Results The study shows that patients after MI had high levels of ILS (1.54±0.6 vs 0.56±0.12, p<0.001) and TNFα (1.21±0.24 vs 0.77±0.14 p<0.001) contrasting with low levels of IL10(0.05±1.23 vs 0.12±0.10, p=0.06). Significant positive correlation between IL8 and TNFα with CRP was found (r=0.543, p=0.002 and r=0.458, p=0.034 respectively). The level of IL10 was positively correlated with the ejection fraction of the left ventricle (LVEF), r=0.679, p=0.002 and negatively correlated with the diastolic diameter of left ventricle (LV) (r=-0.345, p=0.029) and the systolic volume of the LV (r=-0.377, p=0.022). One month after MI, a significant decrease of the level of TNFα (to 0.96) was observed in the group of patients with a LVEF amelioration (34.7±5.6% vs 37.8±6%, p=0.017) and LVESV reduction (from 76.9±15.8 mL to 72.5±13.6 mL, p=0.0017).

Conclusion As a result, an increase in TNFα and IL8 associated with decreased IL10 after MI with low LVEF. A correlation was found between TNFα level decreased one month after MI and the LV remodeling.

The author hereby declares no conflict of interest

0184

Genetic association between single nucleotide polymorphisms in the Paraoxonase 1 (PON1) gene and the risk of myocardial infarction in the Tunisian male population

Mohamed Hedi Sbai, Amani Kallel, Yousra Sediri, Mehdi Lassoued, Rachid Mechmenche, Riadh Jemaa, Nazihia Naabachi

Hôpital La Rabta, Tunis

Corresponding author: logan_sab@hotmail.com (Mohamed Hedi Sbai)

Background Coronary artery disease (CAD), the leading cause of death worldwide, is a multifactorial disease arising from the complex interplay of genetic and environmental factors. Paraoxonase 1 (PON1) polymorphisms have been implicated as risk factors for CAD, but the results of genetic association studies on the related phenotype of CAD are inconclusive. The aim of the present study was to investigate the association between the PON1 polymorphism Q192R and – 108 C>T polymorphisms in type 2 diabetes: no significant difference in the plasma Lp(a) levels between diabetics having the allèle B2 and Lp (a) superior to 300 mg/l, is clearly more important at those having coronaropathy (51.1 vs. 29.2%; odds ratio=2.53; p=0.03).

Aims The present study showed a significant and independent association between the PON1 Q192R and – 108 C>T polymorphisms and MI in the Tunisian male population.

The author hereby declares no conflict of interest

0106

Association of lipoproteina and cholesteryl ester transfer protein-TaqIB polymorphism in Tunisian type 2 diabetes

Sandra Hammami*, (1), Sonia Hammami (1), Maha Smaoui (2), Nabil Attia (2), Mohamed Hammami(2)

(1) Hôpital Fattouma Bourguiba, Monastir, Tunisie – (2) Faculté de Médecine, Laboratoire de Biochimie UR ‘NHDM’, Monastir, Tunisie

Corresponding author: sandra.hammami@gmail.com (Sandra Hammami)

Lipoprotein (a) [Lp(a)] is a plasma lipoprotein consisting of a LDL-like particle with a molecule of apolipoprotein B100 covalently linked to a very large additional glycoprotein known as apolipoprotein(a). Elevated Lp(a) levels constitute an independent risk factor for cardiovascular disease in the general population. Several studies have examined the possibility that type 2 diabetes could influence Lp(a) concentrations. Cholesterol ester transfer protein (CETP) plays a key role in lipoprotein metabolism, promoting the exchange of triglycerides (TGs) and cholesteryl esters (CEs) between lipoprotein particles. The CETP TaqIB polymorphism in type 2 diabetes may have atherogenic risk for coronary artery disease.

The aim of the present study was to examine the effect of the genetic polymorphism TaqIB of the CETP on the Lp(a) concentrations and the risk of coronary artery disease in a cohort of type 2 diabetics.

The plasma Lp(a) levels are not significantly associated with CETP TaqIB polymorphism in type 2 diabetes: no significant difference in the plasma Lp(a) between the diabetics having the genotype B1B1 and those having the genotype B2 (365.8±259 vs. 317±250 mg/L; p=0.20). For the diabetics with genotype B1B1, Lp (a) was correlated significantly with the LDL (r=0.32, p=0.002) and the apoB (r=0.24, p=0.01). The proportion of the diabetics having the allele B2 and Lp (a) superior to 300mg/L is clearly more important at those having coronaryopathy (51.1 vs. 29.2%; odds ratio=2.53; p=0.03).

Lp(a) levels is a risk factor for cardiovascular disease in type 2 diabetic patients. This atherogenic risk seems to depend on the genetic polymorphism TaqIB of the CETP.

The author hereby declares no conflict of interest