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The occurrence of DNA double-strand breaks (DSBs) induced by ionizing radiation has been extensively
studied by biochemical or cell imaging techniques. Cell imaging development relies on technical
advances as well as our knowledge of the cell DNA damage response (DDR) process. The DDR involves
a complex network of proteins that initiate and coordinate DNA damage signaling and repair activities.
As some DDR proteins assemble at DSBs in an established spatio-temporal pattern, visible nuclear foci
are produced. In addition, post-translational modifications are important for the signaling and the
recruitment of specific partners at damaged chromatin foci. We briefly review here the most widely used
methods to study DSBs. We also discuss the development of indirect methods, using reporter expression
or intra-nuclear antibodies, to follow the production of DSBs in real time and in living cells.
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Ionizing radiation (IR) produce a wide variety of DNA lesions
among them double-strand breaks (DSBs), considered to be the
major actor responsible for cell death. If unrepaired or improperly
repaired, DSBs contribute to chromosomal aberrations, which may
lead to human disorders including cancer [1]. Consequently differ-
ent approaches have been undertaken to identify the mechanisms
involved in the production, signaling and repair of DSBs.

The production of DSBs can be quantified by biochemical tech-
niques such as the pulsed field gel electrophoresis (PFGE). In addi-
tion, DSBs production can be followed by cell imaging either
globally, with the neutral comet assay, or damage specific, through
immunostaining of marker proteins or recruitment of fluorescent
proteins to the breaks. To analyze the recruitment of signaling
and/or repair proteins, a clear understanding of the DNA damage
response (DDR) is needed, supported by the development of cell
imaging after IR or, more recently, after microlaser irradiation.
We will briefly introduce the panel of biochemical and cell imaging
techniques. Their insights into the DSBs repair kinetics, largely
obtained by microlaser irradiation and fluorescent protein recruit-
ment, will be presented. Since such techniques based on the over-
expression of protein might generate artifacts, indirect approaches
have also been developed. We discuss here the potential benefits of
using intracellular antibodies, in particular directed against post-
translational modifications of DDR proteins, as well as the use of
different reporter systems.
Human DNA damage response after ionizing radiation
treatment

In mammalian cells, the production of DSBs initiates a global
cellular response, including checkpoint signaling and repair
(Fig. 1) [2]. The MRN (MRE11/RAD50/NBS1) complex binds to DSBs
(Fig. 1B and C) and facilitates the activation of ATM (Ataxia Telan-
giectasia Mutated), a key PI3K related kinase in the DDR[3]. At the
break site, ATM autophosphorylates, allowing its activation and the
subsequent phosphorylation of numerous substrates in the sur-
rounding chromatin. Among ATM substrates, H2AX – an H2A his-
tone variant called cH2AX when phosphorylated – is considered
as one of the earliest markers of the DSB signaling [4]. H2AX phos-
phorylation reaction is amplified by the recruitment of MDC1
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(Fig. 1C and D), a central player of the DDR through its interaction
with cH2AX [5]. The accumulation of DDR proteins at damaged
sites leads to the formation of foci, visible after staining under
microscopic examination. The signaling amplification by MDC1
participates to the recruitment of multiple DDR members
Fig. 1. Kinetics of DDR protein recruitment and modification at IR-induced DSBs. (A) E
recognize DSB formation. These include PARP1, which induces its own PARylation togethe
Ku70-80 interact with DSB ends, while hSSB1 binds to the ssDNA regions. (C) H2AX phosp
DSB through their interaction with MRN and Ku80, respectively. ATM and DNA-PKcs aut
the DSB site (H2AX-containing nucleosomes are shown in red) and MDC1 rapidly binds
after IR. MDC1 recruits more MRN–ATM complexes, which phosphorylate more distal H2
of a yet unidentified non-nucleosomal target. Once ubiquitylated, this protein is recog
promotes K63 ubiquitin chain formation. (E and F) Factors determining the DSB repair pa
and RIF1 are recruited via 53BP1 binding to H4-K20me2, therefore preventing BRCA1 ac
ligation. (F) HR pathway. BRCA1 complex binds to K63 ubiquitin chains at DSB, leading to
from DSB ends. ssDNA overhangs, bound by hSSB1 and RPA, recruit ATR-ATRIP. (G) The BR
of DSB markers after repair completion. The right arrow outlines the timing of events a
(Fig. 1D–F), such as RAP80, 53BP1, KAP-1 and BRCA1 [6]. The
recruitment of 53BP1 and BRCA1 proteins in ionizing-radiation-
induced foci (IRIF), triggered by cH2AX and the MDC1 binding, is
also dependent on the participation of the RNF8/RNF168 E3-ubiq-
uitin ligases [7,8]. The overall signaling pathway leads to the
xposure to ionizing radiations (IR) induces DSBs. (B) Sensor proteins immediately
r with the PARylation of the surrounding chromatin and many DDR actors. MRN and
horylation happens in the first seconds after IR. ATM and DNA-PKcs are recruited to
ophosphorylation drive their activation and phosphorylate H2AX (cH2AX), close to
cH2AX. (D) Modification of the chromatin flanking the DSB within the first minute
AX. RNF8, recruited through its interaction with MDC1, promotes the ubiquitylation
nized by RNF168 that initiates H2A and H2AX ubiquitylation. RNF8/RNF168 then
thway choice take place during the first minutes after IR. (E) NHEJ pathway. 53BP1
cumulation and inhibiting resection. The XRCC4-LigIV-XLF complex promotes DSB
53BP1 exclusion. CtIP cooperates with MRN to initiate resection, removing Ku70-80
CA1–PALB2–BRCA2 complex recruits RAD51 to DSB around 30 min after IR. (H) Loss

fter DSB appearance, with a simplified logarithmic scale.
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downstream phosphorylation of CHK2, p53 and CDC25, triggering
checkpoint activation and cell cycle arrest, in G1/S and/or G2/M.
These checkpoints induce transient cell cycle arrests, allowing suf-
ficient time for DNA repair.

Mammalian cells encompass two major pathways to repair
DSBs, the non-homologous end-joining (NHEJ) pathway being the
major one. The second one, homologous recombination (HR), is
mostly involved in the repair of secondary DSBs that occur later
after IR during the S-phase, when the replication fork collapses at
unresolved single-stranded DNA (ssDNA) lesions.

The NHEJ reaction proceeds through DSBs recognition, process-
ing of the damaged DNA ends to remove non-ligatable groups and
finally ligation (Fig. 1E and H), to restore the strands continuity [9].
The first stage of the reaction is the binding of the Ku70/Ku80 het-
erodimer to DNA ends. The core NHEJ complex is then recruited to
Ku-bound DNA ends [10]. NHEH core components include the
DNA-dependent protein kinase catalytic subunit (DNA-PKcs), XLF
and the XRCC4/DNA Ligase IV (X4LIG4) complex [11]. DNA-PKcs
binds to the carboxy-terminus of Ku80 at break ends, providing
protection within a synaptic structure, associated with protein
kinase activity [12,13]. The autophosphorylation of DNA-PK
induces a conformational change, required for the activation of
end processing nucleases and the DNA-PKcs subunit dissociation
from DNA ends [14,15]. The last stage, requires the XRCC4-Ligase
IV complex and XLF which stimulates the ligation reaction [16–
18]. Other proteins such as Artemis, PNK, pol k and l are involved
in the reaction depending on the chemistry of the lesion. Moreover,
new proteins involved in NHEJ are still being discovered, as the
NF90/NF45 complex known to interact with DNA-PK and partici-
pating in DSB repair via NHEJ [19], or NONO whose recruitment
to the damaged site is PARP-dependent [20].

In contrast to NHEJ, HR uses the sister chromatid sequence, syn-
thesized during the replication, as a template for error-free DSBs
repair. The first step of the HR process is a DNA ends resection
reaction (Fig. 1F), initiated by the cooperation between CtIP and
the MRN-complex [21] and extended by other factors including
the BLM helicase and the EXO1 and DNA2 nucleases [22]. Subse-
quently, the recombination mediators (e.g. BRCA2, PALB2) displace
RPA from the ssDNA 30 tails and stimulate the formation of RAD51
Fig. 2. Factors influencing the repair pathway choice after IR-induced DSBs. Damage c
clustered (also named complex) lesions are most probably repaired by NHEJ or HR, respec
while DSBs in heterochromatin are mainly processed by HR mechanisms. Cell cycle – NHE
Indirect DSBs occurring through fork collapse (S-related DSB) have to be repaired by HR
can switch to the second pathway or to alternative mechanisms, namely alternative NH
nucleoprotein filament (Fig. 1G, reviewed in[6]). The RAD51 nucle-
ofilament and accessory factors then catalyze homology search and
strand invasion, in order to form a D-loop structure that allows the
extent of DNA end to restore lost information (Fig. 1H). Several
pathways can then occur through (1) D-loop dissociation leading
to noncrossover products (NCO) or (2) second-end capture and
double Holiday junction formation – such HR intermediates even-
tually being dissolved by BLM helicase to form NCO or resolved by
specific endonucleases to produce either NCO or crossovers [23].

The balance between HR and NHEJ is highly regulated. At least
three factors affect the choice between NHEJ and HR (Fig. 2): chem-
ical complexity of the breaks, chromatin conformation, and cell
cycle [24–27]. Indeed, although NHEJ is active throughout the cell
cycle, HR is restricted to S and G2 where the sister chromatids are
available to allow recombination processing [28]. At a molecular
level, DDR proteins recruitment and modification regulate DSB
repair. Basically, 53BP1-RIF1 complex stimulates NHEJ by inhibit-
ing end resection whereas BRCA1-CtIP antagonizes 53BP1-RIF1 to
promote HR [29]. It has also been shown that DNA-PK plays a neg-
ative action on HR [27,30]. In conclusion, spatio-temporal control
of post-translational modifications along with a coordinated
recruitment of signaling and repair proteins at the break ends are
critical events in the DDR [2].

Biochemical and cellular quantification of DSBs

Radiosensitivity is governed by the amount of DNA damage
resulting from exposure, and also by individual capacity to cor-
rectly repair these insults. In this regard, it is important to not only
predict the DSB level arising from a given IR dose, but also to con-
sider the DSB repair rate, which might considerably fluctuate
between tissues and persons.
Physical approaches to measure DSBs

The first approaches developed to study DNA breakage were
based on the physical separation of undamaged from fragmented
DNA. In the 70’s, neutral sucrose gradient sedimentation was the
method used to measure DSBs in irradiated mammalian cells
omplexity – Damage complexity increases with LET of radiation. Simple DSBs or
tively. Chromatin state – DSBs produced in euchromatin is mainly repaired by NHEJ,
J is effective during the whole cell cycle, whereas HR is restricted to S and G2 phases.

in order to restart the fork. When NHEJ- or HR – is defective (dashed lines), the DDR
EJ (Alt-NHEJ) or Single Strand Annealing (SSA).
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[31]. In the 80’s, neutral elution [32] and electrophoretic methods
allowed to detect more sensitively DNA breaks and their repair
kinetics. Pulse-field gel electrophoresis (PGFE), first developed to
separate yeast chromosomes [33], has been deflected to visualize
broken DNA in mammalian cells after IR [34]. The comet assay
has been described at the same time, allowing the visualization
of damaged DNA in individual cells embedded in agarose [35]. Both
PFGE and comet assay are still routinely used to measure DSBs, but
one has to consider that these methods (i) necessitate some tech-
nical expertise, (ii) suffer poor reproducibility between labs and
(iii) may reveal other types of lesions than strictly DSBs [36]. More
troublesome, the non-random distribution of IR-induced DSBs
across the genome [37], the heterogeneity of cellular response
between cells (i.e. apoptotic DNA fragmentation, repair processes)
and the atypical migration pattern of S-phase related replication
fork structures lead to only approximate the DSB levels in living
cells by PFGE [38,39]. Inter-laboratory variation is also a well-
known limitation of the comet assay [40], albeit new high-
throughput approaches are under development to overcome such
impediment [41]. In conclusion, although direct detection
approaches give information related to cell survival, recent devel-
opments of cell imaging led to gain more insights in the DSBs
repair mechanisms.
Immunocytological detection of DSBs

Identification and characterization of new DDR components
considerably increased in the last twenty years. Proteins involved
in these processes function as sensors, signal transductors or at
the repair mechanism level. Hence, the vast majority of these
actors have to accumulate at damaged sites, a feature which makes
them immunocytologically visualizable as docking structures
called foci. The MRE11 nuclear relocalization in irradiated human
cells leads to a local concentration, at DSBs sites, named IRIFs for
ionizing radiation-induced foci [42]. However, proteins have to
accumulate enough at IRIFs to be detectable. In the light of this
remark, the components of NHEJ, major pathway of irradiation-
induced DSB repair in mammals, are very difficult to visualize
because (i) they are highly expressed and (ii) only one or two mol-
ecules are required per DSB during the repair process [43,44]. Con-
sequently, a cellular fractionation assay has been developed to
reveal the chromatin remobilization of NHEJ factors tightly bound
to the breaks in contrast to their weak binding to the undamaged
chromatin [45]. Thus, this approach accounts for global activation
of the NHEJ pathway and simply qualitatively assesses the pres-
ence of DSB. On the other hand, many proteins involved in HR
accumulate at IRIFs, including RAD51, RAD52, RAD54, BRCA2,
PALB2, RPA and CtIP [21,46,47]. As mentioned above, HR is only
required in S/G2 at IR-induced DSBs repair, being involved in
approximately 15% of total DSBs, mainly corresponding to hetero-
chromatin-associated DSBs [48]. Thus, analysis of HR-related IRIFs
only leads to estimate a specific subset of DSBs and is not useful for
non-cycling cells.

Other potential DSB biomarkers are proteins binding directly
DNA breaks, working as DSB sensors (Fig. 1B). PARP-1 and PARP-
2 are among the first molecules recruited to DNA breaks induced
by irradiation, and are essential for the binding of another DSB sen-
sor, as the MRN complex [49]. However, as PARPs mobilization and
local PARylation events to DSBs – but also SSBs – are very transient,
they do not provide good biomarkers. Ku70–Ku80 heterodimer is a
specific DSB sensor, but as discussed above, is not easily detectable
by classical immunostaining because, among the non-histone pro-
teins, it is one of the most abundant factors in the nucleus. The
MRN components are thus the only sensors that may be used to
observe DSBs, despite their foci formation being delayed [50].
However, the human ssDNA binding protein 1 (hSSB1), binding
ssDNA overhangs of IR-induced DSBs, should be considered as a
new DSB sensor as it localizes to DSB with the same kinetics than
MRN, and is essential for ATM signaling and MRN recruitment
[51,52]. Moreover, due to its role in later HR steps, hSSB1 remains
associated longer than MRN to DSBs, and may thus provide a more
stable DSB biomarker.

The last group of DDR proteins, mediating damage signaling,
provides the most proficient DSBs biomarkers. Upstream the DNA
damage signal transduction pathway lie three members of the
phosphoinositide-3-kinase-related protein kinase (PIKK) family,
recruited to damaged sites via interaction with specific sensors
[53]. ATM and DNA-PKcs are both involved in DSB signaling
(Fig. 1C) [6]. ATM autophosphorylation at serine 1981 drives its
activation and localization at IRIFs [54]. However chromatin struc-
ture modification independent of DNA breaks induces S1981-ATM
phosphorylation. Phosphorylated DNA-PK at threonine 2609 can
be detected at IRIFs [44], whereas total DNA-PK cannot [43], prob-
ably due to the high content of DNA-PKcs in the nucleus. A third
PIKK, ATR (Ataxia Telengiectasia-Rad3 related), can be tracked with
its partner ATRIP at IRIFs [55], but specifically stains IRIFs associ-
ated with replication fork collapse and HR processing.

DDR kinases phosphorylate hundreds of targets [56], and many
of these events orchestrate regulated accumulation of DDR compo-
nents – or their modified forms – to IRIFs. The most documented
example is the phosphorylation at serine 139 of the histone variant
H2AX, referred to as cH2AX. DSB-mediated phosphorylation of
H2AX spreads up to several Mega bp around damaged sites, and
related foci appear within a minute (Fig. 1C and D) [57]. The num-
ber of cH2AX IRIFs, 30 min after irradiation, is similar to the num-
ber of DSBs estimated by PFGE and cH2AX foci disperse once the
breaks are repaired [58]. Therefore cH2AX is currently the DSB bio-
marker of choice and is broadly exploited in various applications,
to monitor DSB formation and repair, including radiosensitivity
[59,60], and most commonly in genomic instability studies associ-
ated to cancer, aging and inflammatory diseases. Several recent
reviews focus on the significance and limitations of measuring
cH2AX for such purposes [50,61–64]. However, although the
occurrence of one DSB was correlated to the formation of one
cH2AX focus, the opposite relation is questionable. Indeed, chro-
matin modifications can activate ATM in hypoxic cells, indepen-
dently of the MRN complex, and DNA-PK is also activated under
hypoxia [65–67], these kinases being therefore able to phosphory-
late H2AX independently of DSBs signaling.

cH2AX concentration at DSBs enables the assembly of down-
stream DDR proteins. For example, MDC1 interacts directly with
cH2AX and forms IRIFs (Fig. 1C and D) [5]. However, until today,
antibodies raised against MDC1 are not completely satisfactory
for IRIF analyses [50] and MDC1 immunolocalization is rarely
achieved. Once accumulated at DSBs, MDC1 serve as a docking
platform for numerous effector proteins loading to the damaged
site, including IRIF forming E3 ubiquitin ligases RNF8 (Fig. 1D)
and RNF168, which locally ubiquitinate H2A and H2AX [7,8].
Besides, visualization of RNF8/RNF168-dependent chromatin ubiq-
uitination at IRIFs can be realized with FK2 antibodies, detecting
ubiquitin-conjugates. Chromatin ubiquitination at DSBs promote
the recruitment of other ubiquitin-binding proteins including
RNF169 and RAD18 [68], and the late-acting antagonizing factors
BRCA1 and 53BP1 (Fig. 1E and F), in order to direct DSB repair to
HR and NHEJ, respectively. The BRCA1-A complex is mobilized at
IRIFs through the UIM domains of RAP80, which binds ubiquitin
chains [69]. BRCA1 promotes HR and does not form IRIFs in G1
cells. On the opposite, 53BP1 and its partner RIF1 accumulate at
DSBs from G1 to the end of G2 [70,71]. 53BP1 is therefore a second
highly useful IRIF marker, that does not accumulate at ssDNA
regions formed during replication stress unlike ATR-dependent
cH2AX staining that arises in the S-phase [50]. Therefore, recent
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studies combine 53BP1 and cH2AX immunofluorescence staining
to discriminate DSB-independent cH2AX staining (without
53BP1) from cH2AX foci that really mark DSBs [72,73].

As stated above, chromatin ubiquitination drives the recruit-
ment of several proteins to DSBs, but other ubiquitination events
have to be considered. Indeed, when DSBs occur in the S-phase,
ubiquitination of two Fanconi Anemia proteins, FANCD2 and
FANCI, promotes their accumulation to IRIFs [74,75]. On the con-
trary, RNF8 triggers the ubiquitination-mediated Ku80 removal
from damaged sites for an efficient NHEJ repair [76]. Moreover,
other protein modifications take place at DSB, like small ubiqui-
tin-like modifier (SUMO) on several DDR proteins [77]. It seems
however that SUMOylation events, at DSBs, target protein groups
rather than specific substrates, in order to promote physical inter-
actions and stabilize repair complexes [78]. In addition, SUMO E3
ligases PIAS1 and PIAS4 localize to DSBs and are essential for the
RNF4/RNF168 ubiquitin ligases and BRCA1 recruitment [79,80],
illustrating the tight relationship between SUMO and ubiquitin-
mediated signaling pathways.

Live analysis of DSBs

Although immunofluorescence is a sensitive technique, allow-
ing for example the detection of a single cH2AX focus, it requires
cell fixation and therefore limits the study of the protein recruit-
ment kinetics as well as the DSBs resolution. Valuable insights on
the spatio temporal dynamic of proteins at the IRIFs have been
given by time-lapse microscopy studies, following fluorescent-
tagged proteins in living cells. Most of these studies have been
realized after laser micro-irradiation and the choreography of foci
temporal organization has been recently reviewed in great detail
[6].

Spatiotemporal dynamics of early DDR proteins on complex
DNA lesions have been described [81]. Using ionizing charged par-
ticle irradiations, the response of living cells expressing fluores-
cently tagged proteins was imaged. Information on the mobility
and binding rates of the recruited proteins was obtained from Fluo-
rescence Recovery after Photobleaching (FRAP). Interestingly, it
appears that NBS1 is recruited faster with increasing lesion density
and saturates at very high damage levels. This faster recruitment
for increasing lesion complexity is also observed for MDC1, but
not for 53BP1 [81,82], and a model has been proposed to explain
this different recruitment behavior at low and high Linear Energy
Transfer (LET) [81]. However, such irradiators have low accessiblity
procedures and, consequently, time-lapse microscopy is often
achieved after X- or c-irradiation. The drawback of these experi-
ments is that early time points of DSB formation cannot be studied
because such irradiations take a few minutes. However, later stud-
ies (around a minute or few minutes after irradiation) are still fea-
sible and led to visualize, for example, the dose-dependent
recruitment of 53BP1 at DSB [83].

Because transitory recruited proteins at the DSB could be
missed in such experiments, laser microirradiation has been
widely used in laboratories. For example, proteins that function
at the early phase of the DSB response are often recruited to the
damaged sites. This is the case of the nuclear NONO/SFPQ hetero-
dimer, which displays diverse functions in nucleic acid metabolism
and has been shown to enhance DSB repair in vitro [84]. After laser
irradiation, SFPQ/NONO is rapidly recruited to DNA damage in a
PAR-dependent manner [20]. However, because NONO recruit-
ment is optimal about 2 min after laser irradiation and returns to
background levels at 10 min, classic immunofluorescence analysis
after IR would not have led to IRIFs observation. For these reasons,
transitory recruited proteins are not pertinent biomarkers to fol-
low DSB in living cells. In addition, after laser irradiation, damages
are highly concentrated at a cell point (or along a laser line), induc-
ing a bias in the study of the DSB recruited proteins. From these
limitations, other tools to study DSB in live conditions have been
developed.

New tools to study DSB in live conditions

An original reporter system in vivo, based on the luciferase
reconstitution after DSB induction, has been recently developed
[85]. H2AX and the carboxy-terminal BRCT domains of MDC1 are
fused to luciferase N- and C-half parts, respectively (Fig. 3A). The
association between cH2AX and the BRCT domains of MDC1, at
the DSBs, leads to the luciferase reconstitution and to a quantita-
tive light signal. However, the authors do not describe foci but
rather a global signal, associated to two waves of luciferase activa-
tion. As the first wave could reflect the signal associated to DSB, the
second one could be due to a massive apoptotic signal. This split-
luciferase-based method, although necessitating more develop-
ment to study DSB repair kinetics in vivo, is still promising.

Conventional antibodies have been widely used in research,
diagnostics and therapeutics. However their large size is a serious
disadvantage for their production and folding. To replace and mini-
aturize classic antibodies, single-chain variable fragments (scFvs)
have been developed. ScFv is a fusion of the variable regions of the
heavy and light chains of immunoglobulins, connected with a linker
peptide (Fig. 3B). ScFvs targeting the DNA-PKcs have been devel-
oped, but are shown to modify the IR response in living cells [86].
The radiosensitization by anti DNA-PKcs scFvs has been described
[87,88], but no fluorescent scFv were developed, which is consistent
with the fact that total DNA-PK cannot form IRIFs [43]. Recently, a
phosphospecific scFv has been generated [89]. This demonstrates
that phosphospecific scFv can be developed and open the way to a
whole world of biomarkers, such as phospho-Thr2609 DNA-PK scFv,
in order to detect IRIFs in living cells. A scheme of the resulting
system is depicted (Fig. 3B). However, the scFv needs an adequate
folding of its two variable domains to be functional, and this proved
to be a limiting factor within living cells.

The Variable domain of Heavy chain antibody (VHH domain),
produced by a particular animal species, is sufficient for antigen
interaction (see left part of Fig. 3C, reviewed in [90]). The VHH
domain can be cloned and expressed as monomeric domain of
14–15 kDa and is ten times smaller compare to a classic antibody.
The VHH properties led to diverse and original applications, in par-
ticular as intrabodies (also called single-domain antibodies (sdAbs)
or nanobodies) associated to fluorescent tag [91]. Thus, they can be
used in living cells to track a specific target and are, in addition,
easily producible in Escherichia coli [92]. The study of replication
forks, in living cells and in real-time, has been achieved recently,
through as a stable cell line expressing the anti-PCNA sdAb fused
to the GFP (Fig. 3C), with or without a replicative stress [93].
Regarding sdAb, it has been reported that linking two sdAbs to
form a diabody may increase its avidity [94], allowing it to stay
longer on the target. Another way to improve sdAb affinity, hence
signal specificity, would be to fuse them to self-associating pep-
tides and generate multimeric antibodies [95].

Post-translational modifications (ubiquitination, SUMOylation,
acetylation, methylation, PARylation and phosphorylation) are
playing major functions in IRIFs [2], and new tools to allow live
studies – through post-translational modifications – have been
developed. Indeed, time-lapse studies using fluorescent-tagged
proteins are not giving any indication on their post-translational
modification status. The new techniques are essentially based on
the immunological recognition of specific post-translational mod-
ifications, and the new systems are mainly targeting the widely
used cH2AX marker. So, labelledanti-cH2AX antibodies, associated
to the HIV transcription activator (Tat) as an entry peptide and to a
Nuclear Localization Sequence to address the construct to the



Fig. 3. Following Double-Strand Breaks in vivo. (A) H2AX/MDC1 Luciferase reporter system. The H2AX and BRCT-MDC1 sequences are cloned in fusion with half of the
luciferase (N-luci and ferase-C, respectively). These constructs are transduced in cells and, after irradiation (i), H2AX phosphorylation around the DSB (ii) leads to the
reconstitution of a functional luciferase (iii). (B) Genetically encoded fluorescent scFV. In classic antibodies, the paratope is formed of the heavy and light chain variable
domains. A construct, associating an scFv recognizing a DDR marker (or an appropriate post-translational modification) and the GFP protein, is proposed. In a stable cell line,
after irradiation and DSB induction (i and ii), the recruitment of the GFP-scFv could be followed (iii), allowing the real-time DSB analysis in living cells. (C) Genetically encoded
fluorescent sdAb. Diagram of a heavy-chain antibody displaying the VHH domain and the PCNA antigen interaction. The construct made of the anti-PCNA VHH domain, fused
to the GFP, recognizes PCNA and allows the replication analysis in living cells and in real-time. (D) Fluo/radio-labeled anti-cH2AX-Tat antibodies. Representation of the
labeled anti-cH2AX antibodies, coupled to a Tat peptide allowing their cell entry and nucleus localization. Tat-antibodies are coupled to a radio- or fluorescent marker for
their analysis.
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nucleus, have been developed [96]. Radio- or fluorescently labeled
anti-cH2AX enters living cells, and associate to DSB (Fig. 3D). Used
in living cells or organisms, it leads to the visualization of DSBs.
However, this system is based on immunoconjugation, uses a huge
amount of antibodies and limits foci analysis to the time of entry of
the immunoconjugate within the cells.
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Conclusions and perspectives

Until recently, it was impossible to study DSBs production and
repair at low irradiation dose (in the range of 1 Gy) due to the very
limited sensitivity of the DSB detection methods. Our understand-
ing on the spatio temporal recruitment of repair proteins at low
irradiation doses is based on the studies of IRIFs. In these foci, hun-
dreds of recruited proteins have been used as surrogate markers
for DSBs. It has been described earlier that pertinent DSB markers
should be stably recruited at the break. In order to follow the repair
kinetics in real time, live imaging of cells expressing fluorescently
tagged proteins, recruited at the breaks, has been developed. This
technique allows the determination of the protein mobility and
assembly at the damaged site. Cell imaging takes advantage of
innovative derivatives such as fluorescence recovery after photo-
bleaching (FRAP), fluorescence loss in photobleaching (FLIP) or
fluorescence correlation spectroscopy (FCS), allowing the detection
of the proteins mobility and interactions in vivo. Importantly, these
require a stable fluorescent signal in time and led to the develop-
ment of new fluorescent tools. On the other hand, it is clear that
specific DDR markers need to be developed in order to study DSB
real time and in living cells. Areas of improvement are multiple,
but key steps may be to (i) target post-translational modifications
due to DDR signaling pathway activation and (ii) increase the sig-
nal specificity. In order to achieve this latter point, it may be nec-
essary to decrease the signal background due to fluorescently
tagged protein overexpression.

Indeed, although live cell imaging presents many advantages
over immunocytochemistry with fixed cells, this technique
encounters some limitations. Among them, fluorescently tagged
proteins may produce artifacts and signal background due to the
high level of expression. In fact, tagged protein may have a differ-
ent sub-cellular localization or perturb cell metabolism and/or
DNA repair complex. Thus, the knock-in replacement of the endog-
enous protein may address this question [97], although partly. An
elegant alternative may be the use of an indirect approach, with
split-luciferase (or split-GFP) or through intracellular antibodies.
In addition, intracellular antibodies could be engineered, by molec-
ular evolution in order to modify their affinity or by combining dif-
ferent antibodies. However, such approaches may lead to the
inhibition of the repair process. Another potential artifact is linked
to the use of microlaser irradiation, which leads to complex dam-
age in a huge nucleus volume. Furthermore, computational analy-
sis of time-lapse imaging data is still challenging and requires
procedures of cell segmentation, foci identification and single-par-
ticle tracking. At last, in connection with the rapid evolution of the
instrumentation and the interaction between biologists and math-
ematicians in computer science, one should obtain very quickly
new insights on the recruitment of proteins at DSBs, and their
movement during the repair process.
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