
Computers and Mathematics with Applications 54 (2007) 350–356
www.elsevier.com/locate/camwa

A self-stabilizing algorithm for finding a minimal 2-dominating set
assuming the distributed demon model

Tetz C. Huang∗, Ji-Cherng Lin, Chih-Yuan Chen, Cheng-Pin Wang

Department of Computer Science and Engineering, Yuan-Ze University, 135 Yuan-Tung Road, Chung-Li, Tao-Yuan 320, Taiwan

Received 25 January 2006; accepted 22 January 2007

Abstract

A 2-dominating set in a distributed system is a set of processors such that each processor outside the set has at least two
neighbors in the set. In applications, a 2-dominating set can be considered as an ideal place in the system for allocating resources,
and a minimal 2-dominating set allows for the minimum of resources to be allocated. Since a maximal independent set can be
viewed as a minimal 1-dominating set, the problem of finding a minimal 2-dominating set extends the problem of finding a maximal
independent set in some sense. The distributed demon model for self-stabilizing systems is a natural generalization of the central
demon model introduced by Dijkstra. In the past, only a few self-stabilizing algorithms under the distributed demon model have
been obtained without using any transformer, and most of these algorithms are for ring networks only. In this paper, we propose a
self-stabilizing algorithm that can find a minimal 2-dominating set in any general network in which the distributed demon model
is assumed. This proposed algorithm is not obtained via any transformer. We also verify the correctness of the proposed algorithm.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Self-stabilizing algorithm; Minimal 2-dominating set; Central demon model; Distributed demon model; Cut point

1. Introduction

In 1974, Dijkstra first introduced the notion of self-stabilization in his pioneering paper [1]. According to Dijkstra,
a distributed algorithm is self-stabilizing if, regardless of the initial configuration of the system, any execution of the
algorithm will lead the system to a legitimate configuration, and then let the system stay in the legitimate configuration
(or some legitimate configurations) forever unless the system incurs a subsequent transient fault. After having been
neglected for nearly a decade, Dijkstra’s paper was drawn to public attention by Lamport in his invited address at
PODC 1983 (cf. [2]). Since then, the research on self-stabilizing systems has flourished, and a great number of papers
regarding self-stabilizing algorithms have been published. Most of these papers adopt Dijkstra’s computational model,
which is generally referred to as the central demon model (cf. [1,3,4]).

The more general distributed demon model (cf. [5]) was later considered by Burns [6] in 1987. The difference
between the above two computational models is the number of processors that join in the execution of each atomic
step of the system. Under the central demon model, exactly one among all the privileged processors in the system is

∗ Corresponding author.
E-mail address: cstetz@saturn.yzu.edu.tw (T.C. Huang).

0898-1221/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2007.01.021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82413707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
mailto:cstetz@saturn.yzu.edu.tw
http://dx.doi.org/10.1016/j.camwa.2007.01.021

T.C. Huang et al. / Computers and Mathematics with Applications 54 (2007) 350–356 351

randomly selected by the central demon to make a move in an atomic step of the system. Under the distributed demon
model, however, an arbitrary number of privileged processors are randomly selected by the distributed demon to make
moves simultaneously in an atomic step of the system. An atomic step of the system is also called a system move.
Under the distributed demon model, the behavior of the system under the action of the algorithm can be described
by an execution sequence Γ = (γ1, γ2, . . .) in which for any i ≥ 1, γi represents a global configuration, and γi+1
is obtained from γi after a certain number of privileged processors in the system together make the i th system move
γi → γi+1. The definition for an algorithm to be self-stabilizing under the distributed demon model is the same as
under the central demon model. Thus if a system is self-stabilizing under the distributed demon model, then it is self-
stabilizing under the central demon model. The converse, however, is not true (the maximal independent set algorithm
in [7] is self-stabilizing under the central demon model, but not under the distributed demon model). In the past, only a
few self-stabilizing algorithms under the distributed demon model have been obtained without using any transformer,
and most of these algorithms are for ring networks only [6,8–10]. The reason for that is mainly due to the higher
complexity of the execution of the algorithm under the distributed demon model.

A minimal 2-dominating set can be defined as follows. Suppose G = (V, E) is a connected simple undirected
graph. A subset D of V is a 2-dominating set in G if any node outside of D has at least 2 neighbors in D. A
2-dominating set D in G is minimal if any proper subset of D is not a 2-dominating set in G. Since a maximal
independent set can be viewed as a minimal 1-dominating set, the problem of finding a minimal 2-dominating set
extends the problem of finding a maximal independent set in some sense. Self-stabilizing algorithms for finding a
maximal independent set have been investigated in the past. In particular, Shukla et al. have proposed in [7] a maximal
independent set algorithm that is self-stabilizing under the central demon model, and Lin and Huang have proposed
in [11] a fault-containing self-stabilizing algorithm for the maximal independent set problem.

In this paper, we propose a self-stabilizing algorithm that can find a minimal 2-dominating set in any general
network in which the distributed demon model is assumed. This proposed algorithm is not obtained via any
transformer. The result obtained in this paper extends the previous result in [7] in two directions: the minimal 2-
dominating set problem extends the maximal independent set problem in some sense, and the distributed demon
model is more general than the central demon model.

The rest of the paper is organized as follows. In Section 2, some graph-theoretic concepts and properties that will
be needed in later discussion are either recalled or derived. In Section 3, our algorithm is presented, and the meaning
of legitimate configurations is clarified. In Section 4, the correctness proof is provided, which shows that the proposed
algorithm is self-stabilizing under the distributed demon model. Finally in Section 5, some remarks conclude this
paper.

2. Preliminaries

In this section, some graph-theoretic concepts and properties needed in later discussion are either recalled or
derived. Suppose G = (V, E) is a graph. A node x in G is a cut point of G if the number of connected components
in G − {x} (i.e., the induced subgraph from V − {x}) is greater than that in G. If x is a cut point of G, then the degree
of x in G must be at least two. For any node in G, if its degree in G is at least two and it is not a cut point of G, then
we call it a miscellaneous node of G.

Property 1. In a simple undirected graph, a node x is a cut point if and only if x has two distinct neighbors y and z
such that the path (y, x, z) is the unique simple path in the graph that connects y and z.

Proof. This property follows easily from [12, Theorem 1.4]. �

Property 2. In a simple undirected graph, a miscellaneous node must be contained in some cycle.

Proof. Suppose x is a miscellaneous node and x is contained in a connected component C of the graph. Then x has
at least two neighbors, say, y and z, and the induced subgraph C − {x} is connected. Hence there is a simple path P
in C − {x} connecting y and z. Path P and path (y, x, z) together constitute a cycle containing x . �

Property 3. If x is a cut point of a connected undirected graph G = (V, E), then there exist two nodes u and v such
that neither u nor v is a cut point and x is on every simple path connecting u and v.

352 T.C. Huang et al. / Computers and Mathematics with Applications 54 (2007) 350–356

Proof. Let M = {〈y, z〉 | y, z ∈ V , and x is on every simple path connecting y and z} and W = {P | P is a simple
path connecting y and z, for some 〈y, z〉 ∈ M}. Since x is a cut point in G, there exist two nodes y and z in G such
that x is on every simple path connecting y and z (cf. [12, Theorem 1.4]). Hence M 6= ∅ and hence W 6= ∅. Let Q
be the longest simple path in W and let nodes u and v be the two endpoints of Q. Then 〈u, v〉 ∈ M and thus x is on
every simple path connecting u and v.

Suppose u or v is a cut point of G. Without loss of generality, assume that u is a cut point. Then u has two distinct
neighbors l and m such that path (l, u, m) is the unique simple path that connects l and m (by Property 1). Suppose
both l and m are on Q. Then the portion of Q from l to m is a simple path that connects l and m and yet does not
contain u. This contradicts the fact that path (l, u, m) is the unique simple path that connects l and m. Thus either l or
m is not on Q. Without loss of generality, assume that l is not on Q. Now we claim that 〈l, v〉 ∈ M . Suppose not. Then
there is a simple path P that connects l and v and yet does not contain x . Then P does not contain u (for otherwise,
P contains a simple path connecting u and v and thus contains x , which causes a contradiction). Hence edge (u, l)
and P together form a simple path that connects u and v, and yet does not contain x , which causes a contradiction.
Therefore 〈l, v〉 ∈ M . Let P ′ be the simple path formed by edge (l, u) and Q. Then P ′

∈ W , and is longer than Q,
which causes a contradiction. Therefore neither u nor v is a cut point. �

Property 4. Every nontrivial connected graph has at least two nodes that are not cut points.

Proof. cf. [13, Theorem 3.4]. �

3. The proposed algorithm

In this section, our self-stabilizing algorithm for solving the minimal 2-dominating set problem will be presented.
The distributed system in consideration has a general underlying topology, and can be modeled by a connected simple
undirected graph G = (V, E), with each node x ∈ V representing a processor in the system and each edge {x, y} ∈ E
representing the bidirectional link connecting processors x and y. It is assumed that

(1) each processor in the system has a unique identity,
(2) each processor x maintains two shared registers, dx and px ,
(3) N (x) denotes the set of all neighbors of x and L(x) = {y ∈ N (x) | y < x},
(4) the value of dx is taken from {0, 1},
(5) D(x) = {y ∈ N (x) | dy = 1}, and |D(x)| is the cardinality of D(x), and
(6) the value of px is always ∅, {x} or D(x).

It should also be reiterated that the computational model assumed in the system is the distributed demon model.

Algorithm 1. {for each node x}

R1 : dx = 0 ∧ |D(x)| < 2 ∧ px = {x} ∧ ∀y ∈ {z ∈ L(x) | dz = 0}, py 6= {y} → dx := 1
R2 : dx = 1 ∧ |D(x)| ≥ 2 ∧ ∀y ∈ N (x) − D(x), py = ∅ → dx := 0
R3 : dx = 0 ∧ |D(x)| < 2 ∧ px 6= {x} → px := {x}

R4 : dx = 0 ∧ |D(x)| = 2 ∧ px 6= D(x) → px := D(x)

R5 : dx = 0 ∧ |D(x)| > 2 ∧ px 6= ∅ → px := ∅.

The legitimate configurations are defined to be all those configurations in which no node in the system is privileged.
The following theorem clarifies that in any legitimate configuration, a minimal 2-dominating set can be identified.

Theorem 1. If the system is in a legitimate configuration, then the set A = {x ∈ V | dx = 1} is a minimal 2-
dominating set.

Proof. If the system is in a legitimate configuration, then no node in the system is privileged.
(1) Suppose A is not a 2-dominating set. Then there exists a node x ∈ V − A such that x has at most one neighbor

in A, i.e., dx = 0 and |D(x)| < 2.

Claim. For any node u in the system, if du = 0 and |D(u)| < 2, then there exists a node v ∈ L(u) (thus v < u) such
that dv = 0 and |D(v)| < 2.

T.C. Huang et al. / Computers and Mathematics with Applications 54 (2007) 350–356 353

Proof of Claim. Since du = 0, |D(u)| < 2, and u is not privileged by R3, we have pu = {u}. Then since u is not
privileged by R1, [∀y ∈ {z ∈ L(u) | dz = 0}, py 6= {y}] cannot hold. Hence there exists a node v ∈ L(u) such
that dv = 0 and pv = {v}. If |D(v)| = 2, then since dv = 0 and pv = {v} 6= D(v), v is privileged by R4, which
causes a contradiction. If |D(v)| > 2, then since dv = 0 and pv = {v} 6= ∅, v is privileged by R5, which causes a
contradiction. Hence |D(v)| < 2 and the claim is proved. �

By applying the above claim to node x , we get a x1 ∈ L(x) such that dx1 = 0 and |D(x1)| < 2. Then, by applying
the claim to node x1, we get a x2 ∈ L(x1) such that dx2 = 0 and |D(x2)| < 2. In this way, we eventually get infinitely
many nodes x1, x2, x3, . . . such that x > x1 > x2 > x3 > · · · . However, this causes a contradiction because the
system has only a finite number of nodes. Therefore, A must be a 2-dominating set.

(2) Suppose A is not a minimal 2-dominating set. Then there exists a node x ∈ A such that A−{x} is a 2-dominating
set. Since x 6∈ A − {x}, x has at least two neighbors in A − {x} and thus |D(x)| ≥ 2. If N (x) − D(x) = ∅, then, since
dx = 1 and |D(x)| ≥ 2, x is privileged by R2, which causes a contradiction. Hence N (x) − D(x) 6= ∅. Let y be an
arbitrary node in N (x) − D(x). Since y 6∈ A − {x} and A − {x} is a 2-dominating set, y has at least two neighbors,
u and v, in A − {x}. Thus y has at least three neighbors u, v and x in A, i.e., |D(y)| > 2. Since dy = 0, |D(y)| > 2
and y cannot be privileged by R5, we have py = ∅. Hence the condition [∀y ∈ N (x) − D(x), py = ∅] holds. Since
dx = 1, |D(x)| ≥ 2 and ∀y ∈ N (x)− D(x), py = ∅, node x is privileged by R2, which causes a contradiction. Hence
A is a minimal 2-dominating set. �

4. Correctness proof

In order to give a rigorous proof for the self-stabilization of Algorithm 1, we need to make the concept of execution
sequence under the distributed demon model more precise. A sequence Γ = (γ1, γ2, . . .) is called an infinite execution
(of Algorithm 1 under the distributed demon model) if

(a) Γ is an infinite sequence,
(b) for any m = 1, 2, . . . , γm is a global configuration,
(c) for any m = 1, 2, . . . , γm+1 is induced from γm after a certain number of privileged processors selected by the

distributed demon make the system move γm → γm+1.

A sequence Γ = (γ1, γ2, . . .) is called a finite execution (of Algorithm 1 under the distributed demon model) if

(a) Γ is a finite sequence and Γ = (γ1, γ2, . . . , γq) for some q ∈ Z+,
(b) for any m = 1, 2, . . . , q, γm is a global configuration,
(c) for any m = 1, 2, . . . , q − 1, γm+1 is induced from γm after a certain number of privileged processors selected by

the distributed demon make the system move γm → γm+1,
(d) no node in the system is privileged in the last configuration γq .

Thus, unless clearly specified, an execution Γ = (γ1, γ2, . . .) may refer to an infinite or a finite execution. The
following lemma is quite obvious in view of the definition of a legitimate configuration, the definition of a finite
execution and the definition of an algorithm being self-stabilizing under the distributed demon model.

Lemma 1. Algorithm 1 is self-stabilizing under the distributed demon model if and only if any execution of
Algorithm 1 is a finite execution.

For presentation’s sake, we define some more notation and terminology. For any configuration γ of G = (V, E), let
Vγ = {x ∈ V | dx = 1 in γ } and let Gγ = (Vγ , Eγ) be the induced subgraph of G from Vγ , i.e., Eγ = E ∩ {{x, y} |

x, y ∈ Vγ }. Suppose γ → γ ′ is a system move. We say that

(1) a connected component C is divided due to the system move γ → γ ′, if C is a connected component of Gγ and
there exist two distinct nodes x and y in C such that x and y are in different connected components of Gγ ′ ,

(2) a connected component C completely disappears due to the system move γ → γ ′, if C is a connected component
of Gγ and no node in C remains in Gγ ′ , and

(3) a cycle H disappears due to the system move γ → γ ′, if H is a cycle in Gγ and at least one node in H does not
remain in Gγ ′ .

354 T.C. Huang et al. / Computers and Mathematics with Applications 54 (2007) 350–356

Lemma 2. Any two adjacent nodes in G cannot both execute rule R1 in a same system move.

Proof. Suppose x and y, x < y, are two adjacent nodes that execute R1 in a same system move γ → γ ′. Then dx = 0
and px = {x} in γ . Hence the condition [∀u ∈ {z ∈ L(y) | dz = 0}, pu 6= {u}] for y cannot hold in γ , and thus y
cannot execute R1 in γ → γ ′. A contradiction occurs. Hence the lemma is proved. �

Lemma 3. For any system move γ → γ ′, if P is a simple path in Gγ ′ and its two endpoints are also in Gγ , then the
path P is also in Gγ .

Proof. Let x and y be the two endpoints of P . Suppose P is not in Gγ . Then there exists a node z in P such that z is
not in Gγ . Thus z 6= x and z 6= y (i.e., z is not an endpoint of P), and z must execute R1 in the system move γ → γ ′.
If the two neighbors of z in P are in Gγ , then |D(z)| ≥ 2 in γ and z is not privileged by R1 in γ . A contradiction
occurs. Hence a neighbor u of z in P is not in Gγ and u must execute R1 in the system move γ → γ ′. Thus two
adjacent nodes z and u both execute R1 in the system move γ → γ ′, which contradicts Lemma 2. Therefore, P must
be in Gγ . �

Lemma 4. For any system move γ → γ ′, if H is a cycle in Gγ ′ , then H is also a cycle in Gγ . (That is, no new cycle
can result from any system move.)

Proof. Suppose H is not a cycle in Gγ . Then H contains a node x not in Gγ . Since x is in Gγ ′ , x must execute R1
in the system move γ → γ ′. Since Gγ ′ is simple, cycle H must pass through at least three nodes. Hence x has two
neighbors in H . For the rest of the proof, one can argue analogously as in the proof of the preceding lemma. �

Lemma 5. For any system move γ → γ ′, if a connected component C completely disappears due to γ → γ ′, then C
contains a miscellaneous node in Gγ (and thus the miscellaneous node executes R2 in the system move γ → γ ′).

Proof. Since no node in C remains in Gγ ′ , every node in C executes R2 in the system move γ → γ ′. Thus for
every node x in C , |D(x)| ≥ 2. Hence C contains at least three nodes and every node in C is either a cut point or a
miscellaneous node. Since C is a nontrivial connected component, by Property 4, C contains at least two nodes that
are not cut points, and thus are miscellaneous nodes. �

Lemma 6. If there exists a node executing R2 in the system move γ → γ ′, then either a cycle disappears due to
γ → γ ′ or a connected component is divided due to γ → γ ′.

Proof. If a node x executes R2 in the system move γ → γ ′, then since dx = 1 and |D(x)| ≥ 2 in γ , x ∈ Gγ and
deg(x) ≥ 2 in Gγ . Thus x is either a cut point or a miscellaneous node in Gγ .

Case 1. There is a miscellaneous node x in Gγ executing R2 in γ → γ ′. Then x is contained in a cycle H in Gγ (by
Property 2). Since x executes R2 in γ → γ ′ and changes dx to 0, x is not in Gγ ′ . This implies that cycle H disappears
due to γ → γ ′. So we are done in this case.

Case 2. There is no miscellaneous node in Gγ executing R2 in γ → γ ′. Then only cut points can possibly execute
R2 in γ → γ ′. This, together with the condition of the lemma, implies that there is a cut point x in Gγ executing R2
in γ → γ ′. Let C be the connected component of Gγ that contains x . By Property 3, there exist two nodes u and v in
C such that neither u nor v is a cut point and x is on every simple path in C connecting u and v. Since neither u nor v

is a cut point in C , neither u nor v can execute R2 in γ → γ ′. Thus u and v are in Gγ ′ . Suppose there exists a simple
path P in Gγ ′ connecting u and v. By Lemma 3, P is also in Gγ . Then, since P is a simple path in C connecting u
and v, x is in P and thus also in Gγ ′ . This causes a contradiction (since x executes R2 in γ → γ ′ and changes dx to 0
in γ ′, x cannot be in Gγ ′). Hence there is no simple path in Gγ ′ connecting u and v, i.e., nodes u and v are in different
connected components of Gγ ′ . Therefore connected component C is divided due to γ → γ ′. So we are done in this
case. �

Theorem 2. Algorithm 1 is self-stabilizing under the distributed demon model.

Proof. Suppose not. Then, in view of Lemma 1, there must exist an infinite execution Γ of Algorithm 1 under the
distributed demon model.

T.C. Huang et al. / Computers and Mathematics with Applications 54 (2007) 350–356 355

Claim 1. Γ contains infinitely many system moves in each of which at least one node in the system executes R2.

Proof of Claim 1. Suppose Γ contains only a finite number of system moves in each of which at least one node in the
system executes R2. Then there exists a suffix Γ ∗ of Γ such that no node in the system G executes R2 in Γ ∗. Hence
in Γ ∗, each node in the system can execute R1 at most once. Therefore, there exists a suffix Γ ∗∗ of Γ ∗ such that in
Γ ∗∗, no node executes R1 or R2. Thus no node changes its d-value in Γ ∗∗ and hence each node can execute R3, R4
or R5 at most once in Γ ∗∗. It follows that Γ is a finite execution, which causes a contradiction. Hence the claim is
proved. �

Let Γ = (γ1, γ2, . . .). Since the number of cycles in Gγ1 is finite and no new cycle results from any system move
γi → γi+1 in Γ (by Lemma 4), there are only a finite number of system moves γi → γi+1 in Γ such that some cycle
disappears due to γi → γi+1. Therefore, there exists a suffix Γ ∗ of Γ such that

(A) no cycle disappears due to any system move in Γ ∗.

If a node in the system executes R2 in a system move γ → γ ′, then, by Lemma 6, either a cycle disappears due to
γ → γ ′ or a connected component is divided due to γ → γ ′. Therefore, in view of (A), we have that

(B) if a node in the system executes R2 in a system move γ → γ ′ in Γ ∗, then at least one connected component is
divided due to γ → γ ′.

Since each miscellaneous node is contained in a cycle (by Property 2) and no cycle disappears due to any system move
in Γ ∗ (by (A) above), no miscellaneous node can execute R2 in any system move in Γ ∗. Thus, by Lemma 5, we have
that

(C) no connected component completely disappears due to any system move in Γ ∗.

Let Γ ∗
= (γq , γq+1, . . .) and for any configuration γi in Γ ∗, let αγi be the number of connected components of Gγi .

Then for any system move γi → γi+1 in Γ ∗, no connected component completely disappears due to γi → γi+1 (by
(C) above) and any two nodes in two different components of Gγi cannot be in the same connected component in
Gγi+1 (by Lemma 2). Therefore, we have that

(D) for any system move γi → γi+1 in Γ ∗, αγi ≤ αγi+1 .

If, furthermore, a node in the system executes R2 in a system move γi → γi+1, then at least a connected component
is divided due to γi → γi+1. This, together with the two observations before (D), implies that

(E) if a node in the system executes R2 in a system move γi → γi+1 in Γ ∗, then αγi < αγi+1 .

Since Γ ∗ contains infinitely many system moves in each of which at least one node in the system executes R2 (by
Claim 1 above), this, together with (D) and (E) above, implies that limi→∞ αγi = ∞. However, since αγi ≤ n for
any γi in Γ ∗ (where n is the number of nodes in the system), limi→∞ αγi 6> n. So we have a contradiction here and
therefore the theorem is proved. �

5. Concluding remarks

In the above, we have proposed a self-stabilizing algorithm for finding a minimal 2-dominating set in a general
network in which the distributed demon model is assumed. We have also provided the correctness proof for the self-
stabilization of the proposed algorithm. Our result extends the previous result in [7].

As mentioned previously, only a few self-stabilizing algorithms under the distributed demon model have been
obtained without using any transformer, and most of these algorithms are for ring networks only. Moreover, there
exists a counterexample showing that an existing self-stabilizing algorithm under the central demon model may not
be self-stabilizing under the distributed demon model. In [5], it is pointed out that even if a self-stabilizing algorithm
under the central demon model is actually self-stabilizing under the distributed demon model, it may not be easy
to verify the correctness. In this research, we actually started with a version of algorithm that is similar to the self-
stabilizing maximal independent set algorithm in [7]. That version is self-stabilizing under the central demon model
and solves the minimal 2-dominating set problem in a general network. However, it is not self-stabilizing under the
distributed demon model. We therefore had to search for an algorithm that works. The algorithm in this paper actually

356 T.C. Huang et al. / Computers and Mathematics with Applications 54 (2007) 350–356

results from that earlier version after several rounds of modification, and whether it works or not was really uncertain
until the correctness proof was acquired.

Finally, we would like to mention that a natural direction for further investigation along this research line is to
design a self-stabilizing algorithm for finding a minimal k-dominating set (k is an arbitrary positive integer) in a
general network that assumes the distributed demon model.

References

[1] E.W. Dijkstra, Self-stabilizing systems in spite of distributed control, Commun. ACM 17 (1974) 643–644.
[2] L. Lamport, Solved problems, unsolved problems and non-problems in concurrency, in: PODC 1984 Proceedings of the Third Annual ACM

Symposium on Principles of Distributed Computing, 1984, pp. 1–11. Invited address.
[3] E.W. Dijkstra, Self-stabilization in spite of distributed control, in: Selected Writings on Computing: A Personal Perspective, Springer-Verlag,

Berlin, 1982, pp. 41–46.
[4] E.W. Dijkstra, A belated proof of self-stabilization, Distrib. Comput. 1 (1986) 5–6.
[5] T.C. Huang, A self-stabilizing algorithm for the shortest path problem assuming the distributed demon, Comput. Math. Appl. 50 (2005)

671–681.
[6] J.E. Burns, Self-stabilizing ring without demons, Technical Report GIT-ICS-87/36, Georgia Tech., 1987.
[7] S. Shukla, D.J. Rosenkrantz, S.S. Ravi, Observations on self-stabilizing graph algorithms on anonymous networks, in: Proceedings of the 2nd

Workshop on Self-Stabilizing Systems, WSS, LasVegas, Nevada, 1995, pp. 7.1–7.15.
[8] J.E. Burns, M.G. Gouda, R.E. Miller, On relaxing interleaving assumptions, in: Proceedings of the MCC Workshop on Self-Stabilizing

Systems, MCC Technical Report STP-379-89, Austin, Texas, 1989.
[9] G.M. Brown, M.G. Gouda, C.L. Wu, Token systems that self-stabilize, IEEE Trans. Comput. 38 (1989) 845–852.

[10] M.S. Tsai, S.T. Huang, Self-stabilizing ring orientation protocols, in: Proceedings of the Second Workshop on Self-Stabilizing Systems, WSS,
Las Vegas, Nevada, 1995, pp. 16.1–16.14.

[11] J.C. Lin, T.C. Huang, An efficient fault-containing self-stabilizing algorithm for finding a maximal independent set, IEEE Trans. Parallel
Distrib. Syst. 14 (2003) 742–754.

[12] F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley Publishing Company, California, 1990.
[13] F. Harary, Graph Theory, Addison-Wesley Publishing Company, Massachusetts, 1969.

	A self-stabilizing algorithm for finding a minimal 2-dominating set assuming the distributed demon model
	Introduction
	Preliminaries
	The proposed algorithm
	Correctness proof
	Concluding remarks
	References

