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Abstract

Let R be a commutative Noetherian ring, M a finitely generated R-module and I a proper ideal of R.
In this paper we introduce and analyze some properties of r(I,M) = ⋃

k�1(I k+1M : IkM), the Ratliff–
Rush ideal associated with I and M . When M = R (or more generally when M is projective) then
r(I,M) = Ĩ , the usual Ratliff–Rush ideal associated with I . If I is a regular ideal and annM = 0 we
show that {r(In,M)}n�0 is a stable I -filtration. If Mp is free for all p ∈ SpecR \ m-SpecR, then under
mild condition on R we show that for a regular ideal I , �(r(I,M)/Ĩ ) is finite. Further r(I,M) = Ĩ if
A∗(I ) ∩ m-SpecR = ∅ (here A∗(I ) is the stable value of the sequence Ass(R/In)). Our generalization
also helps to better understand the usual Ratliff–Rush filtration. When I is a regular m-primary ideal our
techniques yield an easily computable bound for k such that Ĩ n = (In+k : Ik) for all n � 1. For any ideal I

we show that Ĩ nM = InM + H 0
I
(M) for all n � 0. This yields that R̃(I,M) = ⊕

n�0 Ĩ nM is Noetherian

if and only if depthM > 0. Surprisingly if dimM = 1 then G̃I (M) = ⊕
n�0 Ĩ nM/ ˜In+1M is always a

Noetherian and a Cohen–Macaulay GI (R)-module. Application to Hilbert coefficients is also discussed.
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Introduction

Let R be a commutative Noetherian ring and I an ideal of R. The Ratliff–Rush ideal
Ĩ = ⋃

k�1(I
k+1 : I k) is a useful notion. When R is local and I is m-primary, the Ratliff–Rush

filtration {Ĩ n}n�1 has many applications in the theory of Hilbert functions, for instance see [18].
In this paper we generalize this notion.

Let M be a finitely generated R-module. Set

r(I,M) =
⋃
k�1

(
I k+1M : I kM

)
.

We call r(I,M) the Ratliff–Rush ideal associated with I and M . Notice that r(I,M) = Ĩ if
M = R. Our generalization also gives us a better understanding of the usual Ratliff–Rush fil-
tration. For instance when R is a Cohen–Macaulay local ring and I is an m-primary ideal it is
useful find a upper bound on k such that Ĩ n = (In+k : I k) for all n � 1, see [19]. Our techniques
enables us to find an easily computable upper bound on k (see 8.12 and 8.7).

We analyze many of its properties. Perhaps the first non-trivial property is that the function
I �→ r(I,M) is an involution on the set of ideals of R, i.e.,

r
(
r(I,M),M

) = r(I,M).

This is done in Theorem 3.3.
Next we relate this notion to integral closure. In Theorem 4.4 we show that if I is a regular

ideal then there exists a rank 1 module M such that r(I,M) = I . A typical example of a rank
one module is a regular ideal. In Proposition 4.5 we show that there exists a regular ideal J such
that r(I, J ) = I . Furthermore we prove (in Theorem 4.6) that the set

C(I ) = {
J

∣∣ J a regular ideal with r(I, J ) = I
}

has a unique maximal element.
Next we analyze the filtration F I

M = {r(In,M)}n�1. We first prove that this is a filtration
of ideals and an I -filtration (see Theorem 2.1). Thus R(F I

M) = ⊕
n�0 r(In,M) is a R(I ) =⊕

n�0 In-algebra. Let ĨM = ⋃
k�1(I

k+1M :M Ik), the Ratliff–Rush module of M associated

with I . We show that R̃(I,M) = ⊕
n�0 Ĩ nM is a graded R(F I

M)-module (see Proposition 2.4).

In Theorem 5.3 we prove that if grade(I,M) > 0 and annM = 0 then F I
M is a stable I -filtration.

If M is a projective R-module then r(I,M) = Ĩ for all ideals I (see Corollary 1.6). As R is
Noetherian, projective (finitely generated) modules are precisely locally free (finitely generated)
modules. In some sense the next case is to consider R-modules M such that

Mp is free for all p ∈ Spec(R) \ m-Spec(R) (∗)

(here m-SpecR denotes the set of maximal ideals of R). For instance if M ⊂ F where F is a
free R-module and if �(F/M) is finite then M satisfies (∗). Here �(−) denotes the length. On R

we impose a mild condition AssR ∩ m-SpecR = ∅ (every domain that is not a field satisfies this
condition). We show that if I is a regular ideal then �(r(I,M)/Ĩ ) is finite and the function n �→
�(r(In,M)/Ĩ n) is a polynomial function. We show that r(I,M) = Ĩ if A∗(I ) ∩ m-SpecR = ∅.
Here A∗(I ) is the stable value of Ass(R/In).
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In the case when annM 
= 0 or grade(I,M) = 0 we go modulo the ideal (H 0
I (M) : M). In

Proposition 7.3 we show that if M 
= H 0
I (M) then

r
(
In+1,M

) = I · r(In,M
) + (

H 0
I (M) : M)

for all n � 0.

An easy consequence of our techniques (see Proposition 7.5) is the following result in the case
of the usual Ratliff–Rush filtration of a module M with respect to I

Ĩ nM = InM + H 0
I (M) for all n � 0.

In the final section we show that if dimM = 1, G̃I (M) = ⊕
n�0 Ĩ nM/Ĩ n+1M is a Noetherian

and a Cohen–Macaulay GI(R)-module. This is surprising since if depthM = 0 (and dimM = 1)
then R̃(I,M) = ⊕

n�0 Ĩ nM is not a Noetherian R(I )-module. We also give an application of
our result to Hilbert coefficients.

Here is an overview of the contents of the paper. In section one we study few basic properties
of the ideal r(I,M). In section two we study the filtration {r(In,M)}n�1 and explore the relation
between {r(In,M)}n�1 and {Ĩ nM}n�1. In section three we prove that the operation I �→ r(I,M)

is an involution. In section four we relate it to integral closure. In section five we prove that it is a
stable I -filtration when I is regular and annM = 0. In section six we study the case when Mp is
free for all p ∈ SpecR \ m-SpecR. In section seven we study the general case when annM 
= 0
or grade(I,M) = 0. For the next sections we assume that (R,m) is local. In section eight we
study its relation with superficial elements. This is then used to give a bound on k such that
Ĩ n = (In+k : I k) for all n � 1. In section nine we study ideals having a principal reduction and
use it to compute r(I,M) in some examples. In final section we show that if dimM = 1 then

G̃I (M) = ⊕
n�0 Ĩ nM/Ĩ n+1M is always a Cohen–Macaulay GI (R)-module. Finally we give an

application of one of our results to Hilbert coefficients of a 1-dimensional module.

1. Preliminaries

In this paper unless otherwise stated all rings considered are commutative Noetherian and all
modules are assumed to be finitely generated.

Let R be a ring and I an ideal of R. Let M be an R-module. Consider the following ascending
chain of ideals in R

I ⊆ (IM : M) ⊆ (
I 2M : IM

) ⊆ · · · ⊆ (
I k+1M : I kM

) ⊆ · · · .
Since R is Noetherian, this chain stabilizes. We denote its stable value by r(I,M). We call
r(I,M) the Ratliff–Rush ideal associated with I and M .

In this section we prove some basic properties of ideal r(I,M), in particular we show that

r(I,M ⊕ N) = r(I,M) ∩ r(I,N) and r(I,M ⊗R N) ⊇ r(I,M) + r(I,N).

We also investigate the case when r(I,M) = R.

Remarks 1.1.

(a) r(I,M) = (I k+1M : I kM) for all k � 0.
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(b) When M = R,

r(I,R) =
⋃
k�1

(
I k+1 : I k

) = Ĩ , the Ratliff–Rush closure of I (see [11]).

(c) For n � 1, we have

r
(
In,M

) =
⋃
k�1

(
In+kM : I kM

)
.

(d) One can easily check that

I ⊆ Ĩ ⊆ r(I,M).

(e) Let R = ⊕
n�0 Rn be a graded ring and I , a homogeneous ideal of R. Let M be a graded

R-module. Then r(I,M) is a homogeneous ideal.

We give an example which shows that there exists a module M such that

I � Ĩ � r(I,M).

Example 1.2. Let R = k[t4, t11, t17, t18], m = 〈t4, t11, t17, t18〉R, I = 〈t4, t11〉R and M =
〈t4, t11, t17〉R. One can prove (by induction on n) that

In = 〈
t4n+7i : i = 0,1,2, . . . , n

〉
R for all n � 1.

Note that t18 · I 2 ⊆ I 3 so t18 ∈ Ĩ . One can verify that t17 /∈ (In+1 : In) for all n � 1. Thus we
get Ĩ = 〈t4, t11, t18〉R. Notice that t17 ∈ (IM : M). Now since Ĩ ⊆ r(I,M), we get r(I,M) =
〈t4, t11, t17, t18〉R. Therefore I � Ĩ � r(I,M) and r(I,M) = m.

We next give an example from [17, 1.4] of a Ratliff–Rush closed ideal I of ring R and a
module M such that I 
= r(I,M).

Example 1.3. Let R = k[x, y] be a polynomial ring in variables x and y. Let

I = 〈
y22, x4y18, x7y15, x8y14, x11y11, x14y8, x15y7, x18y4, x22〉R,

and

M = 〈
x2, y3〉R.

By [17, 1.4], I is Ratliff–Rush closed, that is I = Ĩ (also see Example 8.13). Using Singular [7]
one can verify that

(
I 4M : I 3M

) = I + 〈
x2y21, x6y17, x13y10, x20y3〉R.

So, I � (I 4M : I 3M) ⊆ r(I,M). Hence I = Ĩ � r(I,M).
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We collect some properties of the ideal r(I,M) in the following proposition.

Proposition 1.4. Let M and N be any two R-modules. Then

(a) If f :M → N is a surjective R-homomorphism then r(I,M) ⊆ r(I,N).
(b) r(I,M ⊕ N) = r(I,M) ∩ r(I,N).
(c) r(I,M ⊗R N) ⊇ r(I,M) + r(I,N).
(d) If T is a Noetherian ring which is a flat R-algebra then

r(I,M) ⊗R T = rT (IT ,M ⊗R T ).

(e) If S is a multiplicative closed subset of R then

r(I,M) ⊗R RS = rRS
(IRS,MS).

(f) For a regular ideal I , r(Ĩ ,M) = r(I,M).
(g) For each n � 1, we have r(In,M) = r(In, I sM) for all s � 1.

Proof. (a) Let x ∈ r(I,M). Then, for some k � 0, we have x ∈ (I k+1M : I kM). Thus

xIkM ⊆ I k+1M,

so

xIkf (M) ⊆ I k+1f (M).

Since f is surjective, we get x ∈ (I k+1N : I kN) ⊆ r(I,N).
(b) Let x ∈ r(I,M ⊕ N). Then xIk(M ⊕ N) ⊆ I k+1(M ⊕ N) for some k � 0. Therefore

xIkM ⊆ I k+1M and xIkN ⊆ I k+1N.

So

x ∈ r(I,M) ∩ r(I,N).

The reverse inclusion is obvious.
(c) Let x ∈ r(I,M). We have xIkM ⊆ I k+1M for some k � 0. Let

∑
i αi(mi ⊗ ni) ∈

I k(M ⊗ N), where αi ∈ I k . We have

x

(∑
i

αi(mi ⊗ ni)

)
=

∑
i

(xαimi) ⊗ ni.

Since xαimi ∈ I k+1M , xαimi = ∑
j β

(i)
u

(i), where β
(i) ∈ I k+1 and u

(i) ∈ M . Thus
j j j j
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x

(∑
i

αi(mi ⊗ ni)

)
=

∑
i

(∑
j

β
(i)
j u

(i)
j

)
⊗ ni

=
∑
i,j

(
β

(i)
j u

(i)
j

) ⊗ ni

=
∑
i,j

β
(i)
j

(
u

(i)
j ⊗ ni

) ∈ I k+1(M ⊗ N).

In the same way one can show that r(I,N) ⊆ r(I,M ⊗R N).
(d) Using [14, 18.1], we have

(
In+1M : InM

) ⊗R T = (
In+1M ⊗R T :T InM ⊗R T

)
for all n � 1.

Therefore we get

r(I,M) ⊗R T = (
I k+1M : I kM

) ⊗R T for all k � 0,

= (
I k+1M ⊗R T :T I kM ⊗R T

)
for all k � 0,

= rT (IT ,M ⊗R T ).

(e) This follows from part (d), since RS is a flat R-algebra.
(f) For any regular ideal I of R, we have I k = Ĩ k for all k � 0 (see [11, 2.1]). Therefore

r(Ĩ ,M) = (
Ĩ k+1M : Ĩ kM

)
for all k � 0,

= (
I k+1M : I kM

)
for all k � 0,

= r(I,M).

(g) Notice that

r
(
In, I sM

) =
⋃
k�1

(
In+kI sM : I kI sM

) = r
(
In,M

)
. �

Remark 1.5. From 1.4(b) and 1.1(d) it follows that if a module M has a free summand then
r(I,M) = Ĩ .

Corollary 1.6. Let M be a projective R-module and let I be an ideal of R. Then r(I,M) = Ĩ .

Proof. Set J = r(I,M). Since M is projective, Mp is free for all p ∈ SpecR, by [5, 4.11(b)].
Note that Ĩ ⊆ J . Now if p ∈ SpecR then

Jp = rRp
(Ip,Mp) (by 1.4(e)).
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Also

(Ĩ )p = Ĩp.

Thus J/Ĩ is locally zero and hence zero. �
The next proposition enables us to determine when is r(I,M) = R. Let

H 0
I (M) = {

m ∈ M: Inm = 0 for some n � 1
}

be the I -torsion submodule of M .

Proposition 1.7. Let I be a proper ideal of ring R. The following conditions are equivalent

(a) r(I,M) = R.
(b) There exists n � 0 such that InM = In+1M .

If H 0
I (M) = M then r(I,M) = R. Furthermore if R is local then the converse is also true.

Proof. (a) ⇒ (b): If r(I,M) = R then 1 ∈ (In+1M : InM) for some n. Therefore we get
In+1M = InM .

(b) ⇒ (a): If InM = In+1M for some n � 0 then 1 ∈ (In+1M : InM) ⊆ r(I,M). So
r(I,M) = R.

Suppose H 0
I (M) = M . Since M is a finitely generated R-module, there exists an integer n � 1

such that InM = 0. Hence r(I,M) = R.
Let R be local and I ⊆ m. If r(I,M) = R then by (b), InM = In+1M . So by Nakayama’s

lemma, InM = 0. Thus H 0
I (M) = M . �

The following example shows that in the non-local case, it is possible that r(I,M) = R but
H 0

I (M) 
= M .

Example 1.8. Let R be a ring, having a non-trivial idempotent element e (i.e., e2 = e and
e 
= 0,1). Let I = 〈e〉R and M = I . Notice that InM = In+1M for all n � 1. Therefore, by
Proposition 1.7, we have r(I,M) = R. Note that e cannot be killed by any power of I as
In · e = In+1 = I 
= 0. So e /∈ H 0

I (M). But e ∈ M . Hence M 
= H 0
I (M).

2. The filtration FI
M = {r(In,M)}n���0

This section deals with F I
M = {r(In,M)}n�0. We first show that it is a filtration of ideals and

also an I -filtration. We explore its relation with the Ratliff–Rush filtration of M with respect to I .
We also prove that if grade(I,M) > 0 then r(I,M) = (ĨM : M).

For the definition of filtration of ideals, see [3, 4.4]. The following theorem shows that the
collection F I

M = {r(In,M)}n�0 of ideals is an I -filtration.

Theorem 2.1. For any R-module M , the sequence F I
M is a filtration of ideals. It is also an

I -filtration.
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Proof. It is easy to show that

r
(
In,M

) ⊇ r
(
In+1,M

)
for all n � 0.

Next we prove the following

(a) r(In,M) · r(Im,M) ⊆ r(In+m,M) for all n,m � 1.
(b) I · r(In,M) ⊆ r(In+1,M) for all n � 1.

(a) Let x ∈ r(In,M) and y ∈ r(Im,M). We have

xIkM ⊆ In+kM for all k � 0,

and

yIkM ⊆ Im+kM for all k � 0.

Therefore, for all k � 0, we have

xyIkM ⊆ xIm+kM ⊆ In+m+kM.

Thus,

xy ∈ r
(
In+m,M

)
.

(b) This follows from (a) since I ⊆ r(I,M). Thus F I
M is an I -filtration. �

Let us recall the definition (see [9], also see [15]) of the Ratliff–Rush submodule of M with
respect to I .

Definition 2.2. Consider the following chain of submodules of M :

IM ⊆ (
I 2M :M I

) ⊆ (
I 3M :M I 2) ⊆ · · · ⊆ (

In+1M :M In
) ⊆ · · · .

Since M is Noetherian, this chain of submodules stabilizes. We denote its stable value by ĨM .
We call ĨM to be the Ratliff–Rush submodule of M associated with I. The filtration {Ĩ nM}n�1 is
called the Ratliff–Rush filtration of M with respect to I .

Notation. To facilitate further calculations, set

F I
M = {

r
(
In,M

)}
n�0, R

(
F I

M

) =
⊕
n�0

r
(
In,M

)
,

R(I ) =
⊕

In, GI (R) =
⊕

In/In+1, GI (R)+ =
⊕

In/In+1,
n�0 n�0 n�1
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GI (M) =
⊕
n�0

InM/In+1M and R̃(I,M) =
⊕
n�0

Ĩ nM.

Remark 2.3. By Theorem 2.1, F I
M is a filtration of ideals in R, so R(F I

M) is a ring. Clearly
R(I ) ⊆ R(F I

M) is a subring. Since F I
M is an I -filtration then R(F I

M) is an R(I )-module.

We study the relation between the R(I )-algebra R(F I
M) and the R(I )-module R̃(M). We

first show that

Proposition 2.4. R̃(I,M) is a graded R(F I
M)-module.

Proof. Set In = r(In,M). It is enough to check that

In · ĨmM ⊆ ˜In+mM for all n,m. (∗)

Take any x ∈ In and z ∈ ĨmM . Then, by [15, 2.2(iii)] and definition of In, we have

I kz ⊆ I k+mM and xIkM ⊆ I k+nM for all k � 0.

Therefore, for all k � 0

xIkz ⊆ x · Im+kM ⊆ In+m+kM.

So

xz ∈ ˜In+mM. �
Corollary 2.5. Set J = r(I,M). Then

InM ⊆ JnM ⊆ Ĩ nM for all n � 1.

Proof. The first inclusion is clear. The second inclusion follows from the fact Jn ⊆ r(In,M)

and Proposition 2.4. �
Corollary 2.6. Set J = r(I,M). Assume that grade(I,M) > 0. Then

JnM = InM for all n � 0.

Furthermore if grade(GI (R)+,GI (M)) > 0 then

JnM = InM for all n � 1.

Proof. First part follows from [15, 2.2]. For second part, note that grade(GI (R)+, GI (M)) > 0
implies (see [9, Fact 9]) that Ĩ nM = InM for all n � 1. �
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Proposition 2.7. If grade(I,M) > 0 then

r(I,M) = (ĨM : M).

Proof. From Proposition 2.4, it follows that r(I,M) ⊆ (ĨM : M). For reverse inclusion, let
x ∈ (ĨM : M). Then

xM ⊆ ĨM,

so

xIkM ⊆ I kĨM = I k+1M for all k � 0.

Thus x ∈ r(I,M). Hence r(I,M) = (ĨM : M). �
3. Involution properties

In this section we prove that the function I �→ r(I,M) is an involution on the set of ideals
of R (see Theorem 3.3). We first prove the result in the case when grade(I,M) > 0. We also
show that if grade(I,M) > 0 then r(I,M) is a Ratliff–Rush closed ideal.

Proposition 3.1. Let grade(I,M) > 0. Set J = r(I,M). Then

(a) r(J,M) = J .
(b) J̃ = J .

Proof. (a) By Corollary 2.6, there exists an integer k0 such that

(i) J kM = I kM for k � k0.

Also there exists k′
0 such that

r(J,M) = (
J k+1M : J kM

)
for all k � k′

0.

From (i), it follows that

r(J,M) = (
I k+1M : I kM

)
for all k � max

{
k0, k

′
0

}
,

⊆ r(I,M) = J.

Since J ⊆ r(J,M) always we get r(J,M) = J .
(b) Let x ∈ J̃ . Then

xJ k ⊆ J k+1 for all k � 0,

xJ kM ⊆ J k+1M for all k � 0.
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By Corollary 2.6, we get

xIkM ⊆ I k+1M for all k � 0.

Therefore x ∈ J . Hence J̃ = J . �
To tackle the case when grade(I,M) = 0 we first prove

Lemma 3.2. For any ideal I , the following hold

(a) r(I,M) = r(I,M/H 0
I (M)).

(b) r(In,M) = r(In,M/H 0
I (M)) for all n � 1.

Proof. (a) If M = H 0
I (M) then our assertion follows from Proposition 1.7. Suppose M 
=

H 0
I (M). Since the natural map M → M/H 0

I (M) is surjective, by Proposition 1.4(a), we have

r(I,M) ⊆ r
(
I,M/H 0

I (M)
)
.

Let x ∈ r(I,M/H 0
I (M)). Therefore

xIkM + H 0
I (M) ⊆ I k+1M + H 0

I (M) for some k � 0.

Since M is a finitely generated R-module, there exists an integer r ∈ N such that I rH 0
I (M) = 0.

Therefore

xI r+kM ⊆ I r+k+1M.

So x ∈ (I r+k+1M : I r+kM) ⊆ r(I,M).
(b) This follows from (a), since H 0

In(M) = H 0
I (M) for all n � 1. �

We now prove the involution property in general.

Theorem 3.3. For any ideal I of ring R, we have

r
(
r(I,M),M

) = r(I,M).

Proof. Set J = r(I,M) and N = M/H 0
I (M). If M = H 0

I (M), then J = R by Proposition 1.7.
Also clearly r(R,M) = R. Now suppose M 
= H 0

I (M). By using Lemma 3.2 for the ideals I

and J , we have

(i) J = r(I,M) = r(I,N),

(ii) r(J,M) = r
(
J,M/H 0

J (M)
)
.

Since I ⊆ J we get H 0
J (M) ⊆ H 0

I (M). Therefore the epimorphism

M/H 0
J (M) → M/H 0

I (M) = N
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induces, by Proposition 1.4(a),

(iii) r
(
J,M/H 0

J (M)
) ⊆ r(J,N).

Notice that grade(I,N) > 0. Therefore, from Proposition 3.1, we get

(iv) r(J,N) = r
(
r(I,N),N

) = r(I,N).

Using (ii), (iii) and (iv), we get

r(J,M) = r
(
J,M/H 0

J (M)
) ⊆ r(J,N) = J.

But r(J,M) ⊇ J always. Therefore r(J,M) = J . �
4. Relation with integral closure

In this section we show that r(I,M) ⊆ I , the integral closure of I when annM = 0 and
grade(I,R) > 0. In particular when M has a positive rank and I is a regular ideal. We prove that
if I is a regular ideal then there exists an R-module M of rank 1 such that r(I,M) = I . Finally
we show that if I is a regular ideal then the set

C(I ) := {
J : J is regular ideal and r(I, J ) = I

}
is non-empty and has a unique maximal element.

Remark 4.1. For any x ∈ r(I,M), there exists k � 0 such that xIkM ⊆ I k+1M . By determinant
trick, there exists f (t) ∈ R[t] such that

f (t) = tn + a1t
n−1 + · · · + an−1t + an, where ai ∈ I i,

and f (x) ∈ ann(I kM).

The following proposition gives a relation between r(I,M) and I .

Proposition 4.2. Let annM = 0. If either of following two conditions holds

(a) grade(I,R) > 0.
(b) grade(I,M) > 0.

Then r(I,M) ⊆ I . In particular if I is a regular ideal and M has a positive rank then
r(I,M) ⊆ I .

Proof. (a) By the remark above we get that f (x)I kM = 0 for some k � 0. But annM = 0. So
f (x) · I k = 0. Since grade(I,R) > 0, we get f (x) = 0. Hence x ∈ I .

(b) Note that grade(I,M) > 0 yields ann(I kM) = annM . Now from hypothesis annM = 0,
it follows that f (x) = 0. Hence x ∈ I .

Finally note that if M has a positive rank, say r , then annM = 0 (since it contains Rr as a
submodule). �
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Remark 4.3. Notice that annM = 0 together with grade(I,M) > 0 implies grade(I,R) > 0.
Thus (b) follows from (a).

The next theorem ensures the existence of an R-module M for a regular ideal I of R such that
r(I,M) = I .

Theorem 4.4. Let I be a regular ideal of R. Let J be an ideal such that I ⊆ J ⊆ I . Then there
exists R-module M of rank 1 such that

I ⊆ J ⊆ r(I,M) ⊆ I .

In particular, there exists an R-module M of rank 1 such that r(I,M) = I .

Proof. Let z ∈ J \ I be any element. We have zn + ∑n
i=1 aiz

n−i = 0, with ai ∈ I i . Thus

zn = −
n∑

i=1

aiz
n−i . (∗)

Set N = 〈z, I 〉n−1R. We claim that zN ⊆ IN . Let x ∈ N . Then

x = rzn−1 +
n−1∑
i=1

biz
n−1−i , where r ∈ R and bi ∈ I i .

Therefore

zx = rzn +
n−1∑
i=1

biz
n−i .

By using (∗), we get zx = ∑n−1
i=1 (bi − rai)z

n−i − ran ∈ IN . Thus zN ⊆ IN and hence z ∈
r(I,N).

Let us assume that J = 〈z1, z2, . . . , zs〉R and set Ni = 〈zi, I 〉ni−1R, where ni is the de-
gree of an integral equation satisfied by zi . Set M = N1 ⊗R N2 ⊗R · · · ⊗R Ns . Notice that
rankM = 1. By Proposition 1.4, we get J ⊆ r(I,M). But, by Proposition 4.2(a), we always
have I ⊇ r(I,M). �
Proposition 4.5. For any regular ideal I , there exists a regular ideal J such that

r(I, J ) = I .

Proof. By Theorem 4.4, there exists an R-module M of rank 1 such that r(I,M) = I . Let T (M)

denote the torsion submodule of M and set N = M/T (M). Note that the surjective map M → N

induces r(I,N) ⊇ r(I,M) = I . But as rankN = rankM = 1, we have r(I,N) ⊆ I (by 4.2(a)).
So r(I,N) = I . Clearly N is torsion-free so that N � J for some ideal J of R. Since J is of
rank 1, J is a regular ideal. Notice that r(I, J ) = r(I,N) = I . �
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Let C(I ) := {J : J is a regular ideal and r(I, J ) = I }. By Proposition 4.5, C(I ) 
= ∅. Since R

is Noetherian, C(I ) has a maximal element. We show that

Theorem 4.6. C(I ) has a unique maximal element.

Proof. Suppose Q ∈ C(I ) is a maximal element and J ∈ C(I ). By Proposition 1.4, the following
epimorphism J ⊕ Q → J + Q → 0 induces

r(I, J ⊕ Q) ⊆ r(I, J + Q).

But

r(I, J ⊕ Q) = r(I, J ) ∩ r(I,Q) = I , by Proposition 1.4(b).

So

I ⊆ r(I, J + Q).

But r(I, J + Q) ⊆ I , since J + Q has rank 1 as an R-module so r(I, J + Q) = I . As Q is
maximal this gives Q = J + Q. So J ⊆ Q. Hence C(I ) has a unique maximal element. �
5. Stable filtrations

In this section we discuss the conditions under which our filtration F I
M = {r(In,M)}n�0 is a

stable I -filtration. This is equivalent to saying that the Rees algebra R(F I
M) is a finitely generated

R(I )-module. Our main result (Theorem 5.9) is that if grade(I,R) > 0 and annM = 0 then F I
M

is a stable I -filtration. In local case we prove that annM = 0 is a necessary condition for F I
M to

be a stable I -filtration.

5.1. Recall a filtration of ideals R = I0 ⊇ I1 ⊇ · · · ⊇ In ⊇ In+1 ⊇ · · · is said to be a stable
I -filtration if IIn ⊆ In+1 for all n � 0 and IIn = In+1 for n � 0.

The lemma below is crucial to prove our main result.

Lemma 5.2. Let S be a ring and R ⊆ S, a subring of S, such that R is Noetherian. Assume that
there is a faithful S-module E (i.e., annS(E) = 0) such that E is a finitely generated R-module.
Then S is finitely generated as a R-module (and so Noetherian).

Proof. Note that any S-linear map f :M → N between S-modules M and N , is also R-linear.
Consider the inclusion map

i : HomS(E,E) → HomR(E,E) such that f �→ f.

Notice that i is R-linear. For s ∈ S, let μs :E → E be the multiplication map, i.e., μs(t) = st for
all t ∈ E. Define
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φ :S → HomS(E,E),

s �→ μs.

Clearly φ is S-linear and so R-linear. Notice that kerφ = 0, since E is a faithful S-module.
Consider the following composition

S
φ−→ HomS(E,E)

i−→ HomR(E,E).

Clearly i ◦ φ is an injective R-linear map. Therefore as R-modules

S ∼= to a R-submodule of HomR(E,E).

As R is Noetherian and E is a finitely generated R-module, we get S is a finitely generated
R-module. �

The next theorem shows that the filtration F I
M is a stable I -filtration under fairly mild as-

sumptions.

Theorem 5.3. Let grade(I,M) > 0 and annM = 0. Then F I
M is a stable I -filtration.

Proof. For convenience, set S = R(F I
M), R = R(I ) and E = ⊕

n�0 Ĩ nMtn. By Proposi-

tion 2.4, E is an S-module. Since grade(I,M) > 0, Ĩ nM = InM for all n � 0 (see [15, 2.2]).
So E is a finitely generated R-module.

We prove that annS(E) = 0. Notice that annS(E) is a homogeneous ideal of S . Let xtn ∈
annS(E) be a homogeneous element. As xtn · E = 0 we get x · M = 0. Thus x ∈ annM = 0.
Therefore annS(E) = 0. Using Lemma 5.2, we conclude that S is a finitely generated R-module.
So F I

M is a stable I -filtration. �
The following example shows that the hypothesis in Theorem 5.3 is not necessary for R(F I

M)

to be Noetherian.

Example 5.4. Let I be a nilpotent ideal of R (i.e., I r = 0 for some r � 1). Then r(In,M) = R

for all n � 0 and for any R-module M . Thus R(F I
M) ∼= R[t], which is a Noetherian ring.

Remark 5.5. Let I be any ideal of R. Let x ∈ annM . Then x · M = 0, so xIkM = 0 ⊆ In+kM

for all n, k � 1. Therefore x ∈ r(In,M) for all n � 1. Hence

annM ⊆
⋂
n�1

r
(
In,M

)
.

Proposition 5.6. If F I
M is a stable I -filtration then

annM ⊆
⋂
n�1

In.
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Proof. For convenience, set In = r(In,M). Since F I
M is a stable I -filtration, there exists an

integer n0 such that

(i) In0+k = I kIn0 for all k � 1.

By above Remark 5.5, one has annM ⊆ In0+k for all k � 1. Therefore, by (i), we have

annM ⊆ In0+k ⊆ I k for all k � 1.

Hence result follows. �
Remark 5.7. The above Proposition 5.6 proves that if the I -adic filtration is separated, i.e.,⋂

n�1 In = 0 then

F I
M is a stable I -filtration ⇒ annM = 0.

An easy consequence of Proposition 5.6 is following

Corollary 5.8. Let (R,m) be a local ring and M 
= H 0
I (M). Then

F I
M is a stable I -filtration ⇒ annM = 0.

Proof. For a local ring (R,m), the I -adic filtration is separated (by Krull’s intersection theorem).
Hence annM = 0. �

In the next proposition we prove a partial converse of above Corollary 5.8.

Theorem 5.9. Let I be a regular ideal. If annM = 0 then F I
M is a stable I -filtration.

Proof. Notice that M 
= H 0
I (M). Set N = M/H 0

I (M). Note that grade(I,N) > 0. We have

r
(
In,M

) = r
(
In,N

)
for all n � 0 (by Lemma 3.2). (∗)

Let x ∈ annR(N). We have xM ⊆ H 0
I (M). Thus there exists k � 1 such that I k(xM) = 0, so

xIk ⊆ annM = 0. But since I is regular, x = 0. Hence annR(N) = 0. Therefore, by Theorem 5.3,
the filtration {r(In,N)}n�0 is a stable I -filtration and so is F I

M . �
6. The case when Mp is free for all p ∈ Spec(R) \ m-Spec(R)

In this section we study our filtration F I
M = {r(In,M)}n�1 when M is free for all p ∈

SpecR \ m-SpecR. We show that for a regular ideal I , F I
M is a stable I -filtration when

AssR ∩ m-SpecR = ∅. We also prove that if A∗(I ) ∩ m-SpecR = ∅ then r(In,M) = Ĩ n for
all n � 1. Here A∗(I ) is the stable value of the sequence Ass(A/In).
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6.1. Throughout this section we assume that

(1) AssR ∩ m-SpecR = ∅ and
(2) M is an R-module such that Mp is free for all p ∈ SpecR \ m-SpecR, where m-SpecR =

{m: m is a maximal ideal of R}.

We give some examples where these assumptions hold.

Examples 6.2.

(1) AssR ∩ m-SpecR = ∅ holds if and only if depthRm > 0 for all m ∈ m-SpecR. Thus if
(R,m) is a local domain which is not a field then assumption 6.1(1) holds.

(2) If an R-module M satisfies the exact sequence of the form

0 → M → F → F/M → 0, with �(F/M) < ∞,

where F is a free R-module then Mp is free for all p ∈ SpecR \ m-SpecR.
(3) Let (R,m) be a local Cohen–Macaulay ring and an isolated singularity, i.e., Rp is regular

local for all prime p 
= m. Then if M is a maximal Cohen–Macaulay R-module then Mp is
free for all p 
= m.

Lemma 6.3. (With hypotheses as in 6.1.) annM = 0.

Proof. Notice that (annM)p = annRp
(Mp) = 0, for all p ∈ SpecR \ m-SpecR. By our first

hypothesis, we can have Ass(annM) ∩ m-SpecR = ∅ and so Ass(annM) = ∅. Therefore
annM = 0. �

The following proposition readily follows from Theorem 5.9 and Lemma 6.3.

Proposition 6.4. (With hypotheses as in 6.1.) If I is a regular ideal then F I
M is a stable I -filtration

and so R(F I
M) is finitely generated as an R(I )-module.

Remarks 6.5.

(1) By the result of Brodmann [2], the sequence Ass(R/In) stabilizes for large n. Let A∗(I )

denote the stable value of this sequence.
(2) Ratliff in his paper [10, 2.7], has proved that the sequence Ass(R/In) eventually stabilizes

at a set denoted by A∗(I ).
(3) In [10, 2.8], it is also proved that A∗(I ) ⊆ A∗(I ).
(4) By [12, 1.6], we have p ∈ A∗(I ) if and only if pS ∈ A∗(IS), for any multiplication closed set

S disjoint from p.

The following is well known. We include a proof for lack of a suitable reference.

Lemma 6.6. For a regular ideal I we have

(a) Ass(R/Ĩ n) ⊆ Ass(R/Ĩ n+1) for all n � 1.
(b) Further, Ass(R/Ĩ n) ⊆ A∗(I ) for all n � 1.
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Proof. (a) Fix n � 1. Let p ⊇ I be such that p ∈ Ass(R/Ĩ n). We localize R at p. Set m = pRp.
Since associated primes behave well with respect to localization so we may assume that (R,m)

is local and m ∈ Ass(R/Ĩ n). We may further assume that R/m is infinite. Otherwise we make a
base change R → R[X]mR[X] = T . Let n = mT , the extension of the maximal ideal of R in T .
Notice that if E is an R-module then

n ∈ AssT (E ⊗R T ) if and only if m ∈ AssE.

Therefore we assume that (R,m) is local with R/m infinite and m ∈ Ass(R/Ĩ n). Let x ∈ I be a
superficial element with respect to I . Consider the map

μx
n :R/Ĩn → R/Ĩn+1, such that a + Ĩ n �→ ax + Ĩ n+1.

Clearly μx
n is R-linear. Also it is injective. Thus m ∈ Ass(R/Ĩ n) ⊆ Ass(R/Ĩ n+1).

(b) By repeatedly using (a) we get

p ∈ Ass
(
R/Ĩn+k

)
for all k � 1.

Note that for k � 0, Ĩ n+k = In+k . Also by Remark 6.5(1), Ass(R/In+k) = A∗(I ). Therefore the
result follows. �
Theorem 6.7. (With hypotheses as in 6.1.) Let I be a regular ideal of R. Then the function n �→
�(r(In,M)/Ĩ n) is a polynomial function. Furthermore if A∗(I )∩m-SpecR = ∅ then r(In,M) =
Ĩ n for all n � 1.

Proof. Notice that Ĩ n ⊆ r(In,M) for all n � 1. Let p ∈ SpecR \ m-SpecR. By hypotheses,
Proposition 1.4(e) and Remark 1.5, we have

r
(
In,M

)
p

= rRp

(
In
p ,Mp

) = Ĩ n
p for all n � 1. (∗)

Therefore for all n � 1,

�

(
r(In,M)

Ĩ n

)
is finite.

By Proposition 6.4, R(F I
M) is a finitely generated R(I )-module. Also R̃(I ) is a finitely gener-

ated R(I )-module. So

E = R(F I
M)

R̃(I )
=

⊕
n�1

r(In,M)

Ĩ n

is a finitely generated R(I )-module. From a well-known fact it follows that the function n �→
�(r(In,M)/Ĩ n) is a polynomial function.
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The exact sequence 0 → r(In,M)/Ĩ n → R/Ĩn yields

Ass

(
r(In,M)

Ĩ n

)
⊆ Ass

(
R/Ĩn

) ⊆ A∗(I ).

If A∗(I ) ∩ m-SpecR = ∅ then by (∗) we get r(In,M) = Ĩ n for all n � 1. �
Remark 6.8. If A∗(I ) ∩ m-SpecR 
= ∅ then r(I,M) need not be equal to Ĩ . For instance let
R = k[t4, t11, t17, t18]m where m = (t4, t11, t17, t18). Let I = (t4, t11). Set M = (t4, t11, t17)

considered as a submodule of R. Notice that �(R/M) is finite. By Example 9.7 we get that
r(In,M) 
= Ĩ n for all n � 1. In this case I is m-primary. So A∗(I ) = {m}.

In view of Theorem 6.7 we give some situations of prime p such that p ∈ A∗(I ).

Remarks 6.9.

(1) If ht(p) = l(Ip), the analytic spread of Ip then p ∈ A∗(I ) (see [12, 4.1]).
(2) If p ∈ A∗(I ) \ B∗(I ), where B∗(I ) is the stable value of the sequence Ass(In/In+1), then

p ∈ AssR (see [12, 2.2]).
(3) With hypotheses as in 6.1, if a maximal ideal m ∈ A∗(I ) then m ∈ B∗(I ) that is, m ∈

AssR(In/In+1) for n � 0. So we get m/I ∈ AssR/I (I
n/In+1) for n � 0. Set G = GI(R).

By [13, 2.1], we thus have m/I = Q ∩ R/I such that Q ∈ Ass(G) \ V (G+).

Corollary 6.10. (With hypotheses as in 6.1.) In addition let (R,m) be a local Cohen–Macaulay
ring. Let x1, . . . , xr be a regular sequence with r < dimR. Set I = 〈x1, . . . , xr 〉R. Then
r(In,M) = In for all n � 1.

Proof. Clearly R/In is a Cohen–Macaulay ring of dimension greater than or equal to 1 for
all n � 1. So m /∈ Ass(R/In) for all n � 1. This gives m /∈ A∗(I ). Therefore by Theorem 6.7,
r(In,M) = Ĩ n for all n � 1. However as depthGI (R) > 0 we get Ĩ n = In for all n � 1. The
result follows. �
7. Some more analysis on r(I,M)

In this section we analyze the case when annM need not be zero. We also consider the case
when grade(I,M) = 0. When M 
= H 0

I (M) both these cases can be dealt with by going modulo
the ideal (H 0

I (M) : M). We prove that r(In+1,M) = I · r(In,M) + (H 0
I (M) : M) for all n � 0.

Our techniques also yield Ĩ nM = InM + H 0
I (M) for all n � 0.

7.1. Before we proceed further let us fix some notations which we will use throughout the
section. Set N = M/H 0

I (M), q
I
(M) = (H 0

I (M) : M) and S = R/q
I
(M). Let J be the image of

I in S.

Proposition 7.2. Let M be an R-module such that M 
= H 0
I (M). Then

(a) r(In,M) = rR(In,N) for all n � 1.
(b) q

I
(M) ⊆ r(In,N) for all n � 1.
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(c) annS(N) = 0.
(d) gradeR(I,N) = gradeS(J,N) > 0.
(e) r(In,M)/q

I
(M) = rS(J n,N) for all n � 1.

Proof. Set q = q
I
(M). (a) follows from Lemma 3.2(a). Parts (b) and (c) are easy to prove.

For (d), note that H 0
J (N) = 0. To prove (e), it is sufficient to show that

r(In,N)

q
= rS

(
Jn,N

)
for all n � 1.

Let x ∈ r(In,N). Thus xIkN ⊆ In+kN, so by going modulo q , we get

x̄J kN ⊆ Jn+kN.

So

x̄ ∈ rS
(
Jn,N

)
.

Conversely if x̄ ∈ rS(J n,N) then we have x̄J kN ⊆ Jn+kN . Thus

(x + q)

(
I k + q

q

)
N ⊆

(
In+k + q

q

)
N,

so

(
xIk + q

q

)
N ⊆

(
In+k + q

q

)
N.

This implies (xI k + q)N ⊆ (In+k + q)N . So xIkN ⊆ In+kN, since q = annR N . Therefore
x ∈ r(In,N) and hence x̄ ∈ r(In,N)/q . �
Theorem 7.3. Let M be an R-module such that M 
= H 0

I (M). Then

r
(
In+1,M

) = I · r(In,M
) + (

H 0
I (M) : M)

for all n � 0.

Proof. By Proposition 7.2(d), gradeS(J,N) > 0. Together with result (c), this gives that
the filtration {rS(J n,N)}n�0 is a stable J -filtration (by Theorem 5.3). Therefore we have
rS(J n+1,N) = J · rS(J n,N) for all n � 0. So

r(In+1,M)

q
=

(
I + q

q

)
·
(

r(In,M)

q

)
.

Thus r(In+1,M) = I · r(In,M) + q for all n � 0. �
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7.4. Consequences of Theorem 7.3

(1) When M = R we have, for any ideal I ,

Ĩ n+1 = I · Ĩ n + H 0
I (R) for all n � 0.

(2) If grade(I,M) > 0 then

r
(
In+1,M

) = I · r(In,M
) + annM for all n � 0.

Next we relate Ĩ nM and InM . In the case when M = R, the following result is proved in [21,
2.13(a)].

Proposition 7.5. Let I be an ideal of R and M an R-module. Then

Ĩ nM = InM + H 0
I (M) for all n � 0.

Proof. By Proposition 7.2(d), grade(J,N) > 0. Therefore J̃ nN = JnN for all n � 0. So

(i) J̃ nN = InM + H 0
I (M)

H 0
I (M)

for all n � 0.

It is easy to see that H 0
I (M) ⊆ Ĩ nM for all n � 1. By an argument similar to Proposition 7.2(e),

we get

J̃ nN = Ĩ nM

H 0
I (M)

.

Thus from Eq. (i), the result follows. �
Corollary 7.6. Assume that R̃(I,M) = ⊕

n�0 Ĩ nM is a Noetherian R(I )-module and M is

separated with respect to the I -adic topology. Then H 0
I (M) = 0.

Proof. Since R̃(I,M) is Noetherian, there exists a positive integer n0 ∈ N such that Ĩ nM =
In−n0 Ĩ n0M for all n � n0. So H 0

I (M) ⊆ In−n0 Ĩ n0M ⊆ In−n0M for all n � n0. Thus the result
follows from our hypothesis on M . �
8. Relation with a superficial element

In this section we assume that (R,m) is local with the maximal ideal m. The goal of this
section is to understand the relation between r(I,M) and a superficial element. To ensure the
existence of superficial element we assume (unless stated otherwise) that the residue field K =
R/m is infinite. When I is m-primary our techniques yield an easily computable bound on k

such that Ĩ n = (In+k : I k) for all n � 1.
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8.1. Recall an element x ∈ I is called M-superficial with respect to I if there exists an integer
c � 0 such that

(
In+1M :M x

) ∩ I cM = InM for all n � c.

Superficial element exists when K is infinite. If grade (I,M) > 0 then every M-superficial ele-
ment is also M-regular. Also if x ∈ I is M-superficial and M-regular then

(
In+1M :M x

) = InM for all n � 0 (see [20, p. 8] for the case M = R).

Proposition 8.2. Let x ∈ I be a M-superficial element. Then

(
r
(
In+1,M

) : x) = r
(
In,M

)
for all n � 1.

Proof. Since x ∈ I is M-superficial, there exists c > 0 such that

(i)
(
I j+1M :M x

) ∩ I cM = I jM for all j � c.

It is easy to see that r(In,M) ⊆ (r(In+1,M) : x) for all n � 1. Conversely let a ∈ (r(In+1,M) :
x). Then

ax ∈ r
(
In+1,M

) = (
In+k+1M : I kM

)
for k � 0.

Thus

axIkM ⊆ In+k+1M for k � 0.

Now for k � 0, we have aIkM ⊆ I cM . Therefore, by (i), we get

aIkM ⊆ In+kM.

Thus a ∈ (In+kM : I kM) ⊆ r(In,M). �
8.3. If grade (I,M) > 0 then Ĩ nM = InM for all n � 0. Define

ρI (M) := min
{
n: Ĩ iM = I iM for all i � n

}
.

If x ∈ I is M-superficial then it is proved in [16, Corollary 5.3] that

ρI (M) = min
{
n:

(
I i+1M :M x

) = I iM for all i � n
}
.

Proposition 8.4. Let grade(I,M) > 0. Then

r
(
In,M

) = (
InM : M)

for all n � ρI (M).
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Proof. Let x ∈ I be both M-superficial and M-regular. So

(i)
(
In+1M :M x

) = InM for all n � ρI (M).

Let a ∈ r(In,M). Then aIkM ⊆ In+kM for some k � 1. So axkM ⊆ In+kM . By repeated use
of (i), we get aM ⊆ (In+kM :M xk) = InM . Therefore a ∈ (InM : M). �
Corollary 8.5. Let x ∈ I be M-superficial such that x∗ is GI (M)-regular. Then

r
(
In,M

) = (
InM : M)

for all n � 1.

Proof. Since x∗ is GI (M)-regular, we have(
In+1M :M x

) = InM for all n � 1.

So ρI (M) = 1. Therefore the result follows from Proposition 8.4. �
Notation. Let I be an m-primary ideal. Suppose M is of dimension d � 0. We define the postu-
lation number ηI (M) of I with respect to M as follows:

ηI (M) := min
{
n: HM

I (t) = pM
I (t), for all t � n

}
,

where HM
I (n) = �(M/In+1M) is the Hilbert–Samuel function of M with respect to I and pM

I (t)

is the Hilbert–Samuel polynomial of M with respect to I . Let x ∈ I be M-superficial. We set

ηI (x,M) = max
{
ηI (M),ηI (M/xM)

}
.

The following proposition is proved by J. Elias in [6, 1.3] for M = R. The same proof applies
to the general case.

Proposition 8.6. Let I be an m-primary ideal. Let x ∈ I be an M-superficial and M-regular
element. Then (

I k+1M : x) = I kM for all k � ηI (x,M) + 1.

Remark 8.7. From above Proposition 8.6, if grade(I,M) > 0, it follows that ρI (M) �
ηI (x,M) + 1.

Proposition 8.8. Let grade (I,M) > 0. Then

r
(
In,M

) = (
In+kM : I kM

)
for all n � 1 and k � ρI (M).

Proof. Clearly grade(I, I kM) > 0 for all k. By Propositions 1.4(g) and 2.7, we have for each
n � 1,

r
(
In,M

) = r
(
In, I kM

)
for all k � 1,

= (
Ĩ n+kM : I kM

)
for all k � 1.
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Thus

r
(
In,M

) = (
In+kM : I kM

)
for all k � ρI (M). �

When M = R we obtain that

Corollary 8.9. Let I be a regular ideal. Then for each value of n, we have

Ĩ n = (
In+k : I k

)
for all k � ρI (R).

Remark 8.10. In particular, if I is an m-primary regular ideal then for each n � 1,

Ĩ n = (
In+k : I k

)
for all k � ηI (x,R) + 1.

For n = 1 the result above was proved by J. Elias [6, p. 722]. However our result does not follow
from it. Furthermore even for n = 1 our method is simpler to compute.

It is of interest to find a similar bound for Ĩ nM . We prove

Theorem 8.11. Let grade (I,M) > 0. Then for each n � 1, we have

Ĩ nM = (
In+kM :M Ik

)
for all k � ρI (M).

Proof. Let x ∈ I be M-superficial. It is enough to show that for k � ρI (M), we have(
In+k+1M :M Ik+1) ⊆ (

In+kM :M Ik
)
.

Let m ∈ (In+k+1M :M Ik+1). Then mIk+1 ⊆ In+k+1M , so mxIk ⊆ In+k+1M . Therefore

mIk ⊆ (
In+k+1M :M x

) = In+kM.

So m ∈ (In+kM :M Ik). �
The next theorem deals with the situation when residue field R/m is not necessarily infinite.

Theorem 8.12. Let (R,m) be local, M an R-module and let I be an ideal with grade(I,M) > 0.
Then the following hold for all k � ρI (M),

(a) r(In,M) = (In+kM : I kM) for all n � 1.

(b) Ĩ nM = (In+kM :M Ik) for all n � 1.

In particular, when M = R we have for each n, Ĩ n = (In+k : I k) for all k � ρI (R).

Proof. Note that (b) follows from (a). We now prove part (a). Consider the faithfully flat exten-
sion

R → T = R[X]mR[X].
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Note that the residue field of T is K(X), the quotient field of polynomial ring K[X] and it is
infinite. Set q = IT and E = M ⊗R T . By Proposition 1.4(d), we get

r
(
In,M

) ⊗R T = r
(
qn,E

)
= (

qn+kE :T qkE
)

for all k � ρq(E),

= (
In+kM : I kM

) ⊗R T for all k � ρq(E).

By [16, 1.7], we have ρq(E) = ρI (M). Fix k � ρI (M) and set

D = r
(
In,M

)/(
In+kM : I kM

)
.

Then we have D ⊗R T = 0. Since T is a faithfully flat extension of R, we get D = 0. �
We used the packages CoCoA [1] and Singular [7] for our computations. We reconsider the

Example 1.3. In this example we apply Theorem 8.12 to compute Ĩ n for each n.

Example 8.13. (See [17, 1.4].) Let R = k[x, y]〈x,y〉 and the ideal

I = 〈
y22, x4y18, x7y15, x8y14, x11y11, x14y8, x15y7, x18y4, x22〉R.

Set u = x22 + y22. The Poincaré series of I and I/u are

PSI (t) = 227 + 189t + 10t2 + 10t3 − 2t4

(1 − t)2
,

PSI/u(t) = 227 + 189t + 12t2 + 6t3

(1 − t)
.

So ei(I/u) = ei(I ) for i = 0,1. Thus u is R-superficial with respect to I . Note that ρI (R) �
ηI (x,R) = 3. Therefore by 8.12, Ĩ n = (In+3 : I 3) = In for all n � 3. Also

Ĩ = (
I 4 : I 3) = I,

Ĩ 2 = (
I 5 : I 3) = I 2 + 〈

x20y24, x24y20〉R.

9. The case when I has a principal reduction

In this section we discuss ideals having principal reductions. When I has a principal reduction
J = (x), the computation of r(I,M) is greatly simplified. Let r = rx(I ) = min{n: In+1 = xIn},
the reduction number of I with respect to (x) then we show that r(In,M) = (In+rM : I rM) for
all n � 1. This result is then used to compute many examples.

Proposition 9.1. Let grade(I,M) > 0. If I has a principal reduction (x) with reduction number
rx(I ) � r then the following hold.

(a) If r(In+1,M) = x · r(In,M) for some n then r(Im+1,M) = x · r(Im,M) for all m � n.
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(b) r(In,M) = (In+rM : I rM) for all n � 1.

(c) Ĩ nM = (In+rM :M Ir) for all n � 1.

But before we do this we first need to prove the following lemma.

Lemma 9.2. Let the situation be as in Proposition 9.1. Then x is M-regular and

(x) ∩ r
(
In+1,M

) = x · r(In,M
)

for all n � 1.

Proof. It is easy to check that x is M-regular. Let ax ∈ r(In+1,M) for some a ∈ R. Then
axIkM ⊆ In+1+kM for some k � 0. We assume k � rx(I ). Therefore

axIkM ⊆ xIn+kM.

Since x is M-regular, we get a ∈ (In+kM : I kM) ⊆ r(In,M). �
We now give the proof of proposition.

Proof of Proposition 9.1. (a) By Lemma 9.2, x is M-regular. For all m � n, we have

r
(
Im+1,M

) ⊆ r
(
In+1,M

) ⊆ (x).

Thus,

r
(
Im+1,M

) ⊆ (x) ∩ r
(
Im+1,M

)
,

= x · r(Im,M
)

(by Lemma 9.2)

⊆ r
(
Im+1,M

)
.

(b) It is enough to show that (In+r+1M : I r+1M) ⊆ (In+rM : I rM). Let a ∈ (In+r+1M :
I r+1M).

aI r+1M ⊆ In+r+1M,

so

ax · I rM ⊆ x · In+rM.

As x is M-regular we get aI rM ⊆ In+rM .
(c) It is similar to (b). �
For M = R Proposition 9.1(c) yields

Corollary 9.3. Let I be a regular ideal having a principal reduction (x) with reduction number
rx(I ) � r . Then Ĩ n = (In+r : I r ) for all n � 1.
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Remark 9.4. For n = 1 the result above has been proved already in [4, 2.1]. However for n � 2
their result does not imply ours. Notice that, since rxn(In) � rx(I ) � r , [4, 2.1] implies Ĩ n =
(Inr+n : Inr ).

Examples

We use Proposition 9.1 to construct many examples. We first give an example of a module M

with no free summand such that r(In,M) = In for all n � 1 but IM 
= ĨM .

Example 9.5. Let Q = k[x, y]〈x,y〉 be a local ring with the maximal ideal n. Set (R,m) =
(Q/〈y3〉,n/〈y3〉). Consider the R-module

M =
〈(

0

y2

)
,

(
y

x

)〉
⊆ R2.

Note that M is a Cohen–Macaulay R-module. Also notice that m3 = x · m2 so rx(m) = 2. We
compute r(mn,M) for n � 1. Using Proposition 9.1(b), one checks

r
(
mi ,M

) = (
mi+2M : m2M

) = mi for i = 1,2,3.

Thus, by Proposition 9.1(a) we have

r
(
mn+1,M

) = x · r(mn,M
) = mn+1 for all n � 2.

We also compute m̃M by using Proposition 9.1(c)

m̃M = (
m3M :M m2) =

〈(
0

y2

)
,

(
y2

xy

)
,

(
xy

x2

)〉

and

mM =
〈(

y2

xy

)
,

(
xy

x2

)〉
.

Hence mM 
= m̃M .

We give an example where r(In,M) = Ĩ n for all n � 1 and IM = ĨM .

Example 9.6. Let

A = k[x, y, z]
〈x5 − z2, y3 − xz〉 � k

[
t6, t7, t15].

Set R = An, where n = 〈x, y, z〉A. Let m be the maximal ideal of R. Let

M =
〈(

x2

2

)
,

(
y

)〉
⊆ R2.
z yz
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Note that M is a Cohen–Macaulay R-module and m6 = x · m5 so rx(m) = 5. Therefore using
Proposition 9.1(b), one can check the following

r
(
mn,M

) = (
mn+5M : m5M

) = m̃n = (
mn+5 : m5) for n = 1, . . . ,6.

Also

m̃n 
= mn for n = 2,3,4 and m̃n = mn for all n � 5.

Thus, by Proposition 9.1(a) we have

r
(
mn+1,M

) = x · r(mn,M
) = mn+1 for all n � 5.

Using Proposition 9.1(c), one can verify that m̃M = (m6M :M m5) = mM .

Next we give an example in which we have Ĩ n 
= r(In,M) for all n � 1, and F I
M is a stable

I -filtration.

Example 9.7. Let A = k[t4, t11, t17, t18]. Using Singular we get

A � B = k[x, y, z,w]
〈y2 − xw,yz − x7, z2 − x4w,yw − x3z, zw − x6y,w2 − x2yz〉 .

Set R = Bm, where m = 〈x, y, z,w〉B . Let I = 〈x, y〉R and M = 〈x, y, z〉R. One can check
rx(I ) = 2. Note that x is both M-regular and R-regular. By Proposition 9.1(b), we have

r(I,M) = (
I 3M : I 2M

) = 〈x, y, z,w〉R,

r
(
I 2,M

) = (
I 4M : I 2M

) = 〈
x2, xy, xz, xw

〉
R = x · r(I,M),

and

Ĩ = (
I 3 : I 2) = 〈x, y,w〉R,

Ĩ 2 = (
I 4 : I 2) = 〈

x2, xy, xw
〉
R = x · Ĩ .

Therefore we have

r
(
In+1,M

) = x · r(In,M
) = 〈

xn+1, xny, xnz, xnw
〉
R for all n � 1,

Ĩ n+1 = x · Ĩ n = 〈
xn+1, xny, xnw

〉
R for all n � 1.

Notice that xn−1z ↔ t4n+13. We use the expression of In from Example 1.2 to verify that
xn−1z /∈ Ĩ n. Therefore Ĩ n 
= r(In,M) for all n � 1. Since M is a non-zero ideal of R and R

is a domain so annM = 0. Notice that I is a regular ideal. So, by Theorem 5.9, F I
M is a stable

I -filtration.
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10. Application to Hilbert functions

In this section we assume that (R,m) is a local ring with the maximal ideal m and I an m-
primary ideal. Let P M

I (t) be the Hilbert–Samuel function of M with respect I . We first show
that if grade(I,M) > 0 then the set

H(I ) = {
J : J is an ideal of R such that J ⊇ I and P M

J (t) = P M
I (t)

}
has r(I,M) as the unique maximal element. If dimM = 1 and depthM = 0 then R̃(I,M) =⊕

n�0 Ĩ nM is not Noetherian. However G̃I (M) = ⊕
n�0 Ĩ n/Ĩ n+1 is a Noetherian GI(R)-

module, in fact a Cohen–Macaulay GI (R)-module (Theorem 10.5). Next we give an application
of Proposition 7.5 to show that if dimM = 1 then eI

1(M) − eI
0(M) + �(M/IM) � −�(H 0

m(M)).

10.1. Recall that the Hilbert–Samuel function of M with respect I is the function

n �→ �
(
M/In+1M

)
for all n � 0.

It is well known that for all large values of n it is given by a polynomial P M
I (n) of degree

r = dimM , the Hilbert–Samuel polynomial with respect to I . It can be written in the form

P M
I (X) =

r∑
i=0

(−1)ieI
i (M)

(
X + r − i

r − i

)
.

The integers eI
0(M), eI

1(M), . . . , eI
r (M) are called the Hilbert coefficients of M with respect to I .

The number eI
0(M) is also called the multiplicity of M with respect to I .

10.2. For an m-primary ideal I , we define the set

H(I ) := {
J : J is an ideal of R such that J ⊇ I and P M

J (t) = P M
I (t)

}
.

Proposition 10.3. Let grade(I,M) > 0. Then r(I,M) is the unique maximal element of H(I ).

Proof. By Corollary 2.6, we have r(I,M)nM = InM for all n � 0. So r(I,M) ∈ H(I ). Con-
versely if J ∈H(I ) then JnM = InM for all n � 0. Let x ∈ J . We have

xIn−1M = xJ n−1M ⊆ JnM = InM for all n � 0.

So

x ∈ (
InM : In−1M

) = r(I,M).

Thus J ⊆ r(I,M). It follows that r(I,M) is the unique maximal element in H(I ). �
Remarks 10.4. We have

(a) Ĩ nM = InM + H 0
m(M) for all n � 0 (by Proposition 7.5).
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(b) By using Artin–Rees lemma, we can check that

InM ∩ H 0
I (M) = 0 for all n � 0.

(c) Using (a) and (b), it is easy to prove that

Ĩ nM

InM
� H 0

I (M)

InM ∩ H 0
I (M)

� H 0
I (M) for all n � 0.

Set G̃I (M) = ⊕
n�0 Ĩ nM/Ĩ n+1M . In dimension one we have

Theorem 10.5. Let (R,m) be a local ring. Let I be an m-primary ideal and suppose that M is
an R-module with dimM = 1. Then

(a) �(M/Ĩn+1M) = eI
0(M)(n + 1) − eI

1(M) − �(H 0
m(M)).

(b) G̃I (M) is a finitely generated GI (R)-module of dimension 1.
(c) G̃I (M) is a Cohen–Macaulay GI (R)-module.

Proof. We may assume that K = R/m is infinite, otherwise we consider the standard base
change R → R[X]mA[X] (see [16, 1.3]).

(a) From the exact sequence

0 → Ĩ n+1M/In+1M → M/In+1M → M/Ĩn+1M → 0

and using Remark 10.4(c), it follows that for all n � 0,

�
(
M/Ĩn+1M

) = eI
0(M)(n + 1) − eI

1(M) − �
(
H 0

m(M)
)
.

(b) Consider the exact sequence

(i) 0 → Ĩ nM/Ĩ n+1M → M/Ĩn+1M → M/ĨnM → 0.

By (a), we have

(ii) �
(
Ĩ nM/Ĩ n+1M

) = eI
0(M) for all n � 0.

Let x ∈ I be M-superficial which exists as the residue field K is infinite. Let x∗ be the image of
x in I/I 2, considered as GI (R)-element. Then by Proposition 8.2, the sequence

(iii) 0 → Ĩ nM/Ĩ n+1M
x∗−→ Ĩ n+1M/Ĩn+2M

is exact. In view of (ii), we get

(iv) Ĩ n+1M/Ĩn+2M � x∗ · (Ĩ nM/Ĩ n+1M
)

for all n � 0, say for n � n0.
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Let S = {z1, z2, . . . , zs} be the set of homogeneous generators of
⊕n0

i=0 Ĩ nM/Ĩ n+1M as
an R-module. Using (iv) it follows that S generates G̃I (M) as a GI (R)-module. Since

�(Ĩ nM/Ĩ n+1M) = eI
0(M) > 0 for all n � 0. It follows that dim G̃I (M) = 1.

(c) By (iii), we have x∗ is G̃I (M)-regular. So depth G̃I (M) > 0. As dim G̃I (M) = 1 we have
G̃I (M) is Cohen–Macaulay. �
Theorem 10.6. Let the situation be as in Theorem 10.5. Then

eI
1(M) − eI

0(M) + �(M/IM) � −�
(
H 0

m(M)
)
.

Further equality holds if and only if ĨM = IM and Ĩ nM = InM + H 0
m(M) for n � 2.

In [8, 3.1] a sharper bound is found. However the case of equality is different.

Proof of Theorem 10.6. As G̃I (M) is a finitely generated GI (R)-module so there exists h(t) ∈
Z[t] such that

∞∑
n=0

�
(
Ĩ nM/Ĩ n+1M

)
tn = h(t)

(1 − t)
,

where h(t) = h0 +h1t +h2t
2 + · · ·+hst

s . As G̃I (M) is a Cohen–Macaulay GI (R)-module, all
the coefficients of h(t) are non-negative. Thus

ẽ1
I (M) = ẽ0

I (M) − h0 +
s∑

j=2

(j − 1)hj

= ẽ0
I (M) − �(M/ĨM) +

s∑
j=2

(j − 1)hj

= ẽ0
I (M) − �(M/IM) + �(ĨM/IM) +

s∑
j=2

(j − 1)hj .

For n � 0 we have �(M/Ĩn+1M) = ẽ0
I (M)(n+ 1)− ẽ1

I (M). By comparing it with 10.5(a), we
get ẽ0

I (M) = eI
0(M) and ẽ1

I (M) = eI
1(M) + �(H 0

m(M)). Thus we get

eI
1(M) = ẽ1

I (M) − �
(
H 0

m(M)
)

= ẽ0
I (M) − �(M/IM) + �(ĨM/IM) +

s∑
j=2

(j − 1)hj − �
(
H 0

m(M)
)

= eI
0(M) − �(M/IM) + �(ĨM/IM) +

s∑
(j − 1)hj − �

(
H 0

m(M)
)
.

j=2
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Hence equality holds if and only if
∑s

j=2(j − 1)hj = 0 and ĨM = IM . Assume that equality

holds that is, ĨM = IM and
∑s

j=2(j − 1)hj = 0. We have hj = 0 for j � 2. So, by graded

Nakayama’s lemma one can see that G̃I (M) is generated in degree 0 and 1. This follows that

Ĩ jM = I jM + Ĩ j+1M for all j � 2. By Proposition 7.5 we thus get Ĩ jM = I jM + H 0
m(M)

for j � 2. Conversely suppose that ĨM = IM and Ĩ jM = I jM + H 0
m(M) for j � 2. This gives

Ĩ jM = I jM + Ĩ j+1M for all j � 2. Which implies that G̃I (M) is generated in degree zero and
one. So we have hj = 0 for all j � 2. �

We give an example which shows that the bound in Theorem 10.6 can be attained.

Example 10.7. Let R = k[|x, y|]/(xy, y2) with the maximal ideal m = 〈x, y〉R. The Hilbert
function of R with respect to m is

1 + z − z2

1 − z
.

We get e1(R) − e0(R) + �(R/m) = −1. We now claim �(H 0
m(R)) = 1. Let q = 〈y〉R be the

ideal in R. Notice that m · q = 0. Also q 
= 0. Thus q � k as R-modules. Further R/q � k[|x|] is
Cohen–Macaulay. Now using the short exact sequence

0 → q → R → R/q → 0,

we get H 0
m(R) � H 0

m(q) = k.

In view of Theorem 10.6 we pose a question.

Question. If dimM � 2 then is the set

{
eI

1(M) − eI
0(M) + �(M/IM): I an m-primary ideal

}
bounded below?

This result holds if M is a generalized Cohen–Macaulay R-module (see [8, 2.4 and 3.1]).
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