41] of 
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Fig. 3. Solution I compared with the differential cross-section datasets of Belle. The γ γ → π+π− process is from [1], γ γ → π0π0 from [2] and for γ γ → Ks Ks from [3].

Table 1
The isoscalar resonance poles and their two photon residues (both magnitude and phase) from our Amplitude Solution are listed. The pole positions for the σ and f2(1270)

have an uncertainty of ±10 MeV for the real and imaginary parts, while for the f0(980) the errors are ±3 MeV. The two photon residues can be interpreted in terms of 
two-photon partial widths using Eq. (1). These are tabulated in keV. For each the fraction of the width provided by helicity zero is given: for the scalar resonances, it is, of 
course, 100%.

State Sh Pole locations (GeV) gγ γ = |g|eiϕ Γ ( f J → γ γ ) (keV) λ = 0 fraction %

Jλ |g| (GeV) ϕ (◦)

f2(1270) III 1.267 − i0.108 D0 0.35 ± 0.03 168 ± 6 2.93 ± 0.40 8.7 ± 1.7
D2 1.13 ± 0.08 173 ± 6

σ/ f0(500) II 0.441 − i0.272 S 0.26 ± 0.01 105 ± 3 2.05 ± 0.21 100

f0(980) II 0.998 − i0.021 S 0.16 ± 0.01 −175 ± 5 0.32 ± 0.05 100
∼ 600 eV in the molecular model of Weinstein and Isgur [42]. 
A genuine strong coupling QCD calculation would clearly help 
here. Incidently, our “opinion” favors the K K molecular structure 
as more appropriate, see [43–45]. It is such considerations that 
make a comparison with the two photon production of the a0(980)

of special interest. However, results of comparable precision for 
isovector states must await a corresponding coupled channel anal-
ysis combining data on γ γ → π0η, K +K − and K 0 K 0 with that on 
ππ . While the two photon production of ππ and ηπ channels, 
of course, access different isospins, the K K channels involve both 
I = 0, 1. Thus a larger global analysis would be required, which 
would inevitably involve multi-pion channels too. This is beyond 
our present ambitions.

Other analyses have combined dispersion relations with unitar-
ity and hadronic scattering information, with the same basic phi-
losophy as we have followed here. Calculations by Garcia-Martin 
and Moussallam [16] have assumed that the crossed-channel ex-
changes, namely states in γπ scattering, have known couplings 
and hence the direct channel γ γ → ππ cross-sections can be pre-
dicted up to at least 1 GeV. As we shall discuss in a separate, more 
technical paper, single particle exchange (beyond the crucial one 
pion exchange of the Born amplitude) is likely a poor approxima-
tion to the multi-meson exchanges that control the details of the 
left hand cut amplitude. Hoferichter, Phillips and Schat [17] have 
used Roy–Steiner equations, deduced from dispersion relations on 
hyperbolae, to constrain the γ γ → ππ amplitudes. Their analy-
sis does not attempt to fit experimental information beyond 1 GeV 
directly, and they assume for instance that the input of f2(1270)

only has helicity two couplings. Here we perform an Amplitude 
Analysis within a corresponding S-matrix framework, but in which 
data are used directly to determine the partial waves. From these 
we then determine the γ γ couplings of each resonant pole.

The recent development of a dispersive approach to calculat-
ing hadronic light-by-light scattering to (g − 2) of the muon re-
quires as input knowledge of two photon production of hadrons, 
of which ππ and K K are likely the most important. The ampli-
tudes presented here for on-shell photons are thus a key compo-
nent of a robust determination of these contributions, as well as 
their uncertainties, critical for interpreting the present BNL mea-
surement [46] and assessing the prospects for the future Fermilab 
experiment [47].
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R. García-Martín, R. Kamiński, J.R. Peláez, J. Ruiz de Elvira, F.J. Ynduráin, Phys. 
Rev. D 77 (2008) 054015, arXiv:0710.1150 [hep-ph];
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R. Kamiński, J.R. Peláez, F.J. Ynduráin, Phys. Rev. D 74 (2006) 079903 (Erratum);
J.R. Peláez, F.J. Ynduráin, Phys. Rev. D 71 (2005) 074016, arXiv:hep-ph/
0411334.

[11] P. Buttiker, S. Descotes-Genon, B. Moussallam, Eur. Phys. J. C 33 (2004) 409, 
arXiv:hep-ph/0310283.

[12] D. Morgan, M.R. Pennington, Z. Phys. C 37 (1988) 431;
D. Morgan, M.R. Pennington, Phys. Lett. B 272 (1991) 134.

[13] M.R. Pennington, in: L. Maiani, G. Pancheri, N. Paver (Eds.), DA
NE Physics 
Handbook, INFN, Frascati, 1992, pp. 379–418;
M.R. Pennington, in: L. Maiani, et al. (Eds.), Second DA
NE Physics Handbook, 
INFN, Frascati, 1995, pp. 169–190.

[14] J.A. Oller, L. Roca, C. Schat, Phys. Lett. B 659 (2008) 201, arXiv:0708.1659 [hep-
ph];
J.A. Oller, L. Roca, Eur. Phys. J. A 37 (2008) 15, arXiv:0804.0309 [hep-ph].

[15] Y. Mao, X.G. Wang, O. Zhang, H.Q. Zheng, Z.Y. Zhou, Phys. Rev. D 79 (2009) 
116008, arXiv:0904.1445 [hep-ph].

[16] R. Garcia-Martin, B. Moussallam, Phys. Rev. D 83 (2011) 054008, 
arXiv:1011.4446 [hep-ph].

[17] M. Hoferichter, D.R. Phillips, C. Schat, Eur. Phys. J. C 71 (2011) 1743, 
arXiv:1106.4147 [hep-ph].

[18] L.Y. Dai, M.R. Pennington, arXiv:1404.7524 [hep-ph].
[19] J. Boyer, et al., Mark II Collaboration, Phys. Rev. D 42 (1990) 1350.
[20] J. Harjes, Ph.D. thesis, submitted to the University of Hamburg, http://
inspirehep.net/record/314894/files/fce-91-01.pdf.

[21] H.J. Behrend, et al., CELLO Collaboration, Z. Phys. C 56 (1992) 381.
[22] H. Marsiske, et al., Crystal Ball Collaboration, Phys. Rev. D 41 (1990) 3324.
[23] J.K. Bienlein, et al., Crystal Ball Collaboration, in: D. Caldwell, H.P. Paar (Eds.), 

Proc. IXth Int. Workshop on Photon–Photon Collisions, San Diego, 1992, World 
Scientific, 1992, p. 241.

[24] D. Morgan, M.R. Pennington, Z. Phys. C 48 (1990) 623.
[25] M. Boglione, M.R. Pennington, Eur. Phys. J. C 9 (1999) 11, arXiv:hep-

ph/9812258.
[26] M.R. Pennington, T. Mori, S. Uehara, Y. Watanabe, Eur. Phys. J. C 56 (2008) 1, 

arXiv:0803.3389 [hep-ph].
[27] B. Aubert, et al., BABAR Collaboration, Phys. Rev. D 79 (2009) 032003, 

arXiv:0808.0971 [hep-ex].
[28] P. del Amo Sanchez, et al., BABAR Collaboration, Phys. Rev. D 83 (2011) 052001, 

arXiv:1011.4190 [hep-ex].
[29] H. Albrecht, et al., ARGUS Collaboration, Z. Phys. C 48 (1990) 183.
[30] M. Althoff, et al., TASSO Collaboration, Phys. Lett. B 121 (1983) 216.
[31] H. Aihara, et al., TPC Collaboration, Phys. Rev. Lett. 57 (1986) 404.
[32] K. Abe, et al., Belle Collaboration, Eur. Phys. J. C 32 (2004) 323, arXiv:hep-

ex/0309077.
[33] H.J. Behrend, et al., CELLO Collaboration, Z. Phys. C 31 (1989) 91.
[34] M. Althoff, et al., TASSO Collaboration, Z. Phys. C 29 (1986) 189.
[35] G. Amelino-Camelia, et al., Eur. Phys. J. C 68 (2010) 619, arXiv:1003.3868 [hep-

ex].
[36] W. Wislicki, et al., KLOE-2 Collaboration, arXiv:1102.5514 [hep-ex];

F. Nguyena, et al., KLOE/KLOE-2 Collaboration, Nucl. Phys., Proc. Suppl. 225 
(2012) 121.

[37] M.R. Pennington, Phys. Rev. Lett. 97 (2006) 011601, arXiv:hep-ph/0604212.
[38] N.N. Achasov, G.N. Shestakov, Phys. Rev. D 77 (2008) 074020, arXiv:0712.0885 

[hep-ph];
N.N. Achasov, G.N. Shestakov, JETP Lett. 88 (2008) 295, arXiv:0810.2201 [hep-
ph];
N.N. Achasov, G.N. Shestakov, JETP Lett. 96 (2012) 493, arXiv:1210.0739 [hep-
ph];
N.N. Achasov, G.N. Shestakov, Phys. Usp. 54 (2011) 799, arXiv:0905.2017 [hep-
ph].

[39] N.N. Achasov, S.A. Devyanin, G.N. Shestakov, Z. Phys. C 16 (1982) 55.
[40] C. Hanhart, Yu.S. Kalashnikova, A.E. Kudryavtsev, A.V. Nefediev, Phys. Rev. D 75 

(2007) 074015, arXiv:hep-ph/0701214.
[41] T. Barnes, in: D. Caldwell, H.P. Paar (Eds.), Proc. IXth Int. Workshop on Photon–

Photon Collisions, San Diego, 1992, World Scientific, 1992, p. 263.
[42] J.D. Weinstein, N. Isgur, Phys. Rev. D 41 (1990) 2236;

J.D. Weinstein, N. Isgur, Phys. Rev. Lett. 48 (1982) 659.
[43] M.R. Pennington, Int. J. Mod. Phys. A 21 (2006) 747, arXiv:hep-ph/0509265.
[44] M.R. Pennington, AIP Conf. Proc. 1257 (2010) 27, arXiv:1003.2549 [hep-ph].
[45] J. Ruiz de Elvira, J.R. Pelaez, M.R. Pennington, D.J. Wilson, Phys. Rev. D 84 (2011) 

096006, arXiv:1009.6204 [hep-ph].
[46] G.W. Bennett, et al., Muon g − 2 Collaboration, Phys. Rev. Lett. 92 (2004) 

161802, arXiv:hep-ex/0401008;
G.W. Bennett, et al., Muon g − 2 Collaboration, Phys. Rev. D 73 (2006) 072003, 
arXiv:hep-ex/0602035.

[47] R.M. Carey, et al., FERMILAB-PROPOSAL-0989, 2009;
Brendan C.K. Casey, AIP Conf. Proc. 1182 (2009) 726.

http://refhub.elsevier.com/S0370-2693(14)00491-2/bib42656C6C652D706Ds1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib42656C6C652D706Ds1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib42656C6C652D706Ds2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib42656C6C652D706Ds2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib42656C6C652D6E6Es1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib42656C6C652D6E6Es2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib42656C6C652D6E6Es2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib42656C6C652D6E6Es3
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib42656C6C652D6E6Es3
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib42656C6C652D4B734B73s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib42656C6C652D4B734B73s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib414D502D465349s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib414D502D465349s2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4E413438s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4E413438s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4E413438s2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4E413438s3
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4449524143s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4345524E2D4D756E696368s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4345524E2D4D756E696368s2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4345524E2D4D756E696368s3
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib436F68656E3830s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib436F68656E3830s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib45746B696E3832s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4B5059s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4B5059s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4B5059s2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4B5059s2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4B5059s3
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4B5059s3
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4B5059s4
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4B5059s5
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4B5059s5
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib446573636F7465733034s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib446573636F7465733034s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4D525038383931s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4D525038383931s2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4D525068616E64626F6F6Bs1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4D525068616E64626F6F6Bs1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4D525068616E64626F6F6Bs2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4D525068616E64626F6F6Bs2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4F6C6C657230373038s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4F6C6C657230373038s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4F6C6C657230373038s2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib79756D616F3039s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib79756D616F3039s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4D6F757373616C6C616D3130s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4D6F757373616C6C616D3130s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib5068696C6C6970733131s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib5068696C6C6970733131s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib444C592D4D52503134s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4D61726B4949s1
http://inspirehep.net/record/314894/files/fce-91-01.pdf
http://inspirehep.net/record/314894/files/fce-91-01.pdf
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib43656C6C6F32s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib43423838s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib43423932s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib43423932s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib43423932s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4D52503930s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4D52503938s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4D52503938s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4D52503038s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4D52503038s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib42414241522D7069s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib42414241522D7069s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib42414241522D4Bs1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib42414241522D4Bs1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib41524755533839s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib544153534F3833s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib5450433836s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib42656C6C653034s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib42656C6C653034s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib43656C6C6F3839s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib544153534F3836s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4D52502D4B4C4F4532s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4D52502D4B4C4F4532s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4B4C4F4532s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4B4C4F4532s2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4B4C4F4532s2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4D52503036s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib41636861736F763037s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib41636861736F763037s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib41636861736F763037s2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib41636861736F763037s2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib41636861736F763037s3
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib41636861736F763037s3
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib41636861736F763037s4
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib41636861736F763037s4
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib41636861736F763832s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib48616E686172743037s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib48616E686172743037s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4261726E65734B4Bs1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4261726E65734B4Bs1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib5765696E737465696Es1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib5765696E737465696Es2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4D52503035s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4D52503130s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib57696C736F6Es1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib57696C736F6Es1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib424E4C2D6732s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib424E4C2D6732s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib424E4C2D6732s2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib424E4C2D6732s2
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4665726D696C61622D6732s1
http://refhub.elsevier.com/S0370-2693(14)00491-2/bib4665726D696C61622D6732s2

	Two photon couplings of the lightest isoscalars from BELLE data
	1 Introduction
	2 Two photon couplings
	3 Discussion
	Acknowledgements
	References


