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A high-resolution model allowing for the comparison of different energy storage technologies in a variety
of realistic microgrid settings has been developed. The Energy Systems Model (ESM) is similar to the
popular microgrid software HOMER, but improves upon the battery models used in that program. ESM
adds several important aspects of battery modeling, including temperature effects, rate-based variable
efficiency, and operational modeling of capacity fade and we demonstrate that addition of these factors
can significantly alter optimal system design, levelized cost of electricity (LCOE), and other factors. ESM is
then used to compare the Aqueous Hybrid Ion (AHI) battery chemistry to lead acid (PbA) batteries in
standalone microgrids. The model suggests that AHI-based diesel generator/photovoltaic (PV)/battery
systems are often more cost-effective than PbA-based systems by an average of around 10%, even though
the capital cost of AHI technology is higher. The difference in LCOE is greatest in scenarios that have lower
discount rates, increased PV utilization, higher temperature, and more expensive diesel fuel. AHI appears
to be a better complement to solar PV, and scenarios that favor the use of solar PV (low PV prices, low
discount rates, and high diesel prices) tend to improve the LCOE advantage of AHI. However, scenarios
that do not require constant cycling of the batteries strongly favor PbA. AHI is not a drop-in replacement
for PbA. To minimize LCOE, microgrids using AHI batteries should be designed and operated differently
than PbA microgrids.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
1. Background

Microgrids are small self-reliant electricity grids that produce
and distribute power across a limited area, such as a village or
industrial complex. Microgrids can be grid-tied, where the system
is able to connect with a larger traditional grid, or standalone sys-
tems where there is no outside electrical connection. The Energy
Systems Model and this paper focus only on standalone systems.

Standalone microgrids have traditionally been a very niche
market, appropriate only for applications where less expensive
traditional grids could not operate [1,2]. But continual improve-
ments in the performance and cost of microgrid technologies (ex.
PV, small wind, and batteries) are making microgrids a more
attractive option, particularly in developing or remote areas that
have not yet invested in traditional grid infrastructure [1,3].
Microgrids have several advantages over traditional grids: they
are scalable and do not require large capital investment, they are
generally environmentally superior to traditional generation, and
they can be tailored to the particular needs of a community [4–
6]. But cost is always an important factor, and any serious discus-
sion of microgrid technology must effectively address that issue.

Evaluating microgrid systems involves significant complexity
and uncertainty. This complexity and uncertainty relates to both
the design of the microgrid system (such as the scale of different
energy sources and quantity of storage to purchase and install)
and to the operation of an existing system (such as dispatch algo-
rithms for storage and generation) [2]. Furthermore, the design and
operation are somewhat interdependent: the optimal design
depends on the way that the system will be operated and the opti-
mal operation depends on the system design. This optimization is
made more complex by uncertainty in actual load and renewable
resource as well as price uncertainty for variable costs such as
diesel fuel. Fortunately, the objective in microgrid design is
normally very simple: to meet load with the lowest levelized cost
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of electricity (LCOE) or lowest net present cost (NPC) through the
expected lifetime of the system. However, even this is complicated
by questions of reliability: a lower LCOE can be attained if you are
tolerant of more frequent power outages. For all of these reasons,
one cannot expect to achieve the perfectly optimal microgrid sys-
tem design or operation. Rather, several simplifying assumptions
must be made and an acceptable compromise chosen from a more
constrained set of options.

Due to both the growing importance of microgrids and the com-
plexity of microgrid optimization, a significant quantity of aca-
demic research has been produced about microgrid operation,
design, and economics. A large body of previous research has illus-
trated methods for optimizing the operation of existing microgrid
resources, with a focus on microgrids with some form of energy
storage [5–8]. Additionally, some researchers have investigated
optimal system design for different types of microgrids in particu-
lar scenarios, such as grid-connected hospitals [9], standalone
combined heat and power systems [10], as well as general formu-
lations of standalone systems with multiple generators [11]. Much
of the existing research in the field uses linear programming
techniques to determine both the operation and design of the
microgrid system, an approach that has both advantages and dis-
advantages. By using a linear programming approach, the truly
optimal system design or operation can be determined. However,
this approach normally accounts for neither the importance of
uncertainty in load and variable renewable energy nor the risk
aversion towards unserved load seen in the design of actual
microgrids.

Because of the fundamental uncertainties inherent in microgrid
design and operation, researchers have created battery and micro-
grid models of varying levels of complexity, depending upon the
purpose for which the model will be used. Tradeoffs must be made
between the complexity of the component modeling and the abil-
ity to search for optimal systems and system operation. In Bortolini
et al., which also includes a thorough literature review of different
microgrid modeling efforts, operational and economic elements of
a grid-connected PV/battery system are investigated [12]. In this
system, load is met first from the PV, then batteries, and the grid
is used as a backup source. Batteries are never charged from the
grid. In Khatib and Elmenreich, a generator/PV/storage system is
considered in which load is met first from available PV energy,
then from battery energy, and the generator is only started when
PV and battery are unable to serve load [13]. When the generator
is running, it is also used to charge batteries if possible. This
approach easily answers the questions of when to operate the gen-
erator and when to charge the batteries from the generator, but
does not allow a system designer to search for systems that can
produce electricity at lowest cost, as cost is not part of the
formulation.

Other models have used different approaches, focusing on par-
ticular elements of system components or operation. Dufo-López
et al. use genetic algorithm search to identify optimal control strat-
egy in addition to system design [14,15]. This permits their Hybrid
Optimization by Genetic Algorithms (HOGA) model to co-optimize
operation and system design and to search in a multi-criteria space
that attempts to balance LCOE with life-cycle system emissions.
However, the modeling of system components, especially energy
storage, is necessarily quite limited. Koohi-Kamali et al. use
agent-based modeling to investigate the use of PbA batteries to
provide smoothing and other support services in a PV/diesel gener-
ator/PbA battery system [16]. They model the electrical and
mechanical characteristics of the system in great detail, including
elements such as generator torque versus crank angle and system
active and reactive power. This extensive system model is used to
demonstrate the operational value of energy storage providing
integrating services.
With the Energy Systems Model (ESM), we create a versatile
engineering-economic model of microgrid operation. We use this
model to demonstrate that more sophisticated battery modeling
can result in very different LCOE and system design, by comparing
ESM to the popular microgrid modeling tool HOMER. We then use
the ESM to investigate the economics and system design of Aque-
ous Hybrid Ion (AHI)-based microgrids in comparison to PbA-based
systems.

HOMER is an easy-to-use system modeling program that uti-
lizes a time-series (not linear programming) approach to microgrid
operation. Originally developed by the National Renewable Energy
Laboratory, HOMER can rapidly evaluate a variety of potential
microgrid options [17]. HOMER is chosen as a comparison because
it is commonly used in microgrid research, education, consulting
and industry. HOMER Energy, the company that distributes the
software, reports over 100,000 users in 193 countries [16]. While
many other researchers have improved upon various aspects of
HOMER’s microgrid modeling, we demonstrate that more sophisti-
cated modeling can result in very different results.

While HOMER has a relatively sophisticated and realistic mod-
eling approach for most system components, its battery models are
more theoretical to maintain ease of calculation. As a result,
HOMER underestimates or neglects several important issues relat-
ing to battery operation in microgrid systems, such as capacity
fade, temperature effects, or rate-based battery efficiency. We
believe that the battery modeling is the weakest part of this useful
modeling tool, and can be improved with a more realistic battery
model.

Because we are particularly interested in the value and opera-
tion of batteries, we have developed our own Energy Systems
Model (ESM) to evaluate the operation and costs of different stand-
alone microgrid energy systems. Much of the modeling approach
for ESM is similar to that used in HOMER, with improvements
made where the HOMER approach appeared to lack the necessary
sophistication. The ESM does not allow as many system elements
as HOMER, which permits multiple generators and several differ-
ent renewable generation technologies. Similar to HOMER and
unlike much of the literature in the field of microgrid optimization,
ESM uses operational algorithms that are risk averse towards
unserved load. We believe that this better reflects the design and
operation of actual microgrid systems.

One of the major reasons for creating the ESM was to evaluate
and compare PbA batteries with Aquion’s Aqueous Hybrid Ion
(AHI) batteries in microgrid applications. AHI is a novel battery
chemistry that offers durability across environmental and opera-
tional regimes, has a very high cycle lifetime, and a moderate cap-
ital expense. This makes AHI a potential improvement over the
incumbent PbA technology, which has cycle life and operational
limitations but a lower upfront cost.

This paper is structured as follows. In Section 2, we describe the
structure and assumptions used in ESM. In Section 3, we compare
ESM to HOMER, discussing the differences between the two pro-
grams, and provide an example of the effect that these differences
have on output. In Section 4, we use ESM to evaluate and compare
the economics of PbA and AHI batteries for standalone microgrid
systems. Section 5 is a discussion of the implications of the results
in Sections 3 and 4, and we conclude in Section 6.
2. Model description

At its core, the ESM is an engineering-economic model that
inputs a particular microgrid system configuration, electricity load
time series, and solar resource time series, determines the time-
series operation of each component, and calculates the LCOE and
other relevant financial information for the system. In the current
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Fig. 1. Simplified flowchart of ESM decision making in scenarios where generator capacity is not sufficient to meet maximum load. The decision-making depicted in the
flowchart is applied at each time step. Because the generator cannot always meet load, the system is operated in a conservative manner in an attempt to ensure sufficient
battery capacity to meet expected future load.
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version, the ESM is limited to systems with any combination of die-
sel generator, PV array, and battery energy storage. Higher-level
functions of ESM can be used to choose an optimal system under
a given set of input parameters (such as PV costs or diesel price)
and can be used to study how changes in input parameters affect
the optimal system configuration. The ESM is implemented in
MATLAB and consists of approximately 5000 lines of code.

The ESM can input different amounts of installed diesel gener-
ation, solar PV,1 and battery (either lead-acid (PbA) or Aqueous
Hybrid Ion (AHI), though other chemistries or storage technologies
could also be applied). The model is flexible enough that it can take
any combination of system components as input, including cases
where only one or two of these technologies are present. The ESM
models a time-series operation of the components and attempts to
choose a prudent output for the current time step without looking
ahead at the actual future load or solar output. The model does
use past operation to predict future operation, in a persistence-type
forecast, by assuming that the upcoming 24 h period will have the
same load and solar pattern as the previous 24 h period. This forecast
of future load and solar output is used to determine whether excess
generator capacity should be used to charge the batteries (see Figs. 1
and 2).

At each time step, the total power production must equal the
load, as expressed in Eq. (1), where Pload is the power consumption
of the load, Pgen is the power output of the diesel generator, PPV is
the power output of the PV system, Pbatt is the power output of
the battery, and Pcurt is the curtailed or ‘‘dumped’’ power from
the PV system. Pbatt can be negative, indicating that the battery is
charging. At each time step, the model preferentially uses all of
the PV energy available, first to supply load and then to charge
1 Actually, any zero marginal cost source works, including wind/solar combina-
tions. The only limitation is that the time-series power output and costs of the energy
source must be known.
batteries if the PV is already satisfying the load. If there is still
excess PV energy, it is curtailed or ‘‘dumped’’ and this curtailed
energy is tracked with Pcurt.

PloadðtÞ ¼ PgenðtÞ þ PPV ðtÞ þ PbattðtÞ � PcurtðtÞ ð1Þ

The operation of the battery and generator depend on two
factors: whether the generator is allowed to charge the battery,2

and whether the generator is able to meet the maximum expected
load. If the generator is unable to meet maximum load and is forbid-
den to charge the battery (an unrealistic case), then the battery is
charged only from the PV, and the PV + battery attempt to supply
load whenever that load is above the generator’s maximum output.
If the generator cannot supply maximum load but is allowed to
charge the battery, it attempts to keep the battery at maximum
charge whenever the generator is running, using any excess capacity
to charge the battery.

In either of these cases, the diesel generator will shut down
when the PV and battery are collectively able to supply the load,
though in the case where the generator is not large enough to cover
maximum load, the generator turns on again when the battery
goes below a ‘‘safe’’ state-of-charge. The ‘‘safe’’ state-of-charge
(SoC) is a function of both the amount that the generator is under-
sized relative to max load (a more undersized generator prompts a
higher safe state-of-charge) and the average amount of dumped
energy in the past (more dumped energy suggests that there is
plentiful renewable energy to charge the battery, prompting a
lower safe state-of-charge). Eq. (2) is used to calculate the ‘‘safe’’
battery charge state at each time step, where Ebatt capacity is the
energy capacity of the battery, Fsafety is a safety factor constant
(set to 25 by default), Pdumped,avg is the average dumped power over
2 This is set at the start of the run, and users may have a different preference for
ifferent battery technologies. During optimization, the ESM examines both
ossibilities.
d
p
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Fig. 2. Simplified flowchart of ESM decision making in scenarios where generator capacity is sufficient to meet maximum load. The decision-making depicted in the flowchart
is applied at each time step.
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the preceding 24 h period, and Fundersize is an undersizing factor
(ranging from 0 to 1) expressing the fraction of maximum load that
can be met by the generator (Eq. (3)). Eq. (2) limits the safe SoC to
have a maximum of 50%. A flowchart depicting the ESM decision-
making in scenarios where the generator cannot meet maximum
load is shown in Fig. 1.

Ebatt;safeðtÞ ¼
Ebatt capacity

2
� Fsafety �

Pdumped;avgðtÞ
Fundersize

ð2Þ

Fundersize ¼
Pload;max � Pgen;max

Pload;max
ð3Þ

If the generator is able to supply maximum load, then the sys-
tem does not need be as conservative with battery operation. A
flowchart of the ESM decision making for cases where the genera-
tor is able to meet maximum load is shown in Fig. 2. In the case
where the battery is not permitted to charge from the generator,
all charging energy comes from excess PV output, and the diesel
generator will shut down when the PV and battery are collectively
able to supply 125% of expected load between the current point in
time and the expected time when PV output will supply 100% of
load. This approach is used to prevent the generator from charging
the battery just before the daily PV output begins, which would be
a waste of fuel. The excess 25% capacity requirement is to prevent
constant cycling of the diesel generator in periods where PV + bat-
tery are barely able to support load. ESM forecasts future load and
PV output by assuming that they will both follow the same pattern
as the day before. The model then determines whether the current
battery SoC plus forecasted PV will be able to meet 125% of fore-
casted load between the current point in time and when PV is
expected to be sufficient on its own.

When the generator is allowed to charge the battery, it does so
if the battery is able to supply the average load (Pbatt,maxdischarge >
Pload,average, where Pload,average is the average load over the prior
24 h) and the excess fuel used to charge the battery at that moment
is less than the fuel saved in the future by the operation of the bat-
tery (taking into account efficiency losses). In other words, the gen-
erator is only used to charge the battery if there is an expectation
that doing so may allow the generator to shut down in the future,
producing a net fuel savings. This is usually the case, due to gener-
ators being more efficient at higher power output, but highly inef-
ficient (round trip efficiency < 50%) batteries can make battery
charging from the generator unattractive. The net expected fuel
use from charging is calculated using Eq. (4), where Fnet is the
expected net fuel consumption from charging the battery, Pbatt,

max(t) is the maximum rate of battery charging at time t (limited
by either the net generator capacity or the battery capacity), and
gRTE is the round-trip efficiency of the battery.

Fnet ¼ FðPloadðtÞ þ Pbatt;maxðtÞÞ � FðPloadðtÞÞ � FðgRTE � Pbatt;maxðtÞÞ
ð4Þ

In all scenarios, if there is ever a time step where the system is
unable to meet load, the program stops the run and returns a signal
that the studied system is insufficient. In other words, the load is
considered completely inelastic and must be met. This and other
conservative assumptions about microgrid operation were devel-
oped through discussions with actual microgrid developers.

The component modeling in ESM is described briefly below,
with greater detail available in Appendix A. Additionally, the full
ESM code is offered as open-source software to interested parties.
2.1. Battery modeling

The ESM was created to compare the value of energy services
provided by PbA and AHI batteries. To accomplish this, a separate
model was created for each technology to better reproduce their
actual operational capabilities and limitations.

There are many factors affecting the performance and lifetime
of PbA batteries [18], and microgrid and battery modeling efforts
have used a variety of approaches to model their operation. Guasch
and Silvestre offer a complex PbA battery model that includes
many of the behaviors of PbA batteries and provide a method of
populating the many model parameters through battery testing
and cycling [19]. This work also proposes a state-of-health indica-
tor for the battery that includes both temperature and working
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zone elements and is similar to the capacity degradation model
used in ESM. Dufo-López, Lujano-Rojas, and Bernal-Agustín inves-
tigate four different operational models and three different lifetime
models for PbA batteries [20]. They compare modeled PbA life-
times to actual lifetime of PbA batteries in two off-grid PV/PbA bat-
tery deployments with large battery banks experiencing slow and
sometimes infrequent cycling. They find that the Schiffer method, a
sophisticated approach using modeling of battery materials and
chemistry [21], is most accurate for prediction of lead-acid lifetime
and that other approaches tend to overestimate effective lifetime.

HOMER uses a two-tank kinetic battery model [17]. The two-
tank kinetic model is an elegant simplification of battery operation
that includes some observed battery behaviors, such as decreased
effective capacity of batteries at higher charge rates. However, it
is a simplification and does not correctly account for several
important elements of battery operation (illustrated in Section 3).

In the ESM, for both lead-acid and AHI batteries, inefficiency is
divided geometrically between the charge and discharge cycles.
This is done to correctly account for the effects of complex and
non-symmetrical battery cycling, such as long charge cycles cou-
pled with faster discharges. Eqs. (5) and (6) show the method used
to calculate energy and power in and out of the batteries, where
Ebatt,out is the energy discharged from the battery, gRTE is the
round-trip efficiency of the battery, and Ebatt,in is the charge energy
put into the battery. Inverters are scaled to the maximum dis-
charge rate of the batteries and have an efficiency ranging from
10% to 95%, varying as a function of the power being converted
at that time step (inverter efficiency calculations are discussed
further in Appendix A.2).

EbattðtÞ ¼ Ebattðt � 1Þ � Ebatt;outðtÞ �
ffiffiffiffiffiffiffiffiffi
gRTE
p þ Ebatt;inðtÞ=

ffiffiffiffiffiffiffiffiffi
gRTE
p ð5Þ
PbattðtÞ ¼ EbattðtÞ=Tstep ð6Þ

Lead-acid batteries are modeled with several constraints. The
charge/discharge rate is limited to C/4, meaning that the maximum
rate (in W) is 1=4 of the stated capacity (in W h). Due to inefficiency,
this would actually be slightly more than 4 h for a charge (ie, for a
1000 W h battery, maximum charge rate is 250/W, which takes
more than 4 h because less than 250 W h of energy is stored in
the battery each hour).

Capacity fade is an important issue for PbA batteries. Using the
default parameters (see Table 1), ESM models the capacity of the
PbA battery as decreasing by 0.023% for each full cycle equivalent.
At this rate, the battery can achieve 900 cycles at 100% depth of
discharge (or 1800 cycles at 50% DoD, etc.) before it is at 80% of ori-
ginal capacity. Once the battery reaches 80% capacity, it is replaced
by an equivalent battery with the same properties. PbA battery
Table 1
Parameters used in the ESM.

Parameter Value

Diesel price $1.50/L
Discount rate 10% per year
Diesel generator capital cost $500/kW
AHI capital cost $600/kW h
PbA capital cost $200/kW h
PV capital cost $4000/kW
Inverter capital cost $350/kW
Diesel generator lifetime 10 years
PV lifetime 15 years
Inverter lifetime 15 years
Diesel generator must-run time 30 min
AHI maximum charge/discharge rate 8 A
AHI battery lifetime 10 years
PbA capacity fade 0.023% per complete cycle equivalent
PbA replacement At 80% of original energy capacity
efficiency is based on measured efficiency curves (Table A3 in
Appendix A), and is a function of the charge/discharge rate. The
round-trip efficiency (RTE) is 86% at the maximum rate of C/4,
and 92% for a charge below C/24, and linearly interpolated using
the data points in Table A3.

The performance and lifetime of lead-acid batteries are affected
by temperature [18], and many lead-acid battery models include
temperature effects. Lujano-Rojas et al. have found that including
temperature effects on lead-acid batteries can result in a negligible
change for some systems that experience moderate average tem-
peratures [22]. However, many of the most promising regions for
microgrids are in warmer developing countries, where these
effects will be more pronounced. Temperature effects on PbA bat-
teries are modeled in two ways: increased capacity fade at higher
temperatures and decreased energy availability at low tempera-
tures. The nominal capacity fade rate (0.023% per complete cycle)
is doubled for every 10 �C above 25 �C, and halved for every
10 �C below that temperature. Energy availability is a function of
both temperature and charge/discharge rate: at lower tempera-
tures and higher rates, the available energy is reduced. The energy
availability at each point in time is a 2-dimensional linear interpo-
lation between the data points in Table A4 in Appendix A.

For AHI batteries, the operational characteristics are based on a
standard 140 W h battery, used in the current Aquion ‘‘AE1’’ Alpha
battery stacks. This battery is limited to 8 A charge/discharge rate,
with efficiency based on measured data (Table A1 in Appendix A).
The efficiency is a function of both the state-of-charge (SoC) and
the charge/discharge rate of the battery, ranging from a RTE of
94% (at the highest SoC and lowest rate) down to 34% (at the low-
est SoC and highest rate), though both of these conditions are out-
side of typical use cases. AHI battery round-trip efficiency is
calculated at each time step and is a 2-dimensional linear interpo-
lation of the data points in Table A1. AHI batteries do not exhibit
any significant capacity fade with usage, and the model assumes
that capacity is constant. In the model, AHI battery lifetime is lim-
ited to 10 years, after which it is replaced by an equivalent AHI bat-
tery. AHI batteries are currently under cycle testing and show more
than 10,000 cycles with very little capacity fade. As accurate cycle
life data become available, they will be integrated into ESM.

Measured AHI battery performance data supporting these input
assumptions are provided in the Supporting Information. Demon-
stration of AHI performance is ongoing. For the sake of this paper
we use our current best data, however, subsequent testing is ongo-
ing and a separate manuscript currently under review for publica-
tion presents in-depth AHI performance data [23].

The battery model has been validated and calibrated against
actual battery cycling, through least-squares scaling of the battery
parameters (efficiency curves and voltage-SoC function). The
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resulting adjusted values were checked against more complex and
realistic cycling patterns of actual AHI batteries. Fig. 3 gives an
example, comparing the modeled energy state of an AHI battery
with the estimated energy state of an AHI battery under the same
charge/discharge profile. The charge state of the actual AHI battery
cannot be directly measured and is estimated from the voltage of
the battery using voltage/SoC curves (determined from other
testing). The actual battery is similar to the modeled battery, but
demonstrates some charge polarization which shifts the curve up
or down depending on the current charge/discharge state of the
battery.
Time (hours)

Fig. 4. Example output from the ESM, showing 1 day of operation of a 100 kW
diesel generator, a 200 kW h AHI battery, and an 88 kW PV array providing
electricity to a 160 kW max/81 kW average load.
2.2. Cost calculations

The costs calculations are performed after the operational part
of the model is complete. A Net Present Value (NPV) approach is
used for cost calculations. Discounting is applied on a daily basis,
both to correctly accommodate very high discount rates (if applied
by the user) and because the model requires whole numbers of
days of operation. The NPV of recurring operating costs, such as
diesel fuel, are easily calculated using standard discounting calcu-
lations. Capital costs are handled by calculating the daily payment
on the capital, amortized over the life of the unit. This essentially
imagines that loans are taken out for each capital expense at an
interest rate equal to the user-defined discount rate. These daily
payments are then discounted at the discount rate. While this
may appear to be an overly complex way to approach capital costs,
this method allows a fair NPV comparison of capital cost with
operating cost in those cases where the actual timeframe studied
using time series data (days to weeks) is much shorter than the
functional life of the capital investment (years). Note that while
cost calculations assume that a loan is taken out for the capital
investment, this does not have to be the case – this structure is just
a way of calculating the equivalent daily capital cost. In other
words, the purchasing entity should be indifferent between paying
the capital costs upfront and taking a lifetime loan at an interest
rate equal to their discount rate. Diesel generators and PV panels
are modeled as having a fixed lifetime regardless of their operation.

The ESM outputs a variety of useful cost information about the
resulting system, including levelized cost of electricity (LCOE), net
present cost (NPC), upfront and average operating costs divided by
system component, and payback period relative to a generator-
only system. In the results below, we focus on LCOE rather than
NPC, as LCOE is inherently normalized for system scale and is com-
parable with other systems (such as HOMER) which use LCOE as a
primary decision variable. Furthermore, because of the simplifying
assumption that discount rate equals interest rate, relative ranking
by LCOE is always the same as the ranking by NPC.
2.3. Input data

For all scenarios discussed in this paper, the load and PV power
inputs are eighteen days of actual 1-min resolution data from an
existing microgrid system on an island in Southeast Asia, though
any load profile can be used in ESM. The load has an average power
of 81 kW, a maximum of 160 kW, and a minimum of 41 kW. Load
follows the expected daily cycle with peak load occurring in the
evening. The solar PV array has a 16% capacity factor, experiencing
a mix of good and poor solar days, including several days in a row
of very little PV energy production. As might be expected, weaker
solar inputs result in lower PV utilization by the system. While the
ESM is capable of modeling varying temperature effects, a fixed
temperature of 30 �C is used throughout the analysis.

AHI battery cost used in the model is $600/kW h. This value is
higher than the anticipated price when full scale production of this
technology is established. The most important assumptions and
inputs are listed in Table 1.

2.4. Example output

Fig. 4 shows an example output from the ESM, with a 100 kW
diesel generator, a 200 kW h AHI battery, and an 88 kW PV array
providing electricity to a 160 kW max/81 kW average load. In this
system, the generator is almost always at either maximum output
(the most efficient operating point) or off. During the day, the gen-
erator shuts down except for a few short periods when the battery
energy drops below the ‘‘safe reserve’’ level. The LCOE for this
system is 44.7 cents/kW h, with 32.0 cents/kW h due to the gener-
ator and fuel, 8.0 cents/kW h due to the costs of the PV array, and
3.7 cents/kW h for the AHI batteries.

2.5. Sensitivity analysis and optimization

The ESM has higher-level sensitivity analysis and optimization
routines that examine the effect of changes to the system parame-
ters (scale of PV, generator, battery, and ‘‘generator charging’’ bin-
ary) and help to choose the best system under a given set of
parameters and limitations. The optimization routine uses a com-
bination of brute force, simulated annealing, and neighborhood
search to determine the microgrid systems with the lowest LCOE.
Most of the optimization is done by the simulated annealing rou-
tine, which is a serial optimization routine that starts as a ‘‘random
walk’’ and becomes increasingly unlikely to transition to higher-
LCOE systems. In addition to global optimization, a constrained
optimization can also be performed where one or more of the sys-
tem parameters (example: generator size) are held constant. Sensi-
tivity analysis is performed by adjusting one or more input
parameters and running a new optimization under the modified
parameter set. The sensitivity analysis and optimization structure
is described in greater detail in Appendix A.
3. Comparison of ESM to HOMER

HOMER is a useful modeling tool for investigating the scaling
and operation of off-grid systems, but has several weaknesses that
result in a favorable outlook towards the batteries that it models.
This is driven by a few unrealistic assumptions and modeling
approaches: the lack of battery capacity fade in the operational
model, optimistic PbA battery lifetimes, lack of temperature effects
in the battery model, the use of a constant round-trip efficiency,
and a modeling resolution of 1-h. In this section, we discuss the
effect that each of these has on LCOE and compare the output of
ESM and HOMER. To accomplish this, we modified the ESM to
operate with assumptions similar to HOMER and demonstrate that



4 When data are averaged hourly, the maximum load necessarily decreases as a
nction of the short-term variability. The 1-min resolution load data have a
aximum power of 159 kW. When averaged to 1-h resolution, the maximum

ecreases to 127 kW. The difference is due to occasional periods where the load will
crease to 150 kW or more for a few minutes.
5 Because the fuel efficiency curve of a diesel generator is convex (decreasing more
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it gives very similar results. Then we change the ESM assumptions
back to their standard form (one at a time), showing how each
change affects LCOE and system design. The discussion and com-
parison below are focused on PbA batteries because this is the only
energy storage technology currently included in the built-in
HOMER battery models.

3.1. Lack of battery capacity fade in the operational model

In actual operation of a PbA battery, the capacity of the battery
will decrease over time until the battery is replaced (often assumed
to be at 80% of original capacity). Just before replacement, a battery
will be at a lower capacity and is unable to provide the same energy
service that it could when new. For example, if a battery is replaced
when it falls to 80% of original capacity and microgrid operation
requires a certain battery capacity, the battery must initially be
oversized by 25% to maintain the desired capacity at the end of
the battery’s life. HOMER does track capacity fade and uses it to
determine when the batteries in a given system need to be replaced,
but it does not include this in the operational model of a battery. For
simplicity, it instead assumes that the battery operates to the origi-
nal specifications throughout its lifetime, and thus underestimates
levelized costs due to batteries costs by around 20%. This value
works out to less than 25% (the amount of extra battery needed
to ensure a minimum capacity at replacement) because oversizing
a battery by 25% tends to improve the overall system operation and
lower other system costs. For example, a larger battery will be more
efficient due to lower charge rate per cell, can store more renewable
energy, and allows for slightly more efficient generator operation.

3.2. Overly optimistic PbA battery lifetimes

The PbA battery data used in HOMER is based on manufacturer-
reported lifetimes at different depths of discharge (DoDs), but these
lifetimes normally require favorable operation of those batteries.
HOMER’s battery model states that a Hoppecke OPzS PbA battery
will last 9 years under daily 50% DoD cycling or 15 years when
cycled continuously at 20% DoD. But a lifetime of this magnitude
from a PbA battery requires controlled operation of the batteries,
such as limited charge rates, limited weekly cycling, occasional
re-conditioning of the batteries, and controlled temperature, none
of which are included in HOMER’s modeling. For example, the
Hup Solar One battery, a high-performance PbA system, comes with
a 10 year warranty. But this warranty includes significant limita-
tions, such as limiting use to 4 cycles per week and 210 cycles per
year, charging at rate of C/5 to C/10, installation of a metering sys-
tem, and operation within specific temperature ranges [24]. These
limitation are not included in the HOMER battery model, and would
complicate the use of PbA batteries in some energy systems. High-
performance PbA batteries can last 10 or more years, but this life-
time is not possible without careful operation.

3.3. Lack of temperature effects

At higher temperatures, PbA batteries experience faster degra-
dation [18]. At lower temperatures, their ability to deliver energy
is reduced. HOMER accounts for neither of these effects. The ESM
models temperature effects by assuming capacity fade is doubled
for every 10 �C above 25 �C. In a realistic diesel/PV/battery system,3

ESM estimates that a temperature increase of 5 �C results in a 17%
higher levelized cost of electricity (LCOE) and a 42% increase in the
costs due to PbA batteries (from 20.7 cents/kW h to 29.4 cents/kW h).
3 System is an 80 kW diesel generator, 260 kW of PV, and a minimally-sized PbA
battery providing power to a 127 kW max load. At 25 �C, a 967 kW h PbA battery is
needed. At 30 �C, a 1025 kW h PbA battery is needed.
In some microgrids, batteries can be stored in a climate-con-
trolled area at little or no cost, and temperature effects would
not be a concern. But many of the applications for off-grid systems
are in warmer areas of the world without easy access to climate
control. While it is possible to add a climate control system for
PbA batteries in hot environments, HOMER does not include this
in the system model. The costs and power consumption of such a
system would have to be added to the results. However, estimating
the costs and load resulting from a climate control system is com-
plicated because they are both affected by the design of the battery
storage facility, which itself may be a compromise between climate
control power consumption, capital costs, and battery perfor-
mance. Because HOMER includes neither the temperature effects
on batteries nor the cost of climate control, it is unable to accu-
rately represent any battery operation scenario in climates that
diverge from standard battery operating temperatures.

3.4. Use of a constant round-trip efficiency

HOMER uses a round-trip efficiency (RTE) value that is constant,
while most storage technologies have an efficiency that is a func-
tion of charge/discharge rate and other factors. By making this
assumption, HOMER neglects the fact that systems with heavily
cycled batteries will result in a lower RTE and require either larger
batteries or larger energy sources in order to meet the same load.

As an example, we used ESM to model a system where PbA bat-
teries are used to optimize the operation of a diesel generator (Sys-
tem is a 100 kW diesel generator and 400 kW h of PbA batteries
providing power to a 127 kW max load.). In this application, the
batteries are cycled at high charge/discharge rates and a constant
RTE underestimates the cost due to batteries. When a variable
RTE (based on the charge/discharge rate) is used in ESM rather than
an average RTE (the RTE for a 12-h rate), the fuel consumption
increases by 60%, driving the overall system costs up by 40%. This
result is extreme because this system operates the batteries at
higher rates (up to C/4) almost all of the time, which is uncommon.
But any system that spends more time operating at higher rates will
result in an underestimate of battery or fuel costs from HOMER.

3.5. Modeling resolution of 1 h

HOMER uses a time resolution of 1 h for system operation. This
resolution allows HOMER to examine daily variability while being
able to quickly run many scenarios. But there are relevant sub-
hourly phenomena, such as variability in load and PV output that
are ‘‘averaged out’’ at an hourly level. For example, when the 1-
min resolution load data we use is averaged out to 1-h and only
a diesel generator is used to meet load, HOMER reports that the
average LCOE is 39.9 cents/kW h, while the ESM reports that it is
39.7 cents/kW h. But when the original 1-min data are used and
no other changes are made to the modeling, the ESM reports an
LCOE of 50.3 cents/kW h. This 25% increase is due to two effects:
the need for a larger diesel generator to meet the actual maximum
load,4 and increased fuel consumption due to sub-hourly
fluctuations.5
pidly at lower power output levels), an average power output always has a higher
fficiency that the average of the efficiencies at the actual power output levels (unless
e power output is constant). Thus, a generator with an output that fluctuates
mmetrically around an average value over an hour will use more fuel than a

enerator that operates at that average value for an hour.
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Fig. 5. Estimated cost of batteries in example diesel generator/PV/PbA battery
system as modeling assumptions are modified, as estimated by ESM. Under
assumptions similar to those used in HOMER, ESM gives an estimated battery cost
contribution of 3.3 cents/kW h (compared to HOMER’s estimate of 3.4 cents/kW h).
ESM uses a set of assumptions that account for several important details of PbA
battery operation. When these are included, the battery costs increase to 7.0 cents/
kW h (or 5.2 cents/kW h without the temperature adjustment). ESM estimates
overall system LCOE at 40.4 cents/kW h when using the same assumptions used in
HOMER (HOMER estimates LCOE for this system as 40.7 cents/kW h). Under the
more realistic assumptions, LCOE increases to 44.1 cents/kW h.
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For a more complex system with a diesel generator, PV array,
and batteries, the effects of changes in time resolution are smaller
but relevant to battery modeling. In a example diesel/PV/PbA bat-
tery system with a large amount of solar,6 switching from 1-min to
1-h resolution increases LCOE by only 3%. But the optimal amount of
batteries in this system at a 1-min resolution is more than double
(236%) the optimal amount at a 1-h resolution. By examining sys-
tems at a 1-h resolution, any microgrid modeling package will over-
estimate the capabilities of energy storage in the presence of
fluctuating photovoltaics, and underestimate the amount of storage
required. Furthermore, forecasting error for PV output will be much
higher at 1-min resolution than at 1-h resolution [25], making the
design of forecasting techniques becomes more important when
higher time resolution is used.

3.6. Example of combined effects

While each of the factors described above are individually
minor, they can add up to a significant difference in results. Not
all of these will apply for a given system (for example, systems
in climate controlled locations will not encounter temperature
effects, and the use of a constant RTE is valid for PbA batteries
cycled near average rates). However, several will apply for most
realistic examples. To illustrate this, we start with a modified ver-
sion of the ESM that uses the same modeling approach as HOMER,
then introduce the more complex modeling elements one at a time
and observe the change in estimated LCOE. Our example diesel
generator/PV/PbA battery system uses a 100 kW diesel generator,
127 kW PV array, and 400 kW h of Hoppecke 8 OPzS 800 PbA bat-
teries to meet a load with max power of 158 kW (in 1-min resolu-
tion) or 127 kW (in 1-h resolution). For this system, HOMER
estimates the overall LCOE as 40.7 cents/kW h and the cost due
to batteries as 3.4 cents/kW h. When using the same modeling
approach and assumptions as HOMER, the ESM estimates the over-
all LCOE as 40.4 cents/kW h, with PbA batteries accounting for
3.3 cents/kW h. But as the ESM modeling approach is slowly
adjusted, the LCOE increases to 44.1 cents/kW h and costs due to
batteries rise to 7.0 cents/kW h (Fig. 5).

The assumptions are changed in the order shown in Fig. 5, from
left to right. Reducing the battery lifetime throughput from 1713
complete cycles to 1400 complete cycles (to account for the non-
ideal cycling profiles the battery is exposed to) increases the aver-
aged cost of the batteries by 0.6 cents/kW h. Adding capacity fade
into the operational model (rather than just the cost model)
increases averaged cost of the battery by another 1.0 cents/kW h.
Increasing ambient temperature from 20 �C to 25 �C to represent
operation in a warmer climate increases averaged costs of the bat-
teries by 1.8 cents/kW h. Modeling efficiency that varies by charge/
discharge rate rather than as a fixed efficiency results in an
increase of 0.1 cents/kW h. Finally, using a time resolution of
1 min rather than 1 h increases the averaged battery costs by
0.2 cents/kW h.

This example illustrates the importance of battery modeling
assumptions, where more realistic modeling more than doubles
the battery cost. Fig. 5 gives one example of how these assump-
tions affect system costs, but the effect of these assumptions will
vary significantly between different energy systems, depending
on system design and load patterns. More sophisticated modeling
is not always superior, but we believe that ESM has a more realistic
modeling approach for batteries operating in microgrid systems.

The increase in levelized battery costs from this example is
more than 100%, but the LCOE changes from 40.4 cents/kW h to
6 159 kW max load at 1-min resolution, 127 kW max load when averaged to an
hourly resolution. System is a diesel generator, 126 kW PV, and batteries. The scale o
the generator and batteries are optimized for lowest system LCOE.
f

only 44.1 cents/kW h (9% increase). The effect that these modeling
assumptions have on overall LCOE is relatively small, indicating
that they have little effect on estimating overall system costs.
However, for users that are particularly interested in energy stor-
age economics, HOMER’s modeling of storage may be skewed
towards underestimating the costs due to batteries and result in
sub-optimal microgrid system design.

4. Comparing lead-acid and Aqueous Hybrid Ion batteries in
ESM

In addition to its ability to calculate the LCOE of different micro-
grid systems, the ESM can be used to investigate a variety of
higher-order questions about battery valuation and optimal sys-
tem design under different scenarios and limitations.

Table 2 shows the optimal microgrid system design, levelized
cost of electricity (LCOE), and net present cost (NPC) under a vari-
ety of system design limitations. With the base-case parameters
and the standard load and PV profiles, the best system under either
battery technology uses an undersized generator with a battery to
provide peaking capability and a relatively small PV array to defer
some fuel use. Under either battery technology, running only a die-
sel generator is more expensive than a diesel/battery system, a sys-
tem where the generator is constrained to equal maximum load, or
the optimal generator/PV/battery system. The last two rows of
Table 2 show the optimal system when a diesel generator is not
permitted. The ‘‘PV/battery only’’ row gives results with the actual
PV data (described above), while the ‘‘Perfect PV/battery only’’ row
uses a synthesized PV power output time series that has a perfect,
cloudless pattern – the ideal PV energy production. The significant
differences between these two rows illustrates the costs associated
with unreliability of the solar energy source. The actual PV input
data has several days in a row of very little energy production,
resulting in a system that uses three times as many solar panels
and five times as many batteries as the ‘‘perfect PV’’ system, in
order to meet the same load. The PV/battery system is the only sys-
tem more expensive than diesel-only.

Fig. 6 shows the LCOE of optimal AHI and PbA systems at vari-
ous diesel prices. At a low diesel price of $0.50/L, no PV is used for
either battery technology, and PbA batteries are a cheaper option.
As the diesel price rises, for either technology, the ESM chooses to
offset more of the diesel generation with solar PV energy. As the
quantity of PV in the system increases, the need for storage also
increases and more batteries are purchased. The differences
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Table 2
The optimal microgrid system, identified by ESM system optimization under various constraints and using the base-case values for all parameters. The ‘‘perfect’’ PV/battery
system has the same constraints as the PV/battery system except that the PV output is a nearly perfect, cloudless pattern for the entire duration of the modeled period.

AHI PbA

LCOE
(cents/
kW h)

Net
present
cost ($)

Generator
size (kW)

PV array
size (kW)

Battery
size
(kW h)

LCOE
(cents/
kW h)

Net
present
cost ($)

Generator
size (kW)

PV array
size (kW)

Battery
size (kW h)

Overall best system 54.75 3,533,000 96,700 127,600 189,900 58.99 3,806,000 104,600 128,600 219,400
Generator only 71.63 4,622,000 159,500 0 0 71.63 4,622,000 159,500 0 0
Generator/battery only 58.33 3,764,000 92,200 0 173,600 63.62 4,105,000 85,400 0 1,107,700
Generator constrained to

equal maximum load
63.06 4,069,000 159,500 170,300 286,500 66.07 4,263,000 159,500 136,000 100,600

PV/battery only 197.37 12,736,000 0 962,800 8,134,300 210.09 13,557,000 0 906,200 16,820,400
‘‘Perfect’’ PV/battery only 54.92 3,544,000 0 392,700 1,705,500 82.94 5,352,000 0 357,200 3,099,100
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between AHI and PbA are amplified as diesel price is increased.
This is because there are more batteries at higher diesel prices
and these batteries are cycled more frequently, due to increased
PV energy use. While the ESM allows for diesel to be eliminated
from the system completely, it does not choose to do so because
of the intermittent solar resource. There are several consecutive
days of poor solar production and keeping the generator in the sys-
tem is still the best option. However, the increase in PV/batteries
displaces much of the diesel generation in the cases where diesel
is more expensive. When diesel is $2.50/L, the optimal system
consumes about half as much diesel as it does when the price is
$0.50/L.

Fig. 7 shows LCOE for AHI and PbA systems at different PV
prices. Decreasing the PV price results in decreased fuel usage,
increased PV and battery deployment, and overall decreased
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cost of PV decreases at lower PV prices, the systems with lower PV prices have more in
prices. But the decrease in PV prices does not drive as much system
changes as increases in diesel price (see Fig. 6). For example,
decreasing the PV price from $4/W to $1/W results in less than a
doubling of installed PV for either storage technology. The issue
is partly that installation of PV has diminishing returns: when a
small amount of PV is added to a generator system, the PV energy
can be directly used to offset diesel consumption. As more PV is
added, the excess solar energy must eventually be stored, requiring
more batteries, which are themselves subject to efficiency losses
and significant capital costs.

Fig. 8 shows the effect of temperature on the LCOE of optimal
systems. As the average temperature of the battery environment
increases, PbA systems become more expensive due to faster
degradation of the batteries. In reality, a system developer may
want to install a climate control system for the PbA batteries to
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stalled PV (at a lower unit cost).
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control the battery degradation. This decision, and the costs of
temperature control for the batteries, are not considered in the
ESM.

Fig. 9 shows the LCOE of AHI and PbA systems at different
discount rates. Higher discount rates tend to favor PbA for two rea-
sons. First, the batteries themselves are less capital intensive than
AHI. Second, optimal PbA systems tend to rely less on PV/batteries
and more on diesel generation than AHI. At higher discount rates,
the PbA systems eliminate the PV completely and replace it with
increased diesel use, which mainly results in operating costs rather
than an upfront capital costs.

Fig. 10 compares the average daily battery cycling in optimal AHI
and PbA systems. In almost all cases, the optimal system configura-
tions result in greater cycling of AHI batteries. Across the 25 scenar-
ios examined in Figs. 6–9, the AHI batteries were cycled an average
of 72% more each day. This is because overuse of PbA batteries will
cause capacity fade, while AHI does not have a similar constraint.

Fig. 11 shows the LCOE advantage of AHI versus PbA as a func-
tion of average battery cycling. Under conditions that prompt
increased operation of batteries, such as greater amounts of PV
in the system, the LCOE advantage of systems with AHI batteries
tends to be increased. PbA batteries are preferred in systems where
the batteries are lightly used.

All of the results above demonstrate that the optimal AHI
system has a different design than the optimal PbA system. To
illustrate the importance of this difference, the ESM was used to
calculate the LCOE of a series of microgrid systems that were
optimized for PbA but use AHI batteries instead. In each case, the
PbA batteries are replaced by an equal capacity of AHI batteries.
This essentially imagines AHI as a ‘‘drop-in replacement’’ for PbA
microgrid systems. Table 3 shows the percent increase in LCOE
for these systems, relative to the optimal AHI system under those
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PbA capacity fade is accelerated, resulting in decreased lifetime and increased overall co
prices. These systems have an LCOE that is 8–26% higher than
the optimal AHI system and 0–16% higher than the optimal PbA
system (not shown). These increases in LCOE represent the cost
of inefficient system design, and show the importance of
redesigning microgrid systems for new storage technologies rather
than treating them as equivalent drop-in replacements.
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Fig. 12 is a sensitivity plot of AHI properties, showing the
change in optimal system LCOE as different battery properties
are modified. The steeper lines indicate parameters where small
changes in input assumptions result in large changes in system
LCOE. The figure shows that efficiency improvements can cause
particularly large LCOE improvements in AHI microgrids.
Decreased cost and increased lifetime also contribute significantly
to improved LCOE. Battery capacity increases do not result in
improved LCOE because the system is power limited rather than
energy limited.
5. Discussion

At least for the system configurations and load/PV profile inves-
tigated in this study, ESM estimates that AHI has a small LCOE
advantage over PbA. There are a number of factors that contribute
to this result. Most importantly, the longer lifetime of AHI batteries
tends to bring their discounted costs to a level closer to PbA. But this
does not account for the entire difference. At a 10% discount rate,
amortized annual costs of one kW h of AHI over 10 years are still
20% higher than the amortized annual costs of one kW h of PbA that
lasts 3 years. Because AHI batteries can be cycled more deeply and
do not experience significant capacity fade, fewer nominal kW hs
are needed to deliver the same energy service. This need for fewer
nominal kW h of AHI to provide the same energy service as a larger
PbA battery is an important element to the AHI battery economics.

In all of the examined scenarios, ESM estimates that the gener-
ator-only option was inferior to a generator/battery system. This
Table 3
LCOE increase of AHI ‘‘drop-in replacement’’ systems relative to optimal AHI systems, for sy
has been optimized for PbA batteries (at a particular combination of diesel and PV prices
batteries. Because these system have been optimized for a different technology, the LCOE is
that microgrids using AHI produce electricity at lower LCOE. The scenarios marked ‘‘Insuffic
points in time.

LCOE increase Diesel price

$0.50/L $1/L

PV price $1/W 23% 19%
$2/W 19% 20%
$3/W 10% 18%
$4/W 12% 18%
$5/W 8% 10%
is primarily due to the value of allowing the generator to be under-
sized and therefore more efficient. Because the generator efficiency
decreases at partial load, full-size or oversized generators generally
operate at an inefficient output, while an undersized generator can
be operated at full output most of the time (see Fig. 4 for an exam-
ple). This observation is dependent on a varying load profile, such as
the one used in this work which has a peak load more than three
times higher than minimum load. This load profile comes from an
actual microgrid system, but other systems with more consistent
load would prompt lower use of batteries for generator optimiza-
tion. In real deployments, this ‘‘generator optimization’’ is generally
not done with PbA batteries, as PbA systems are normally designed
with a goal of reducing unnecessary battery cycling. AHI batteries
are not negatively affected by continuous cycling and could provide
this service effectively, but doing so would require microgrid devel-
opers to re-design their systems and to have confidence in the reli-
ability and cycle life of the AHI technology.

AHI is not a drop-in replacement for PbA, and the results in
Table 3 illustrate the importance of redesigning microgrid systems
when changing between energy storage technologies. Across the
many scenarios studied above, the optimal AHI system tends to
use more solar PV and less diesel fuel than the optimal PbA sys-
tems. Additionally, the optimal AHI systems cycle the batteries
72% more than the optimal PbA systems. In order to extract the
most benefit from AHI batteries, microgrid developers will need
to create systems that exploit the different capabilities of AHI, a
process that will require further testing and development.
stems at different diesel and PV prices. ‘‘Drop-in replacement’’ refers to a system that
), but where those batteries have been replaced with an equivalent capacity of AHI
higher than for an optimal AHI system in all cases, despite the results above showing

ient’’ are cases where the AHI drop-in replacement system is unable to meet load at all

$1.50/L $2/L $2.50/L

12% 17% Insufficient
11% Insufficient 26%
13% 8% Insufficient
11% 9% 9%
13% 15% 8%
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AHI batteries were found to have a larger LCOE advantage in
scenarios where batteries are cycled more deeply and more fre-
quently. As discussed above, the amortized costs of AHI are still
significantly higher than PbA and AHI only has an advantage in sys-
tems where frequent battery cycling is valuable. In cases where
batteries are used more for backup than constant cycling, PbA is
a better choice. One example is a PV/battery system in a location
with poor solar resource. In cloudy locations, there can be frequent
several-day periods with very little energy coming from the PV
panels and, without a generator, the batteries must be scaled so
that they can meet load for several days in a row. This results in
very large batteries that are lightly cycled most of the time, condi-
tions that result in PbA being the superior choice.
6. Conclusions

ESM is a time-series microgrid modeling tool that is designed to
perform realistic battery modeling and economic evaluation. The
ESM structure is similar to the popular HOMER microgrid software,
but attempts to improve upon HOMER’s battery modeling
approach. The ESM battery modeling includes important elements
of battery operation such as operational capacity fade, variable effi-
ciency based on charge rate, temperature effects, and fine time res-
olution. We compare the results of ESM and HOMER, and show
that they produce similar results when ESM uses the same battery
modeling assumptions as HOMER. However, ESM produces signif-
icantly different results under more realistic battery modeling.

ESM was used to study the economics and optimal system
design of AHI-based microgrids, and these results are compared
to PbA-based systems. Across several realistic scenarios, the ESM
estimates that AHI-based generator/PV/battery systems have
lower LCOE and NPC than PbA-based systems by a small margin,
but with a higher upfront cost. AHI appears to be a better comple-
ment to solar PV in generator/PV/battery systems, and scenarios
that favor the use of PV (low PV prices, low discount rates, and high
diesel prices) tend to increase both the LCOE advantage of AHI and
the optimal amount of deployed PV. Depending on the scenario,
optimal AHI-based systems have a 5–20% lower LCOE and use
10–30% more PV than optimal PbA systems. The small advantage
in AHI LCOE relies on identifying scenarios where frequent battery
cycling is valuable. Applications that require batteries to serve as a
backup energy service rather than a cycling service will find that
PbA batteries are a better choice.

We also investigated the potential for AHI batteries to serve as
‘‘drop-in’’ replacements for PbA batteries in existing or pre-designed
PbA microgrids. In these cases, when the microgrid is not designed
in accord with AHI capabilities and limitations, AHI is a poor replace-
ment for PbA, resulting in LCOE increases of 10–20%. Because of dif-
fering capabilities, microgrids using AHI batteries should be
designed and operated differently than similar PbA microgrids.
7. A note on the Energy System Model

The authors offer the ESM as open-source software for use by
other researchers or commercial entities involved in microgrid
development. Any inquiries into the system should be directed to
the corresponding author. As a ‘‘living’’ model, the ESM experiences
frequent updates and improvements, incorporating new data or
functionality.
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Appendix A. ESM model structure

A.1. System operation

The core ESM model can input different amounts of diesel gen-
eration, solar PV (or any other zero marginal cost source, including
wind/solar combinations), and battery. The model operation is
flexible enough to account for any combination of these, including
cases where only one or two are present, such as PV/battery or die-
sel/battery systems. The core ESM model outputs the time-series
operation of the system elements and a set of financial calculations
based on net present cost of system operation.

The model uses a time-series operation and attempts to choose
the most prudent output for the current time step without any
look-ahead. The model does use past operation to predict future
operation, by assuming that the next day will look approximately
like the previous day. However, the main focus of the model is
meeting current load in the most efficient manner. This strategy
does not necessarily result in a strictly optimal operation of the
system, but better reflects a more conservative and realist opera-
tion of the system components, which we decided upon after dis-
cussion with microgrid developers.

At each time step, the model first uses all of the available PV
energy, first to supply load and then to charge batteries if the PV
is already satisfying the load. If there is excess PV energy, it is
‘‘dumped’’ and this dumped energy is also tracked (for reference
only). The operation of the battery and generator depends on
two factors: whether the generator is allowed to charge the battery
(this is set at the start of the run, configurable by the user), and
whether the generator is able to cover the maximum expected
load. The maximum load is taken as the maximum load of the
input load data – this is the one instance in which the model is per-
mitted to ‘‘look ahead’’.

If the generator is unable to always supply load and cannot
charge the battery (a somewhat unrealistic case), then the battery
is charged only from the PV, and the battery attempts to supply net
load whenever net load is above the generator’s maximum output.
When the generator cannot supply max load but is allowed to
charge the battery, it attempts to keep the battery at maximum
charge, using any excess capacity to charge the battery as long as
the generator is running. In either of these cases, the diesel gener-
ator will shut down when the PV and battery are collectively able
to supply the load, though in the case where the generator is not
large enough to cover maximum load, the generator turns on again
whenever the battery goes below a safe level (normally around 50%
state-of-charge).

If the generator is able to supply maximum load, then the sys-
tem does not need to be as conservative with the battery operation.
In the case where battery is not permitted to charge from the gen-
erator, all charging energy comes from excess PV output, and the
diesel generator will shut down when the PV and battery are col-
lectively able to supply the load. When the generator is permitted
to charge the battery, it does so whenever the battery is able to
supply the average load and the excess fuel used to charge the bat-
tery now is less than the fuel saved in the future by the operation
of the battery (taking into account efficiency losses). In other
words, the generator should only be used to charge the battery if
there is an expectation that doing so may allow the generator to
shut down in the future and doing so would save some fuel (this
is the case most of the time, but very inefficient batteries can make
battery charging from the generator unattractive).



Table A2
Efficiency curve for inverters. Charge/discharge rate is relative to the maximum
inverter power input/output, which is set to equal maximum battery power.

Charge/discharge rate 100% 80% 60% 40% 20% 0%
Efficiency 91% 92.3% 93.4% 94.5% 95.4% 10%

Table A3
Round-trip efficiency of PbA batteries as a function of charge rate.

Charge/discharge rate (C rate) C/4 C/8 C/12 C/24
Round-trip efficiency 86% 88% 89% 91%

Table A4
Stored energy availability for PbA batteries as a function of charge/discharge rate and
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In the actual ESM model, the operation of the generator (based
on all of the rules above) is determined first, then the PV and bat-
tery operation is calculated. The generator has a ‘‘must-run time’’,
which is set at 30 min (though configurable by the user) and has no
ramping limitations or low operating limit. The generator is mod-
eled with a linear fuel consumption curve, and this curve is scaled
linearly with generator size. The fuel consumption curve is defined
in the following way: for every kW of generation capacity, the gen-
erator uses 0.34 L/h at maximum output and 0.125 L/h at zero out-
put. Fuel consumption at intermediate outputs are interpolations
between these two points.

In all cases, if the system encounters a point where it is simply
unable to meet load, the program stops the run and returns a signal
that the studied system is ‘‘insufficient’’. In other words, the load is
completely inelastic and must be met for the entire study period.
temperature.

C/4 (%) C/10 (%) C/24 (%)

60 �C 83 99 108
50 �C 82 98 107
40 �C 81 97 106
30 �C 78 96 105
20 �C 75 92 101
10 �C 69 88 95
0 �C 63 80 88
�10 �C 53 70 77
�20 �C 45 55 63
A.2. Battery modeling

The ESM was created with the explicit intention to examine
battery operation and economics for microgrids. The initial version
of the ESM is focused on comparing AHI and PbA battery technol-
ogies. In order to achieve this, separate battery models were cre-
ated for AHI and PbA batteries, reflecting the technical
characteristics of the technology.

Battery inefficiency is split evenly between the charge and dis-
charge cycles. As an example, at a round-trip efficiency of 80%, if
you put 1 W h into the battery, 0.89 W h of energy is actually
stored in the battery. When you take out that 0.89 W h, you actu-
ally receive = 0.8 W h, giving you the RTE of 80%. This strategy
allows the model to account for differing rates for charging and
discharging.

For AHI, the battery efficiency is a function of both the state of
charge and the charge/discharge rate. Table A1 shows the round-
trip efficiency (RTE) of AHI batteries used in the ESM. Actual RTE
values are interpolations between the values shown in this table.
The AHI batteries have a usable voltage range of 1.6–7.6 V, and a
maximum current input/output of 8 A for each 140 W h battery
pack. The AHI batteries do not experience any significant capacity
fade or temperature effects, and these are omitted from the battery
model.

Inverters are scaled to the maximum battery discharge and
have an efficiency curve as shown in Table A2.

Lead-acid batteries have a maximum charge/discharge rate of C/
4. Capacity fade of PbA is tracked in the model and adjusted at each
time step. The capacity of the PbA battery decreases by 0.023% for
each full cycle equivalent (ie, two 50% charge/discharges or ten 10%
charges and a full discharge are all considered one ‘‘full cycle
equivalent’’). Once the battery capacity falls to 80% of the original
capacity, it is replaced by an equivalent battery with the same
properties. PbA capacity fade rate is doubled for every 10 �C above
25 �C, and halved for every 10 �C below 25 �C.
Table A1
Round-trip efficiency values for AHI battery, as a function of battery voltage and
current. The operating voltage of an AHI battery ranges from 1.6 to 7.6 V, and the
maximum suggested charge/discharge rate is 8 A. Towards top-of-charge, the battery
efficiency drops to 1% as continuous energy input brings the voltage asymptotically to
maximum charge. These data are for a battery with a 140 W h capacity.

1.6 V 3.9 V 4.2 V 5.3 V 5.7 V 6.4 V 7.3 V 7.6 V

0 A 84.1% 90.5% 91.4% 92.5% 93.0% 93.1% 94.0% 1.0%
2 A 73.8% 81.8% 83.4% 85.1% 86.1% 86.7% 88.3% 1.0%
4 A 56.7% 70.7% 73.6% 76.5% 78.3% 79.3% 82.0% 1.0%
6 A 43.1% 61.3% 65.0% 68.7% 71.1% 72.5% 76.0% 1.0%
8 A 32.1% 53.3% 57.6% 61.8% 64.7% 66.3% 70.3% 1.0%
PbA round-trip efficiency is a function of charge/discharge rate
(Table A3). For charge/discharge below the C/24 rate, the 91% RTE
value is used.

PbA also has limits on the available discharge energy based on
temperature and charge rate – at higher rates and lower tempera-
tures, some of the stored energy is unavailable (Table A4). As an
example, at a rate of C/4 and a temperature of 20 �C, only 75% of
the stored energy is available. This means that the battery cannot
go below 25% state of charge at this temperature and rate. Since
the system cannot control the temperature, the battery must dis-
charge at a slower rate in order to access the stored energy. Some
of the values in Table A4 are above 100%, indicating that the bat-
tery can discharge more than the nominal capacity of the PbA bat-
tery at higher temperatures and lower rates.
A.3. Cost calculations

The costs of operation are calculated after the operation phase
is complete and an NPV calculation approach is used. Discounting
is done on a daily basis, both to correctly accommodate very high
discount rates and because the model requires whole numbers of
days of operation. Capital costs are handled by calculating the daily
payment on the capital, amortized over the life of the unit. This
essentially imagines that loans are taken out for each capital
expense at an interest rate equal to the discount rate, and that
these loans are amortized and paid off daily. These daily payments
are then themselves discounted at the discount rate.

Diesel generators, inverters, and PV panels are modeled as hav-
ing a fixed lifetime regardless of their operation. AHI batteries cur-
rently have a fixed lifetime, regardless of operation. PbA battery
lifetime is based on the capacity fade of the battery, and PbA bat-
teries are replaced when capacity drops to 80% of original capacity.
A.4. Higher-level optimization and sensitivity analysis

The core ESM model inputs a set of parameters and a system
design (a certain quantity of generator, PV, and battery, and a ‘‘gen-
erator charging allowed’’ binary) and calculates the operational
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Fig. A1. Diagram of optimization routine used to identify optimal system designs
for a given set of inputs.
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and then the financial characteristics of the system. In many cases,
the user is interested in finding an optimal system design with a
given set of price and operational parameters or examining how
the optimal system design (or other characteristics) changes as
input parameters are changed. The high-level functions of the
ESM model include routines that perform both of these operations.

ESM uses a combination of simulated annealing, uphill climb,
and brute force optimization techniques to find optimal system
design (Fig. A1). The ESM optimization routine first uses a simu-
lated annealing algorithm to seek optimal system designs, given
a particular set of inputs. It does this by first examining a ‘‘nearby’’
system to the currently chosen system. The optimizer has four
parameters to vary: generator size, PV size, battery size, and a bin-
ary flag that determines whether the battery can be charged from
the generator. The optimizer identifies a ‘‘nearby’’ system by
choosing a random point that has a value within 5% of the current
system for the three continuous variables and randomly chooses a
0 or 1 for the ‘‘generator charging’’ binary. If this ‘‘nearby’’ system
has a lower levelized cost of electricity (LCOE), then the optimizer
accepts the new system as the current choice (Eq. (A2)). If the new
system has a higher LCOE, then the optimizer chooses it with a
probability based on how much higher the LCOE is and how many
runs have been completed (Eq. (A3)). In Eq. (A1), T(x) is the simu-
lated annealing ‘‘temperature’’, which decreases linearly from a
starting temperature (To, set to 0.02) down to zero during the last
run. Variable x represents the current run number and n is the total
number of runs. Simulated annealing optimization was created in
analogy to the annealing of metals, and the ‘‘temperature’’, which
decreases monotonically, dictates the probability that the program
will choose a system with higher LCOE. In (A2) and (A3), P(transi-
tion) is the probability that the routine transitions to the new sys-
tem over the currently chosen system. The user can input a ‘‘target
time’’ (in s) for the desired duration of the system optimization.
This time affects the number of examined systems (n, in Eq.
(A1)) that the simulated annealing routine examines. However,
we limit n to be greater than 4000 to allow the search routine to
get to a near-optimum.

TðxÞ ¼ To 1� x
n

� �
ðA1Þ

PðtransitionÞ ¼ 1 if LCOEðxÞ 6 LCOEðchosenÞ ðA2Þ

PðtransitionÞ ¼ e½LCOEðxÞ�LCOEðchosenÞ�

TðxÞ if LCOEðxÞ > LCOEðchosenÞ

ðA3Þ

At the start of the optimization, the search routine is very likely
to transition to an inferior system, and is essentially a random
walk. But as the optimization progresses, the ESM is increasingly
likely to choose only systems that have a lower LCOE than the cur-
rent choice. This allows the ESM to initially search a diverse and
rugged terrain and eventually focus only on changes that improve
LCOE. The simulated annealing search concludes with a system
that is at least a local optimum and is likely to be close to the global
optimum. Earlier attempts with ‘‘uphill climb’’ routines discovered
that the search terrain is ‘‘rough’’ and that the best solutions border
a forbidden area in the search space (where the proposed system is
insufficient to meet load). This results in what is effectively a rug-
ged Pareto frontier of possible best systems. When using the search
parameters described above, the simulated annealing algorithm
was able to efficiently traverse this frontier to the region of lowest
LCOE.

Once the simulated annealing search has produced a result, fur-
ther refinement of the system is done via a local ‘‘uphill climb’’
search. This search examines 54 (3 � 3 � 3 � 2) nearby neighbors
and then transitions to the one with the lowest LCOE that is also
lower than the current LCOE. Neighbors are chosen by adding a
small amount, subtracting a small amount, or not changing each
of the three continuous variables and trying both values for the
binary flag (Eq. (A4)). The delta values are determined using Eqs.
(A5)–(A7)). If none of those 54 neighbors have a lower LCOE, then
the system goes to the next level of resolution and examines all 54
neighbors at that level of resolution. When the system reaches the
highest level of resolution (limited to six levels), it starts the entire
process over at the lowest resolution level, and repeats this larger
loop until it progresses through all resolution levels without a tran-
sition to a new system. This is performed in case fine tuning of the
system at high resolution allows for larger changes to occur at low
resolution.

Si ¼ Si þ f0;Deltai;�Deltai;g for continuous variables ðA4Þ

Deltagen ¼
Pload;max

ð3:1Þrþ1 ðA5Þ

DeltaPV ¼
20 � Pload;max

ð3:1Þrþ1 ðA6Þ

Deltabatt ¼
10 � 24 � Pload;average

ð3:1Þrþ1 ðA7Þ

Sensitivity analysis is performed by changing one or more input
parameters and then running a new optimization for each change
in parameters. This allows the user to investigate, for example, the
effect on LCOE of increasing diesel prices.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.enconman.2014.
10.011.
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