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We studied the fine structure of some classical and six variant mitochondria from different tis-

sues viz. proboscis gland, spinal gland, ovary, testis, and muscle of a fish ectoparasite, Argulus

bengalensis. In the proboscis gland and spinal gland, mitochondria are protected within vesicle

to preserve their structure and activity from exposure to glandular synthesis for its parasitic

mode of feeding. In the oocytes, mitochondria are larger and cylindrical in appearance. Oocyte

mitochondria are highly dynamic and exhibit frequent fission and fusion. Those are clustered in

the cytoplasm of previtellogenic oocytes which prepare for different synthetic activities for suc-

cessful reproductive investment. In contrast, mitochondrial abundance is less in the male

gametic lineage. The spermatocytes and the nurse cells in the testis have an unusual type of

mitochondria, nebenkern which is formed by the fusions of number of mitochondria. A com-

pletely different type of mitochondrion is discovered in the flagellum of the spermatozoa. It

is provided with fifteen numbers of singlet microtubules at its outer periphery which is a salient

feature of the flagellum of this Branchiuran genus. This unique mitochondrion uses the micro-

tubule tract for its movement to distribute energy efficiently along the axoneme. Such mitochon-

drion and microtubular association provide evidence in favor of phylogenetic relationship

between Argulus and pentastomid Raillietiella. In striated muscle of thoracic appendages, mito-

chondria maintain tight junctions with the endoplasmic reticulum and remain in close apposi-

tion of the myofibrils which helps in Ca2+ uptake for stimulating continuous muscular activity

required for ventilation of respiratory structures of the parasites.

ª 2013 Production and hosting by Elsevier B.V. on behalf of Cairo University.
Introduction

Recent studies have antiquated the classical structure of mito-
chondria as floating sausages of similar size with sheet-like baf-

fles of cristae extending from the inner membrane as it was first
proposed by Palade [1]. Rather, mitochondria in most tissues
exist as a dynamic network, constantly undergoing fission
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and fusion [2,3]. Electron tomographical analyses of mitochon-
dria show the cristae are originated from the inner membrane
as collections of folds ranging from tubes to lamellae [4]. Mito-

chondria perform a number of cellular functions in ATP syn-
thesis, ion homeostasis, lipid metabolism, cell fate
determination, apoptosis, and aging [5–7]. Argulus bengalensis

is an obligatory parasite which has a specialized feeding appa-
ratus and a curious type of respiratory structure. Its parasitic
fitness largely involves its efficient reproductive investment.

To encompass their diverse functions, the mitochondria often
establish specific numbers and locations, maintain specialized
shapes as well as make unique associations with other struc-
tures in different cell types [2,8]. In the course of a comparative

investigation of different cell types from those structures di-
rectly involved to its parasitic mode of life, some unusual mito-
chondrial forms along with the typical forms were observed.

Those are reported and described here to elucidate the under-
lying strategies of ultrastructural variations in mitochondrial
morphology which may focus our attention on some func-

tional aspects of mitochondria not ordinarily considered.

Material and methods

Material

A. bengalensis were collected from ‘‘Barasagar Dighi’’ fish
farm (24�58008.8600N, 88�06009.7000E) under Government of
West Bengal located at Malda, West Bengal, India. A breeding

colony of the parasite raised by cohabitation with the freshwa-
ter cyprinid host, Cirrhinus mrigala (Hamilton, 1822), was used
for this study. The parasite was identified with the help of mor-
phometric criteria following Ramakrishna [9].

Light microscopic study

For light microscopy, abdomen of the matured female parasites
(age group of 29–32 days) was severed from the cephalothorax

with the help of a sharp triangular surgical suture without
affecting the ovary; thereafter, a small puncture was made to re-
lease the oocyte. Oocytes were then cleared by a solution con-

taining ethanol, formalin, and acetic acid (6:3:1) and
observed under microscope. For vital staining fresh oocytes
were stained with 0.02% Janus green B (HiMedia Laboratories

Pvt. Limited) in insect saline for 30 min and viewed under com-
pound microscope (Prime, Dewinter Optical Inc., Italy).

Transmission electron microscopy

Several adult male and female parasites were anesthetized add-
ing ethanol drop by drop in water and then transferred to
2.5% glutaraldehyde and 2% paraformaldehyde solution in

cacodylate buffer (pH 7.4) to fix the specimens for overnight
at 4 �C. The specimens were postfixed in 2% osmium tetroxide
buffered solution and were embedded in epoxy resin. Subse-

quently, those were sectioned with a Leica Ultracut-UCT ultra
microtome and stained with a saturated solution of uranyl ace-
tate and lead citrate. Micrographs were produced using a
JEM-2100 TEM (200 kV, Jeol).

Mitochondrial count

For counting mitochondria in the previtellogenic oocyte, im-
age files of the electron micrograph of oocytes were opened
with Adobe Photoshop CS4 software, and a grid was selected
from the menu bar and superimposed on it. The grid was used
as quadrate for sampling. Four chambers of the grid were se-

lected randomly at each of five different sites, four at the cor-
ner and one at the center of the image. The number of
mitochondria from four chambers was counted by putting

individual marking to each with the eraser tool. Total number
of the mitochondria was computed considering total number
of chambers covering the entire area of the oocyte. An average

number of mitochondria of four oocytes are presented here.

Schematic drawing

For schematic drawing, the micrographs were opened with

Photoshop CS4 software, and drawing was done in different
layer using the impressions from the image layer.

Results

Proboscis gland cell mitochondria

In the proboscis gland cell (Fig. 1a), the mitochondria are orga-
nized in two different forms (Fig. 1b and Table 1). Immediately

surrounding the nucleus, there is a cluster of small mitochon-
dria. Each of those mitochondria appears oval in cross section
and provided by condensed cristae. Only very few mitochon-
dria with orthodox cristae are distributed outside the cluster.

Spinal gland cell mitochondria

In the spinal gland cells (Fig. 1a), no free mitochondria are

present in the cytoplasm rather, those are all vesicle enclosed
(Fig. 1c). Those vesicle enclosed mitochondria are provided
by orthodox cristae (Table 1).

Oocyte mitochondria

Janus green B staining of the previtellogenic oocyte reveals

numerous spherical blue green bodies clustered in groups
(Fig. 2a) in the vicinity of the nucleus. Transmission electron
microscopy reveals the cluster contains mitochondria and elec-
tron-dense material (Fig. 2b). The mitochondria (Fig. 2c) ap-

pear round or oval in cross sections. The inner membrane is
infolded perpendicular to the longitudinal axis to form a mod-
erate number of cristae. The cristae extend at least three quar-

ters of the distance across the mitochondrial diameter and
have a tubular profile with bulged edges (Fig. 2c) (Table 1).
Very often, the mitochondria are associated with rough endo-

plasmic reticulum through tethers (Fig. 2d). The inner matrix
of the mitochondria is a homogeneous matter of finely granu-
lar material within which small numbers of variably sized, and
dense granules of 180–220 Å diameters are visible. The mito-

chondrial clusters are intermingled with numerous small vesi-
cles or granulo fibrillar material (GFM) approximately of
0.15–0.54 lm diameter. Several mitochondria are also ob-

served in the state of both fission and fusion (Fig. 3).

Spermatocytes, nurse cell and spermatozoan mitochondria

The typical form of mitochondria is few in the spermatocyte;
however, a large ‘‘nebenkern’’ is present near the nucleus of



Fig. 1 Photomicrograph of Argulus bengalensis and transmission electron micrograph of mitochondrial forms in the glandular cells

associated with feeding apparatus. (a) Ventral view of a male showing the anatomical position of proboscis gland (pg) indicated by paired

side boxes and spinal gland (sg) indicated by lower median box. (b) Transmission electron micrograph of proboscis gland: mitochondria

(mt) are arranged within a separate hub (h) surrounding the nucleus (n). The cristae of these mitochondria are of condensed type. The

mitochondria distributed outside the hub are provided with orthodox cristae. Bar, 2 lm. (c) Transmission electron micrograph of spinal

gland: mitochondria (mt) are enclosed within vesicles (v) in the cytoplasm. Bar, 1 lm.

Table 1 Comparative profile of mitochondrial forms in Argulus bengalensis.

Sources Types Mitochondria

width (lm) a
Cristae

types

Special features Potential functions

Proboscis gland A. Variant 0.29–0.33 Condensed Clustered, confined within

protected area

High ATP production for

synthetic activity

B. Classical 0.19–0.38 Orthodox – Low ATP production

Spinal gland Variant 0.31–0.45 Orthodox Vesicle enclosed Protection of structure and

function

Oocyte Variant 0.32–2.03 Tubular Inner compartment divided,

Exhibit fission and fusion, ER

associated

High energy production to carry

out different synthetic activities

Sperm flagellum A. Classical 0.15–0.17 Condensed diffused – High ATP production

B. Variant 0.21–0.30 Stacked Microtubule associated Use of microtubuler tracts for

efficient energy distribution

Spermatocytes A. Variant nebenkern 9.05–13.78 Stacked Highly packed cristae, obscured

inner compartment

Later modified into flagellar

mitochondria in spermatozoa

B. Classical 0.52–1.25 Condensed – High ATP production

Striated muscle Variant 0.67–1.25 Orthodox ER associated Mitochondrial Ca2+ uptake for

continued muscular function

a Range of width (lowest–highest) of mitochondria from 10 ultrasections studied. For each presentation five measurements were made at

different angles and averaged.
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primary and secondary spermatocytes (Fig. 4b). A similar
structure is also observed at the base of the cytoplasmic projec-

tion of the nurse cell (Fig. 4a). The nebenkern is provided with
huge number of closely stacked zigzag cristae within a highly
dense matrix (Fig. 4c and d). The zigzag cristae are extensive

and profusely anastomotic or overlapped to each other. Apart
from the nebenkern, very few classical forms of mitochondria
are randomly distributed around the nebenkern, but a few are

located at juxtaposition (Fig. 4b and Table 1).
In the flagellum of the spermatozoa (Fig. 5a), adjacent to
the axoneme, there are three moderately sized mitochondria

one with four numbers of orthodox cristae meeting at the cen-
ter of the inner matrix and two others with condensed but dif-
fused cristae (Fig. 5b). The medially located mitochondrion is

pear shaped, but others two are oval in cross section. Serial
sections of the flagellum reveal that these mitochondria are fili-
form and extend almost the entire length of it except the termi-

nal part. One more unusual type of mitochondrion (Fig. 5c) is



Fig. 2 Light and electron microscopy of mitochondria in the oocytes of Argulus bengalensis. (a) Light micrograph after mitochondria

specific vital staining with Janus green B showing distribution pattern of mitochondria within the cytoplasm of an early previtellogenic

oocyte (o); mitochondrial clouds (indicated by boxes) are differentiated beside the nucleus (n). Bar, 18 lm. (b) Transmission electron

micrograph of an early previtellogenic oocyte showing similar mitochondria rich zone around the nucleus (n). Numerous small vesicles or

granulofibrillar material (GFM) are distributed within this mitochondria rich zone. (c) Ultrastructure of mitochondrion of an early

previtellogenic oocyte exhibiting its tubular cristae with dilated terminal. The mitochondrion exhibits a loose association with an ER.

Numerous small but dense granules (g) are observed within the inner matrix. Bar, 0.34 lm. (d) A magnified view (2·) of the association of

mitochondria with ER – showing tethers (t) and ribosomes (r) in the upper pannel, and the lower panel is the schematic diagram of the

same. Bar, 0.2 lm.
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Fig. 3 Transmission electron micrograph of oocyte mitochondria at dynamic state in Argulus bengalensis. The upper left panel exhibits

out pocketing, an indication of fission of mitochondria. The upper right panel exhibits mitochondrial fusion indicated by diffused

membrane (arrow head) between mitochondria. The lower left panel shows two mitochondria immediately after completion of fission.

Bar, 0.54 lm. The graphic in the lower right panel represents number of mitochondria (Mt) in four previtellogenic oocytes (O1, O2, O3,

and O4); mitochondria undergoing fusion or fission are counted as a single unit. Mean of five readings with ±standard error is presented

in the graphics.
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found at a right angle to the medially located mitochondrion.

It is pear shaped in cross section and spans about half of the
flagellum. In its course through the flagellum, the alignment
is changed with respect to the middle mitochondrion. The in-
ner membrane of this mitochondrion is clearly distinguishable

but looses its connection with the transverse cristae. The trans-
verse cristae are closely stacked into a cluster, and 20 numbers
of F1 particles are aligned at regular intervals at the outer

periphery of the cluster. Fifteen singlet microtubules, each
comprises of 12 protofilaments, are attached to the circumfer-
ence of this mitochondrion through motor proteins (Fig. 5d).

Striated muscle cell mitochondria

The mitochondria of striated muscles from the thoracic

appendages are oval in shape and provided by orthodox cristae
(Fig. 6a and Table 1). Inner matrix of those is compartmental-
ized further by the extension of some cristae. In the sarco-
meres, the mitochondria are distributed adjacent to the

myofibrils and are intimately associated with the ER through
tight junction (Fig. 6c). Their associations with the vesicular
tethering structures of endoplasmic reticulum (Fig. 6b) are also

being observed. A gap of 78–86 nm is maintained between the
mitochondria and the tethering vesicles where several ribo-
somes (Fig. 6b) are distributed.

Discussion

In A. bengalensis other than classical type, six mitochondrial
variants are observed in different cell types to meet up the en-

ergy demands under varied physiological states of its parasitic
mode of life.

Proboscis gland cell and spinal gland cell mitochondria

Feeding apparatus of Argulus spp. is a secondary acquisition
and comprises of a proboscis and a preoral spine. A pair of

proboscis gland consisting two giant cells is associated with
the proboscis, and one spinal gland consisting four large cells
is located at the base of the spine. The spine is used to pierce

the host tissue, and the tissue fluid and blood ooze out are
ingested through the proboscis. The spinal gland produces



Fig. 4 Transmission electron microscopy of mitochondria in the testicular cells of Argulus bengalensis. (a) Nebenkern (N) in the nurse

cell (Nc). Nurse cell is present in between the primary (Ps) and secondary spermatocytes (Ss). The nebenkern (N) is positioned at the base

of the cytoplasmic projection (P). Small classical mitochondria (mt) are also randomly distributed beside the nucleus (n) of the nurse cell.

(b) Primary spermatocyte also exhibits a large nebenkern (N) beside its nucleus (n) and small classical mitochondria (mt) are randomly

distributed around the nebenkern. Bar, 1 lm. (c) Magnified view (4 ·) of the nebenkern showing its stacked zigzag cristae. Bar, 0.2 lm. (d)

Highly magnified view (17·) of the nebenkern showing cristae with overlapping at regular interval. The right corner panel is a schematic

diagram shows the arrangement of cristae and variation in cristae diameter. Bar, 54 nm.
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an anesthetic substance which is injected into the fish’s body

for effortless feeding activity, and the proboscis glands pro-
duce an anticoagulant that prevents ingested blood from clot-
ting within the gut [10]. Condensed state of cristae in the

mitochondria found in these glandular cells correspond to
their high workload of ATP production [11] required for their
synthesis activities. An unusual type of closed membrane ves-
icles containing one or more mitochondria was observed in

the spinal gland cells. Similar type of mitochondrial conceal-
ment was also observed in aging wheat coleoptiles and in
neural tissue (Table 2) [12,13]. Concealment of the mitochon-

dria within vesicles may preserve their structure and activity
[12] and thereby protect them from exposure to the glandular
synthesis (Table 1). In proboscis gland, cluster of small mito-

chondria is concealed in an area surrounding the nucleus.
Similar type of mitochondrial cluster was also observed in
human fetal and adult female germ cells (Table 2) [14]. Con-

cealment of mitochondria within vesicles or in specialized
area definitely protect the mitochondria from the detrimental
effect of glandular synthesis and help to restore their struc-
tural and functional organization and thereby confers some
adaptive advantages to the organisms in their parasitic mode

of feeding or hematophagy.

Oocyte mitochondria

One of the most prominent features of the early previtellogenic
oocytes of A. bengalensis is the mitochondrial aggregation into
cluster known as Yolk nucleus and Balbiani body. The term

mitochondrial cloud is often more appropriate to these clus-
tered organelles and has frequently been used [15]. Light
microscopy of the previtellogenic oocyte with Janus green B,
which stains mitochondria supravitally [16], able to detect such

clusters sometimes referred as the Balbiani body or Yolk nu-
cleus in the oocyte of Xenopus sp. and human (Table 2)
[14,15,17] which plays an important role in germinal granule

localization in the vegetal pole [17]. The ultrastructure of the
mitochondrial aggregates reveals that they consist of large
numbers of discrete mitochondria, but the image is not quite

that expected from a simple aggregate of separate mitochon-
dria. However, during our study of the mitochondrial clusters
of Argulus sp., we became impressed with the dynamicity



Fig. 5 Transmission electron micrograph of mitochondria in the sperm flagellum of Argulus bengalensis. (a) Mitochondrial (mt)

alignment surrounding the axoneme (Ax). (b) Three vesicular filamentous mitochondria immediately adjacent to the axoneme with clearly

distinguishable outer membrane (om), inner membrane (im) and transverse cristae (tc). Cristae are uniting at the central meeting point

(mp) to compartmentalize the inner matrix. Bar, 74 nm. (c) An unusual association of mitochondrion with numerous microtubules (am).

The transverse cristae (tc) are originated from the inner membrane and extending up to the inner membrane of the opposite side. Twenty

F1 particles are arranged near the base of each cristae. Bar, 74 nm. The bottom left panel is a magnified (6·) view showing the

microtubular association with the outer membrane (om) by motor protein (mp). Bar, 13 nm. The bottom right panel is a diagrammatic

representation of the microfilament. The microfilament is a complete circle of twelve protofilament (pf). It remains attached with the outer

mitochondrial membrane (om) with a motor protein (mp).
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accompanied with both fusion and fission leading profound

morphogenetic changes, reflecting changing metabolic require-
ments. The complexity of the mitochondrial profiles is further
validated by its association with other organelles. The endo-

plasmic reticulum composes a loose junction with the mito-
chondria which is occupied by granulo fibrillar material
(GFM). Mitochondrial association with the endoplasmic retic-

ulum will be important to supply energy for translation. One
of the important features of an ectoparasite is its reproductive
investment which involves much energy production and utili-
zation to meet up the needs for maturation of gametes (Ta-

ble 1). Previtellogenic stage is the most active stage in the
maturation process when the oocytes become prepare for sev-
eral synthetic activities including synthesis of Yolk to carry out

the embryonic development of the parasite.

Spermatocytes, nurse cell and spermatozoan mitochondria

In the spermatocytes and nurse cell, a mitochondrial variant,
nebenkern is observed like that of other insect spermatocytes.
Nebenkern is formed through a multistep process by which the

numerous mitochondria are clustered together and fused to
produce a large spherical body [18–20]. The cristae of the
‘‘nebenkern’’ in the spermatocytes of Argulus are longer and
more closely packed which indicates that the cells are in hyper-
active metabolic state. Such type of zigzag orientation of cris-

tae is also observed in hyper metabolically active tissue like
cardiac muscle cells of the canary and other birds [21]. Dorog-
ova et al. [22] explained that marlin protein in the nebenkern

plays important role in spermatogenesis of Drosophila. The
nebenkern also unfolds and extends along with growing axo-
neme in Drosophila sperm. Similar role of nebenkern in Argu-

lus species can be apprehended.
One rare type of mitochondrion is found in the flagellum of

the spermatozoa where it is associated with microtubules (Ta-
ble 1). Microtubular association is also found in vitro with dif-

ferent cell types of the vertebrate like fibroblasts, macrophages,
smooth muscle cells and in neuronal axons (Table 2) [23,24]
but in those cases, mitochondria are associated with fewer

microtubules, whereas in vivo argulid sperm is associated with
numerous as more as 15 microtubules in a definite pattern. The
physiological significance of such association is that mitochon-

drion uses these microtubular tracts for its movement [25] with
the aid of motor proteins like dynein. During copulation of
Argulus, sperm is donated as packets or spermatophores [26].

So, the individual sperm does not require active motility at this
stage, but sudden active and regulated motility is required
immediately after its release from the spermatophore just be-
fore fertilization. The movement of mitochondrion through

the microtubular tracts must be related to energy distribution



Fig. 6 Transmission electron microscopy of mitochondria in the striated muscle. (a) Mitochondrion (mt) in association with

sarcoplasmic reticulum (Sr) showing attached putative ER vesicle (ERv). A narrow space is present in between the outer membrane (om)

and the inner membrane (im). (b) Higher magnified (5·) view of the ER vesicle (ERv) showing tethers (t) and associated ribosome (r).

Right panel is a schematic diagram showing molecular bridges that regulate the close contacts between ER and mitochondria. Bar, 43 nm.

(c) Tight association of the ER with outer membrane (om) of a mitochondrion. Bar, 70 nm. Right panel is a magnified view of the same.
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and utilization along the length of the flagellum resulting reg-
ulated sperm motility for successful fertilization in Argulus.

This type of mitochondrial association with microtubules is
also observed in the flagellum of tongue worm, Pentastomid
Raillietiella in one of the publications of Wingstrand [27] that

justify their phylogenetic relationship.

Striated muscle cell mitochondria

The mitochondria of the striated muscle cells of thoracic
appendages are very large in comparison with the other types
of mitochondria found in Argulus (Table 1). The physical asso-
ciation between the endoplasmic reticulum (ER) and mitochon-
dria, which is known as the mitochondria-associated ER
membrane (MAM), has important roles in various cellular

‘‘housekeeping’’ functions [28]. Close contacts between the
ER membrane and the mitochondrial outer membrane have
been visualized by various authors in rat liver tissue and in

the pseudobranch gland of teleost (Table 2) [29,30]. ER and
mitochondria are held together by different molecular chaper-
ones as stated by Hayashi et al. [28] and Rizzuto et al. [31].

Other than the vertebrate system, mitochondrial association
with ER is first time evident in an invertebrate like the parasitic
Argulus. Mitochondria regulated efflux of endoplasmic Ca2+

and Ca2+ signaling thereof [28,31] helps in regulating muscle

contraction, lipid transport [32], and cellular survival [33,34].



Table 2 Comparative account of mitochondrial variants of Argulus bengalensis with that of other referred organisms.

Mitochondrial variants Source tissue of A.

bengalensis

Other plant, invertebrate and

vertebrate sources

References

Confined around nucleus Proboscis gland Human fetal and adult female

germ cells

Motta et al. [14]

Vesicle enclosed Spinal gland Aging wheat coleoptiles, neural

tissue

Bakeeva et al. [12], Mishchenko

[13]

Mitochondria with fission and

fusion and ER associated

Previtellogenic oocyte Oocytes of vertebrates like

Xenopus laevis

Billett and Adam [15], Motta

et al. [14], Wilk et al. [17]

Nebenkern Spermatocyte Spermatocytes of various insects Beams et al. [19], Tokuyasu [20].

Microtubule associated Sperm flagellum (in vivo it is

reported for the first time)

In vitro culture of. rat kidney cell,

human fibroblasts, peritoneal

macrophages and smooth muscle

of mouse

Goldman and Follett [23],

Heggeness et al. [24]

ER associated Sarcomere Liver cell, neuron and various

other cell types of vertebrates

Copeland and Dalton [29],

Morre et al. [30]
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A continuous mitochondrial Ca2+ uptake occurs in the muscle
tissue which in turn could facilitate mitochondrial Ca2+ over-

loading and membrane permeabilization [35]. Such type of
ER-mitochondria tethering ensures the propagation of TP3R-
linked Ca2+ signals to the mitochondria to coordinate ATP

production with the stimulated state of the cell, and it protects
the cell from energy depletion and maintain mitochondrial
metabolism [34]. The respiratory structures of the parasite are

located on the ventrolateral thoracic carapace, which is venti-
lated by the continuous movement of the three pairs of thoracic
appendages when the parasite remains attached to the host
body with a pair of suckers. Continuous movement of append-

ages needs uninterrupted muscular function. The physical asso-
ciation between the endoplasmic reticulum (ER) and the
mitochondria must play important role in energy production

and utilization to confer the stimulated state of the cells to be-
stow the parasitic adaptive advantages.
Conclusions

In A. bengalensis, mitochondria are highly dynamic structures
and appear in varied forms and numbers in different cell types

at varying physiological states. It readily undergoes fission and
fusion in cells like oocytes and even can move on cytoskeletal
track for efficient energy distribution and utilization in a spe-

cific cell type like argulid sperm. Muscle cells in continuous ac-
tion can utilize the close association of mitochondria with the
endoplasmic reticulum not only for efficient energy production
and utilization but also for regulated contraction brought

about by regulated Ca2+ release from the endoplasmic reticu-
lum. The mitochondria of glandular cells associated with the
feeding apparatus of Argulus are well protected within cyto-

plasmic vesicles. The tissue specific mitochondrial variability
of this parasitic organism has its implication on the biology
of the cell and hence on the biology of the organism which be-

stow several adaptive advantages to its parasitic mode of life.
The phylogenetic relationship of argulids with pentastomids
is a long pending issue; mitochondrial association with micro-
tubules in the flagellum of the sperm adds further evidence in

support of it.
Funding

This work was supported by the University Grants Commis-

sion, Government of India through a Major Research Project
F.33-333/2007(SR) dt. 10th March 2008.

Conflict of interest

The authors have declared no conflict of interest.
Acknowledgements

We have pleasure to acknowledge STA-TEM section, SAIF–
North Eastern Hill University, Shillong for extending assis-
tance in electron microscopy.

References

[1] Palade GE. An electron microscope study of the mitochondrial

structure. J Histochem Cytochem 1953;1:188.

[2] Bereiter-Hahn J, Voth M. Dynamics of mitochondria in living

cells: shape changes, dislocations, fusion, and fission of

mitochondria. Microsc Res Techniq 1994;27:198–219.

[3] Chan DC. Mitochondrial fusion and fission in mammals. Annu

Rev Cell Dev Biol 2006;22:79–99.

[4] Frey TG, Mannella CA. The internal structure of mitochondria.

Trends Biochem Sci 2000;25:319–24.

[5] Attardi G, Schatz G. Biogenesis of mitochondria. Annu Rev

Cell Biol 1988;4:289–333.

[6] Green DR, Reed JC. Mitochondria and apoptosis. Science

1998;281:1309–12.

[7] Saraste M. Oxidative phosphorylation at the fin de siècle.
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