

Available online at www.sciencedirect.com

Energy

Energy Procedia 37 (2013) 869 - 876

GHGT-11

¹³C-NMR Spectroscopic Study on Chemical Species in Piperazine–Amine–CO₂–H₂O System before and after Heating

Miho Nitta^a, Masaki Hirose^a, Toru Abe^a, Yukio Furukawa^{a,*}, Hiroshi Sato^b, Yasuro Yamanaka^c

^a Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, Shinjukuku, Tokyo 169-8555, Japan ^b Research Laboratory, IHI Corporation, 1, Shin-nakahama-cho, Isogo-ku, Yokohama 235-8501, Japan

^c Energy Operations, IHI Corporation, 1-1, Toyosu 3-chome, Koto-ku, Tokyo 135-8710, Japan

Abstract

Chemical reactions associated with the absorption of CO_2 into aqueous solutions of blends of piperazine (PZ) with *N*-methyldiethanolamine (MDEA), etc. were studied by ¹³C-NMR spectroscopy. The coexistence of PZ and MDEA enhanced the initial apparent rate of $HCO_3^{-7}/CO_3^{2^-}$ formation. This result can be explained by considering that PZ monocarbamate rapidly formed works as an organocatalyst in the formation reaction of HCO_3^{-7} . Concentration changes of chemical species in CO_2 -absorbed aqueous amine solutions upon heating (80 °C, 30 min) were studied by ¹³C-NMR spectroscopy. Carbon dioxide regeneration originates mainly from $HCO_3^{-7}/CO_3^{2^-}$, and not from carbamate and carbonate.

 $\ensuremath{\textcircled{}}$ 2013 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of GHGT

Keywords: ¹³C-NMR; amine; piperazine; carbamate; carbon dioxide.

1. Introduction

Aqueous solutions of alkanolamines are widely used as absorbers for removing CO_2 from flue gas of fossil-fueled power plants [1]. An aqueous solution of an alkanolamine absorbs CO_2 chemically at room temperature and releases CO_2 at high temperature. Primary amines such as 2-aminoethanol (MEA), 2-amino-2-methyl-1-propanol (AMP), etc., secondary amines such as 2-(isopropylamino)ethanol (IPAE), etc. and tertiary amines such as *N*-methyldiethanolamine (MDEA), 1-dimethylamino-2-propanol

^{*} Corresponding author. Tel.: +81-3-5286-3244; fax: +81-3-3208-7022.

E-mail address: furukawa@waseda.jp.

(DMA2P), etc. were used as potential candidate absorbers. Their chemical structures are shown in Fig. 1. Since a single amine solution did not show high performance, a blend of two or three amines was used as an absorber. In particular, piperazine (PZ, see Fig. 1f) was used as a so-called "activator" together with an alkanolamine such as MDEA and IPAE. However, the role of PZ remains unclear from a standpoint of molecular chemistry.

Fig. 1. Chemical structures of amines: (a) MEA; (b) AMP; (c) IPAE; (d) MDEA; (e) DMA2P; (f) PZ.

It has been demonstrated [2–10] that ¹³C-NMR spectroscopy is a powerful tool for qualitative and quantitative studies of chemical species formed in aqueous solutions containing amines and CO₂. It was elucidated that amines react with CO₂, forming ionic species such as bicarbonate ion (HCO₃⁻), carbonate ion (CO₃^{2–}), protonated amines, amine carbamates, and amine carbonates, etc. It is believed that a carbamate molecule is formed through the deprotonation of the zwitterion of amine and CO₂ in the presence of a proton acceptor such as an amine or a water molecule. In the aqueous solutions, CO₂ reacts with alkanolamines either directly or via the acid-base buffer mechanism to form HCO₃⁻. Recently, a density functional theory study [11] suggests that amine, CO₂, and H₂O molecules react directly to form HCO₃⁻. The reaction mechanism has not been fully clarified yet.

In this paper we focus on quantitative ¹³C-NMR studies on concentration changes of chemical species in an aqueous solution of a blend of PZ with an amine (MDEA, DMA2P, or IPAE) in the course of CO_2 absorptions and on those upon heating as a simple model of CO_2 regeneration.

2. Experimental

2.1. Sample preparation

Samples of MEA (Tokyo Chemical Industry), AMP (Acros Organics), IPAE (Tokyo Chemical Industry), MDEA (Tokyo Chemical Industry), DMA2P (Tokyo Chemical Industry), and PZ (Acros Organics) were used without further purification. In the experiments of CO_2 absorption kinetics, CO_2 gas was bubbled through an aqueous solution of an amine or a blend at a rate of 150 mL/min. The concentration of PZ was 5 or 10 wt%, and that of an amine was 20 or 30 wt%. In the absorption-regeneration experiments, CO_2 gas was bubbled through an aqueous solution of an anine or a blend at a rate of 50 mL/min at 50 °C for 60 min; the solution was heated at 80 °C for 30 min as the CO_2 regeneration process. The concentrations of MEA, AMP, and MDEA were 20 wt%, and that of PZ was 10 wt%. A blend of 10 wt% PZ and 20 wt% amine (MDEA, DMA2P or IPAE) was used.

2.2. ¹³C-NMR measurements

The ¹³C-NMR spectra of a D_2O solution containing an amine or a blend were measured at room temperature on a JEOL JNM-500ECX 500 MHz NMR spectrometer by using the inverse gated proton

decoupling method. Because of a long spin-lattice relaxation time, the holding time between scans was set to be 1 min. 128 scans were accumulated for each spectrum. As the standard of chemical shifts, 3-trimethylsilyl-1-propanesulfonic acid- d_6 sodium salt was added into the sample solution.

3. Results and discussion

3.1. CO₂-absorption kinetics

The ¹³C-NMR spectrum of an aqueous solution of a blend of PZ (10 wt%) and MDEA (20 wt%) and that after 50-min bubbling of the CO₂ gas are shown in Figs. 2a and 2b, respectively. The observed bands have been assigned on the basis of the data in the literature [3, 8]. The assignments of the bands are listed in Table 1. The number of each carbon atom is shown in the chemical structures below. It should be noted that it is not possible to distinguish the signals originating from MDEA and protonated MDEA, because of the fast exchange of a proton between them. Thus a single band is assigned to both the species MDEA/MDEAH⁺. The chemical shift of this band shifts with increasing CO₂-bubbling time because the contents of these species are changed. Similar assignments have been made to another species and its protonated species such as HCO₃⁻ and CO₃²⁻.

Fig. 2. ¹³C-NMR spectra of (a) an aqueous solution of a blend of PZ (10 wt%) and MDEA (20 wt%) and (b) after 50-min CO₂ bubbling.

The following species were observed: (i) MDEA and its protonated species; (ii) MDEA carbonate and its protonated species; (iii) PZ and its protonated species; (iv) PZ monocarbamate and its protonated species; (v) PZ biscarbamate; (vi) HCO_3^{-1} and $CO_3^{2^{-1}}$. This result is consistent with the previous report [8].

The intensity of a band attributed to each species was converted to the concentration of the species. The concentration of each species is plotted as a function of CO_2 -bubbling time for an aqueous solution of MDEA (20 wt%), PZ (10 wt%), PZ (10 wt%)-MDEA (20 wt%) blend, and PZ (10 wt%)-MDEA (30 wt%) blend in Figs. 3a-3d, respectively.

chemical shift / ppm	Species	Numbering ^{a)}
44.2-43.0	MDEA and its protonated species	1
43.4-43.2	MDEA carbonate and its protonated species	4
44.2-43.5	PZ monocarbamate and its protonated species	11
47.2-44.9	PZ and its protonated species	9
45.9-45.7	PZ monocarbamate and its protonated species	10
46.7	PZ biscarbamate	12
60.9-57.9	MDEA and its protonated species	3
58.6-58.1	MDEA carbonate and its protonated species	6
60.7-59.9	MDEA and its protonated species	2
60.1-60.0	MDEA carbonate and its protonated species	5
63.0-62.5	MDEA carbonate and its protonated species	8
161.1-160.6	MDEA carbonate and its protonated species	13
163.9-163.0	HCO_3^- and CO_3^{2-}	—
164.6-164.5	PZ monocarbamate and its protonated species	14
165.4	PZ biscarbamate	15

Table 1. Assignments of observed bands in PZ-MDEA-CO₂-H₂O system.

^{a)} The numbering of carbon atoms is shown in the chemical structures below.

In the MDEA– CO_2 – H_2O system (Fig. 3a), the concentration of HCO_3^{-7}/CO_3^{-2-} increases with increasing time. The initial apparent rate of HCO_3^{-7}/CO_3^{-2-} formation from 0 to 10 min was 0.049 mol/L·min. Probably, this rate depends on the rate of CO_2 absorption into the solution. The concentration of HCO_3^{-7}/CO_3^{-2-} becomes equilibrium at 50 min. The formation of a small amount of carbonate indicates that carbonate does not play an important role in the CO_2 absorption-regeneration process. In the acid-base buffer mechanism, equilibrium reactions can be written as follows:

$\mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} \rightleftharpoons \mathrm{H}^+ + \mathrm{HCO}_3^-$	(1)
$H_2O \rightleftharpoons H^+ + OH^-$	(2)
$\mathrm{HCO}_{3}^{-} \rightleftharpoons \mathrm{H}^{+} + \mathrm{CO}_{3}^{2-}$	(3)
$NCH_3(CH_2CH_2OH)_2 + H^+ \rightleftharpoons N^+HCH_3(CH_2CH_2OH)_2$	(4)

In the termolecular mechanism [11], the following reaction will proceed.

$$\mathrm{NCH}_{3}(\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH})_{2} + \mathrm{CO}_{2} + \mathrm{H}_{2}\mathrm{O} \rightarrow \mathrm{N}^{+}\mathrm{HCH}_{3}(\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH})_{2} + \mathrm{HCO}_{3}^{-}$$
(5)

Fig. 3. Concentrations (mol/L) of HCO_3^{-}/CO_3^{2-} (•), MDEA (•), carbonate (\checkmark), PZ (\blacktriangle), PZ monocarbamate (\triangleleft), PZ biscarbamate (\triangleright), total CO₂ equivalent content (•), and pH (•) in aqueous solutions of (a) MDEA (20 wt%), (b) PZ (10 wt%), (c) PZ (10 wt%)–MDEA (20 wt%), and (d) PZ (10 wt%)–MDEA (30 wt%) as a function of CO₂-bubbling time.

In the PZ–H₂O–CO₂ system (Fig. 3b), the concentrations of monocarbamate and HCO_3^{-7}/CO_3^{-2-} increase. The concentration of monocarbamate is higher than that of HCO_3^{-7}/CO_3^{-2-} . It is believed that a carbamate molecule is formed from the zwitterion of PZ and CO₂. Thus, the following reactions are proposed:

The initial apparent rate of PZ monocarbamate formation from 0 to 10 min was 0.087 mol/L·min. The initial rate of the HCO_3^{-}/CO_3^{2-} formation from 0 to 10 min was 0.040 mol/L·min.

In the PZ (10 wt%)–MDEA (20 wt%)– CO_2 – H_2O system (Fig. 3c), the initial rate of HCO_3^{-}/CO_3^{2-} formation from 0 to 10 min was 0.033 mol/L·min; this is smaller than that (0.049 mol/L·min) in MDEA (20 wt%)– CO_2 – H_2O system. This decrease is due to the rapid formation of PZ monocarbamate. In this system, the rate of HCO_3^{-}/CO_3^{2-} formation from 10 to 20 min was 0.066 mol/L·min, whereas in the MDEA (20 wt%)– CO_2 – H_2O system the corresponding rate was 0.058 mol/L·min. This result indicates that the coexistence of PZ and MDEA enhances the rate. Similar rate enhancements were also observed for PZ (10 wt%)–MDEA (30 wt%)– CO_2 – H_2O , PZ (5 wt%)–MDEA (20 wt%)– CO_2 – H_2O , and PZ (10 wt%)–DMA2P (20 wt%)– CO_2 – H_2O systems. This enhancement of the apparent rate was observed for tertiary amines MDEA and DMA2P. Since the rate of CO_2 absorption is low for tertiary amines, this rate enhancement with PZ carbamate can be observed.

In order to explain this rate enhancement, we consider a novel mechanism of HCO_3^- formation–decomposition reactions as follows. The formation reaction of PZ monocarbamate can be expressed as follows:

A proton generated from the reaction of PZ and CO_2 is accepted by an MDEA molecule. In addition, we assume the decomposition reaction of PZ monocarbamate as follows:

The combination of Eqs (8) and (9) leads to Eq (5). In Eq (5) PZ monocarbamate does not appear. Thus, the PZ monocarbamate molecule helps the formation of HCO_3^- like an organocatalyst. Since similar reactions associated with PZ biscarbamate are possible, the PZ biscarbamate molecule also may help the formation of HCO_3^- as an organocatalyst.

3.2. CO₂ regeneration upon heating

Molar concentrations of the chemical species in amine– CO_2 – H_2O system before and after heat-treatment for MEA, AMP, MDEA, and PZ are shown in Fig. 4. In an MEA aqueous solution bubbled with CO_2 , the concentrations of carbamate and $HCO_3^{-}/CO_3^{2^-}$ were 1.34 and 0.79 mol/L, respectively. After heat-treatment, the concentration of carbamate increased to 1.55 mol/L. This suggests that carbamate is not decomposed to CO_2 and MEA upon heating. The concentration of $HCO_3^{-}/CO_3^{2^-}$ species. In an AMP aqueous solution bubbled with CO_2 , the concentrations of $HCO_3^{-}/CO_3^{2^-}$ and carbonate were 2.26 and 0.05 mol/L, respectively. After heat-treatment, the concentrations of $HCO_3^{-}/CO_3^{2^-}$ and carbonate were 2.26 and 0.05 mol/L, respectively.

decreased to 1.84 and 0.04 mol/L, respectively. In an MDEA aqueous solution bubbled with CO₂, the concentration of $HCO_3^{-}/CO_3^{-2^-}$ was 1.32 mol/L; upon heating, the concentration decreased to 0.76 mol/L. The 0.56 mol/L of CO₂ was regenerated from the $HCO_3^{-}/CO_3^{-2^-}$ species. In an aqueous solution of PZ bubbled with CO₂, there exist $HCO_3^{-}/CO_3^{-2^-}$ (0.31 mol/L), PZ monocarbamate (0.75 mol/L), and PZ biscarbamate (0.03 mol/L). The concentrations of $HCO_3^{-}/CO_3^{-2^-}$, monocarbamate, and biscarbamate were changed to 0.24, 0.63, and 0.10 mol/L, respectively. This result indicates that mono- and bis-carbamates are not decomposed to PZ and CO₂.

Carbon dioxide is mainly saved in an aqueous amine solution as the chemical species of HCO_3^{-7}/CO_3^{-2-} , monocarbamate, and biscarbamate. Carbonate may be ignored because the concentration of carbonate is low. The observed data suggests that upon heating, the regeneration of CO_2 mainly originates from the HCO_3^{-7}/CO_3^{-2-} species. This is probably attributed to the temperature dependence of chemical equilibrium in reactions (1)–(4).

Fig. 4. Concentrations of $HCO_3^{-7}(CO_3^{2-}$ (black), monocarbamate (pink), biscarbamate (yellow), and carbonate (blue). Bars in the left- and right-hand sides for each amine are before and after heat-treatment, respectively.

The concentrations of $HCO_3^{-7}/CO_3^{2^-}$, PZ monocarbamate, PZ biscarbamate, and amine carbamate in the aqueous solution of a PZ blend with an amine such as MDEA, DMA2P, or IPAE before and after heat-treatment are listed in Table 2.

Table 2. Concentrations (mol/L) of HCO₃^{-/}/CO₃²⁻, PZ monocarbamate, PZ biscarbamate, and amine carbamate before and after heating.

species	heating	equivalent CO2 change	MDEA	PZ	PZ-MDEA	PZ-DMA2P	PZ-IPAE
HCO ₃ ^{-/} CO ₃ ²⁻	before		1.32	0.31	1.00	1.42	1.25
	after		0.76	0.24	0.40	0.64	0.78
		Δ_1	-0.56	-0.07	-0.60	-0.78	-0.47
PZ monocarbamate	before		—	0.75	0.74	0.68	0.67
	after		—	0.63	0.59	0.55	0.50
		Δ_2	—	-0.12	-0.15	-0.13	-0.17
PZ biscarbamate	before		—	0.03	0.18	0.27	0.29
	after		—	0.10	0.22	0.40	0.44
		Δ_3	—	0.07	0.04	0.13	0.15
		$\Delta_2 + 2\Delta_3$	_	0.02	-0.07	0.13	0.13
carbamate	before		—	—	_	_	0.0
	after		—	—	—	—	0.0
		Δ_4	_	_	_	_	0.0
		$\Delta = \Delta_1 + \Delta_2 + 2\Delta_3 + \Delta_4$	-0.56	-0.05	-0.67	-0.65	-0.34

Table 2 shows the concentration changes upon heating in $HCO_3^{-7}/CO_3^{-2-}(\Delta_1)$, PZ monocarbamate (Δ_2),PZ biscarbamate (Δ_3), amine carbamate (Δ_4) and total equivalent CO₂ content ($\Delta = \Delta_1 + \Delta_2 + 2\Delta_3 + \Delta_4$). In

this equation Δ_3 is times by 2, because a biscarbamate molecule is made from two CO₂ molecules. In all the solutions, Δ_1 decreases upon heating, indicating that HCO₃^{-/}CO₃²⁻ species contribute to CO₂ regeneration. On the other hand, the sum of the equivalent CO₂ contents in PZ monocarbamate and biscarbamate $\Delta_2 + 2\Delta_3$ increases for PZ–DMA2P and PZ–IPAE and decreases for PZ–MDEA. The total equivalent CO₂ change $\Delta = \Delta_1 + \Delta_2 + 2\Delta_3 + \Delta_4$ is large for PZ–MDEA and PZ–DMA2P. The observed data suggests that the regeneration of CO₂ upon heating mainly originates from the HCO₃^{-/}CO₃²⁻ species. Carbamate has a negative effect in CO₂ regeneration upon heating.

4. Conclusions

We have studied the concentration changes of chemical species in an aqueous solution of a blend of PZ and an amine such as MDEA, DMA2P, or IPAE as a function of CO₂-bubbling time by ¹³C-NMR spectroscopy. At the beginning of the reaction, PZ carbamate was formed. The coexistence of PZ and MDEA or DMA2P enhanced the initial rate of $HCO_3^{-7}/CO_3^{2^-}$ formation. This result probably indicates that PZ monocarbamate rapidly formed works as an organocatalyst in the formation reaction of HCO_3^{-7} . We have studied the concentrations of chemical species in CO₂-absorbed aqueous amine (MEA, AMP, MDEA, PZ, PZ–MDEA, PZ–DMA2P, and PZ–IPAE) solutions upon heating (80 °C, 30 min) by ¹³C-NMR spectroscopy. The results indicate that CO₂ regeneration originates from the $HCO_3^{-7}/CO_3^{2^-}$ species, and not from mono- and bis-carbamates and carbonate. ¹³C-NMR spectroscopy is a powerful tool for qualitative analyses of chemical species in amine absorbers of CO₂.

Acknowledgements

The authors are grateful to Professors H. Nakai and N. Kanomata, and Dr. H. Yamamoto of Waseda University for valuable discussion and suggestions.

References

- [1] Aarou D, Tsouris C. Separation of CO₂ from flue gas: review. Sep Sci Technol 2005; 40: 321-48.
- [2] Suda T, Iwaki T, Mimura T. Facile determination of dissolved species in CO₂-amine-H₂O system by NMR spectroscopy. *Chem Lett* 1996; 777-8.
- [3] Bishnoi S, Rochelle GT. Absorption of carbon dioxide in aqueous piperazine: reaction kinetics, mass transfer and solubility. Chem Eng Sci 2000; 55: 5531–43.
- Bishnoi S, Rochelle GT. Thermodynamics of piperazine/methyldiethanolamine/water/carbon dioxide. Ind Eng Chem Res 2002; 41: 606–12.
- [5] Jakobsen JP, Krane J, Svendsen HF. Liquid-phase composition determination in CO₂-H₂O-alkanolamine systems: an NMR study. *Ind Eng Chem Res* 2005; 44: 9894–903.
- [6] Hartono A. da Silva EF, Grasdalen H, Svendsen F. Qualitative determination of species in DETA-H₂O-CO₂ system using ¹³C NMR spectra. Ind Eng Chem Res 2007; 46: 249–54.
- [7] Böttinger W, Maiwald M, Hasse H. Online NMR spectroscopic study of species distribution in MEA-H₂O-CO₂ and DEA-H₂O-CO₂. *Fluid Phase Equilibria* 2008; 263: 131-43.
- [8] Böttinger W, Maiwald M, Hasse H. Online NMR spectroscopic study of species distribution in MDEA-H₂O-CO₂ and MDEA-PIP-H₂O-CO₂. Ind Eng Chem Res 2008; 47: 7917–26.
- [9] Yamada H, Shimizu S, Okabe H, Matsuzaki Y, Chowdhury FA, Fujioka Y. Prediction of basicity of aqueous amine solutions and the species distribution in the amine–H₂O–CO₂ system using the COSMO-RS method. *Ind Eng Chem Res* 2010; **49**: 2449–55.
- [10] Ciftja AF, Hartono A, da Silva EF, Svendsen HF. Study on carbamate stability in the AMP/CO₂/H₂O system from ¹³C-NMR spectroscopy. *Energy Procedia* 2011; 4:614–20.
- [11] Yamada H, Matsuzaki Y, Higashii T, Kazama S. Density functional theory study on carbon dioxide absorption into aqueous solutions of 2-amino-2-methyl-1-propanol using a continuum solvation model. J Phys Chem A 2011; 115: 3076–86.