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The paper deals with universal thermodynamics for FRW model of the universe bounded by apparent (or 
event) horizon. Assuming Hawking temperature on the horizon, the unified first law is examined on the 
horizon for different gravity theories. The results show that equilibrium configuration is preserved with 
a modification to Bekenstein entropy on the horizon.
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It is well known today that recent observational predictions [1]
divide the physicists into two groups. The first group has been 
trying to explain this late time acceleration within the frame-
work of standard cosmology, assuming the existence of an ex-
otic matter with negative pressure (called dark energy (DE)). But 
till now the nature of DE is completely unknown to us and is 
an unresolved problem in modern theoretical physics (see [2,3]
and references therein). On the other hand, the second group is 
of the opinion of a modified gravity theory – a modification of 
Einstein’s general relativity. A common and widely used modi-
fied theory is f (R)-gravity theory where the Lagrangian density R
(the Ricci scalar) in the Einstein–Hilbert action is replaced by an 
arbitrary function of R , i.e., f (R) (see [4] for a review and ref-
erences therein). Also, there are other modified gravity theories,
namely Scalar–Tensor Theory, Brane world scenario, f (G), f (R, G)

and f (T ) gravity theories, where T is the usual torsion scalar, 
G = Rμγρσ Rμγρσ − Rμγ Rμγ + R2 is the Gauss–Bonnet invariant 
term, and Rμγρσ and Rμγ are the usual Riemann curvature ten-
sor and Ricci tensor, respectively. These modified theories [5–10]
are considered as gravitational alternatives for DE and may serve 
as dark matter [11].

Further inspection of a gravity theory from thermodynami-
cal viewpoint is also an interesting issue in modern theoretical 
physics. The deep connection between gravity and thermodynam-
ics is strongly believed due to Ads/CFT correspondence [12] and 
black hole thermodynamics [13]. This belief was put one step 
forward by the seminal works of Jacobson [14] and Padmanab-
han [15]. By introducing the local Rindler horizon and assuming 
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the Clausius relation δQ = T dS for all local Rindler causal hori-
zons through each spacetime point, Jacobson deduced the Ein-
stein’s field equations from the proportionality of entropy (S) to 
the horizon area (A). Here δQ stands for the variation of the heat 
flow and T is the Unruh temperature measured by an acceler-
ated observer just inside the horizon. Although Jacobson derived 
the equivalence along null directions, it is speculated that the re-
sults may also be true along any other direction in the tangent to 
the spacetime. Padmanabhan, in the reverse way, showed that field 
equations in Einstein gravity as well as in Lanczos–Lovelock grav-
ity for a spherically symmetric spacetime can be expressed in the 
form of thermodynamic identity: dE = T dS − PdV . In this deriva-
tion, the modified terms could emerge in quantum pictures and 
hence one may think that thermodynamics can profile gravity be-
yond the classical level.

Alternatively, relevant to universal thermodynamics, Hayward 
studied thermodynamics for dynamical black hole [16,17]. He in-
troduced the notion of trapping horizon in 4D Einstein gravity for 
non-stationary spherically symmetric spacetimes and showed that 
Einstein’s equations are equivalent to the unified first law. Then,
projecting the unified first law along any tangential direction (ξ)

to the trapping horizon, one is able to derive the first law of ther-
modynamics [18–20], i.e., Clausius relation of the dynamical black 
hole, i.e., 〈Aψ, ξ〉 = κ

8πG 〈dA, ξ〉, where energy flux ψ is termed as 
energy supply vector.

From the point of view of universal thermodynamics, we con-
sider our universe as a non-stationary gravitational system. Fur-
ther, from cosmological viewpoint the homogeneous and isotropic 
FRW universe may be considered as dynamical spherically sym-
metric spacetime. Here we have only inner trapping horizon which 
coincides with the apparent horizon and it is possible to consider 
thermodynamical analysis using unified first law. Cai and Kim [21]
derived the Friedmann equations with arbitrary spatial curvature 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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starting with the fundamental relation δQ = T dS to the apparent 
horizon of the FRW universe. They have considered Hawking tem-
perature and Bekenstein entropy respectively as

T = 1

2π R A
, S = π R2

A

G
(1)

on the apparent horizon with R A , the radius of the apparent hori-
zon. Further, they have shown the equivalence between the ther-
modynamical laws and modified Einstein field equations in Gauss–
Bonnet gravity and more general Lovelock gravity. Subsequently Cai 
et al. [18–20] have extensively studied unified first law in FRW 
universe not only for Einstein gravity but also in Lovelock gravity, 
Scalar–Tensor theory [18] and Brane-world scenario [20]. In this 
context, Eling et al. [22] have shown for f (R) gravity theory that 
there should be entropy production term in the Clausius relation 
and it can be associated to shear viscosity of the horizon in pure 
Einstein gravity. Very recently, thermodynamical laws have been 
studied [23,24] in f (R) gravity as well as in generalized f (R) grav-
ity with a modified version of the entropy of the horizon. In the 
present work, we have modified the horizon entropy suitably so 
that Clausius relation is automatically satisfied.

We start with homogeneous and isotropic FRW metric as

ds2 = −dt2 + a2(t)

1 − kr2
dr2 + R2dΩ2

2

= habdxadxb + R2dΩ2
2 , (2)

where R = ar is the area radius, hab = diag(−1, a2

1−kr2 ) is the met-

ric of 2-space (x0 = t, x1 = r) and k = 0, ±1 denotes the curvature 
scalar. The above FRW metric can be written in double-null form 
as [18]

ds2 = −2dξ+dξ− + R2dΩ2
2 . (3)

Here,

∂± = ∂

∂ξ± = −√
2

(
∂

∂t
∓

√
1 − kr2

a

∂

∂r

)
(4)

are future pointing null vectors. The trapping horizon (denoted by 
RT ) is defined as ∂+ R|R=RT = 0, which gives

RT = 1√
H2 + k

a2

= R A . (5)

The surface gravity is defined as

κ = 1

2
√−h

∂a
(√−hhab∂b R

)
, (6)

so for any horizon (with area radius Rh) it can be written as

κ = −
(

Rh

R A

)2(1 − Ṙ A
2H R A

Rh

)
, (7)

and it becomes,

κ = − 1

R A

(
1 − Ṙ A

2H R A

)
= −1 − ε

R A
, (8)

for apparent horizon with ε = Ṙ A
2H R A

. Note that if we assume ε < 1, 
then κ is negative and hence the apparent horizon coincides with 
inner trapping horizon [16,18,25] (outer trapping horizon is with 
positive surface gravity). The Misner–Sharp energy [16,25,26] is de-
fined as

E = R (
1 − hab∂a R∂b R

)
(9)
2G
This is the total energy inside a sphere of radius R . Note that it 
is purely a geometric quantity and is related to the structure of 
the spacetime as well as to the Einstein’s equations [18]. For the 
present FRW model of the universe bounded by the apparent hori-
zon the above expression for the energy simplifies to

E = R A

2G
= 1

2G
√

H2 + k
a2

. (10)

1. f (R)-gravity

In f (R) gravity, the modified Einstein–Hilbert action can be 
written as (in Jordan frame) [4]

S = 1

16πG

∫
d4x

√−g f (R) + Sm, (11)

with Sm as the matter action. Now, variation of S with respect to 
the metric tensor gμν gives the modified field equations in f (R)

gravity as

Rμν
∂ f

∂ R
− 1

2
gμν f (R) − ∇μ∇ν

(
∂ f

∂ R

)
+ gμν∇2

(
∂ f

∂ R

)

= 8πGTμν, (12)

where T ν
μ = diag(−ρ, p, p, p) is the energy–momentum tensor for 

the matter field in the form of perfect fluid. In particular for viable 
f (R)-gravity theory if we take

f (R) = R + F (R) (13)

then the explicit form of the modified field equations for FRW met-
ric are given by

H2 + k

a2
= 8πG

3
ρt (14)

and

Ḣ − k

a2
= −4πG(ρt + pt), (15)

with ρt = ρ + ρe and pt = p + pe .
The effective energy density ρe and effective pressure pe due 

to the curvature contribution has the expressions

ρe = 1

8πG

[
−1

2
(F − R F1) − 3H

dF1

dt
− 3F1

(
H2 + k

a2

)]
(16)

ρe + pe = 1

8πG

[
d2 F1

dt2
− H

dF1

dt
+ 2F1

(
Ḣ − k

a2

)]
, (17)

where R = 6(Ḣ + 2H2 + k
a2 ) is the curvature scalar and F1 = dF

dR .
The energy conservation relations are

ρ̇m + 3H(ρm + pm) = 0, ρ̇t + 3H(ρt + pt) = 0. (18)

So the effective pressure and energy density also satisfies the con-
servation relation

ρ̇e + 3H(ρe + pe) = 0. (19)

Following the method proposed by Cai [18], we shall derive an 
expression for entropy associated with the apparent horizon of a 
FRW universe described by the above modified Friedman equa-
tions, (i.e., Eqs. (14) and (15)). According to Refs. [16–20], the 
energy supply vector ψ and the work density W are defined as

ψa = T b
a ∂b R + W ∂a R, W = −1

T abhab. (20)

2
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For the present model the explicit form of these quantities are

W = 1

2
(ρt − pt) = 1

2
(ρ − p) + 1

2
(ρe − pe)

= Wm + We, (21)

ψ = ψm + ψe,

with

ψm = −1

2
(ρ + p)H Rdt + 1

2
(ρ + p)adr, (22)

and

ψe = −1

2
(ρe + pe)H Rdt + 1

2
(ρe + pe)adr. (23)

Note that only the pure matter energy supply Aψm (after pro-
jecting on the apparent horizon) gives the heat flow δQ in the 
Clausius relation δQ = T dS , where A = 4π R2 is the surface area 
of a sphere of radius R . Thus according to Hayward [16], the (0, 0)

component of (modified) Einstein equations, (i.e., Eq. (14)) can be 
written as the unified first law

dE = Aψ + W dV , (24)

where V = 4
3 π R3 is the volume of the sphere of radius R .

Now, using the double null vectors ∂± as the basis, any vector 
ξ tangential to the apparent horizon surface can be written as

ξ = ξ+∂+ + ξ−∂−. (25)

As by definition the trapping horizon is characterized by

∂+RT = 0,

so on the marginal sphere,

ξ(∂+RT ) = 0,

i.e.,

ξ+(∂+∂+RT ) + ξ−(∂−∂+RT ) = 0,

i.e.,

ξ+
ξ−

= −∂−∂+RT

∂+∂+RT
. (26)

In the present model RT coincides with R A and

∂−∂+R A = 4

R A
(1 − ε), ∂+∂+R A = − 4ε

R A
,

i.e.,

ξ+
ξ−

= 1 − ε

ε
. (27)

Moreover using (r, t) co-ordinates, ξ can be written as [18]

ξ = ∂

∂t
− (1 − 2ε)Hr

∂

∂r
. (28)

Now projecting the unified first law (Eq. (24)) along ξ , the true 
first law of thermodynamics of the apparent horizon is obtained 
as [18,20]

〈dE, ξ〉 = κ

8πG
〈dA, ξ〉 + 〈W dV , ξ〉 (29)

Note that the pure matter energy supply Aψm when projected on 
the apparent horizon gives the heat flow δQ in the Clausius rela-
tion δQ = T dS . Hence from Eq. (29) we have
δQ = 〈Aψm, ξ〉 = κ

8πG
〈dA, ξ〉 − 〈Aψe, ξ〉. (30)

Using Eqs. (16), (17), (22) and (23), we obtain (after a simple alge-
bra)

〈Aψm, ξ〉 = −2ε(1 − ε)

G
H R A

+ A(1 − ε)H R A

8πG

(
F̈1 − H Ḟ1 + 2F1

(
Ḣ − k

a2

))

(31)

As the Hawking temperature on the apparent horizon is given by

T A = |κA |
2π

= 1 − ε

2π R A
, (32)

so the above equation can be written as

〈Aψm, ξ〉 = T A

〈
8π R A

4G
dR A − π H R4

A

G

×
(

F̈1 − H Ḟ1 + 2F1

(
Ḣ − k

a2

))
dt, ξ

〉
. (33)

Hence comparing with Clausius relation δQ = T dS and integrating, 
we have the entropy on the apparent horizon

S A = A A

4G
− π

G

∫ (
F̈1 − H Ḟ1 + 2F1

(
Ḣ − k

a2

))
H R4

Adt (34)

Thus the entropy on the apparent horizon differs from Bekenstein 
entropy by a correction term (given in the form of integral on the 
right-hand side of Eq. (34)).

As light rays move along the radial direction, i.e., normal to the 
surface of the event horizon and we have ∂ξ± = dt ∓adr, one form 
along the normal direction, so ∂± = −√

2(∂t ∓ 1
a ∂r) may be chosen 

along the tangential direction to the surface of the event horizon. 
Thus for event horizon, we choose

ξ = ∂

∂t
− 1

a

∂

∂r
, (35)

as the tangential vector to the surface of the event horizon.
Now, using the expression for κ from Eq. (7) and proceeding as 

before, the entropy on the event horizon turns out to be

S E = AE

4G
− π

2G

∫ (
R2

A R E

1 − ε

)
H R E + 1

H R E − 1

(
F̈1 − H Ḟ1 − 4F1ε

R2
A

)
dR E .

(36)

Here also the leading term for entropy is the usual Bekenstein 
entropy.

Further, if we consider the conformal transformation

g̃ab = eφ gab (37)

where the scalar field φ is defined as

φ ≡ ln f ′(R) = ln
[
1 + F1(R)

]
, (38)

then the action (11) (in Einstein frame) now becomes [9,27]

S̃ = 1

16πG

∫ [
R̃ − 3

2
g̃ab∇̃aφ∇̃bφ − V (φ)

]√
−g̃d4x + Sm (39)

where ∇̃a is the covariant derivative compatible with g̃ab and V (φ)

is the effective potential defined as

V = R F ′(R) − F (R)

′ 2
. (40)
1 + F (R)
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Now varying the above action (39) with respect to g̃ab and φ we 
obtain the Einstein equations (of f (R)-gravity in Einstein frame) 
and the evolution equation for φ as

R̃ab − 1

2
g̃ab R̃

= 3∇̃aφ∇̃bφ − 1

2
g̃ab

(
3

2
g̃ab∇̃aφ∇̃bφ + V (φ) + Tab

)
(41)

and

∇̃a∇̃aφ + 1

3

∂V

∂φ
= 0 (42)

So for the present FRW model the explicit form of the field equa-
tions are

H2 + k

a2
= 8πG

3

(
ρ + 1

8πG

(
3

4
φ̇2 + 1

2
V (φ)

))
, (43)

Ḣ − k

a2
= −4πG

(
ρ + p + 1

8πG

(
3

2
φ̇2

))
, (44)

and

φ̈ + 3Hφ̇ + 1

3

∂V

∂φ
= 0. (45)

Thus we have

ρe = 1

8πG

(
3

4
φ̇2 + 1

2
V (φ)

)

ρe + pe = 1

8πG

(
3

2
φ̇2

)
(46)

Thus proceeding as above, the entropy on the apparent and event 
horizon are respectively given by

S A = A A

4G
− 3π

2G

∫ (
φ̇2 H R4

A

)
dt (47)

and

S E = AE

4G
− 3π

4G

∫ (
R2

A R E

(1 − ε)

)(
H R E + 1

H R E − 1

)
φ̇2dR E . (48)

Note that the scalar field φ in Einstein frame corresponds to a rep-
resentative form of Ricci curvature in Jordan frame. In our scenario, 
the Einstein frame is the physical frame which gives self gravity of 
the scalar field’s effective potential V (φ).

2. Scalar–tensor theory

In scalar–tensor theory of gravity, using Jordan frame the La-
grangian is given by [28]

L = 1

16πG
f (φ)R − 1

2
gαβ∂αφ∂βφ − V (φ) + Lm (49)

where f (φ) is an arbitrary function of the scalar field φ having 
potential V (φ), Lm is the Lagrangian for the matter fields in the 
universe.

Now varying the action corresponding to the Lagrangian (49)
with respect to the dynamical variables gμν and φ the equation of 
motion are

Gαβ = 8πG

f (φ)

[
∂αφ∂βφ − 1

2
gαβ

(
gμν∂μφ∂νφ

)

− gαβ V (φ) − gαβ∇2 f + ∇α∇β f + T m
μν

]
(50)
and

∇2φ − V ′(φ) + 1

2
f ′(φ)R = 0 (51)

where T m
μν is the energy–momentum tensor of the matter distri-

bution. Hence for FRW model, the explicit form of Eqs. (50) and 
(51) are given by

H2 + k

a2
= 8πG

3 f

[
ρ + 1

2
φ̇2 + V (φ) − 3H f ′φ̇

]
(52)

Ḣ − k

a2
= −4πG

f

[
(ρ + p) + φ̇2 + (

f ′′φ̇2 + f ′φ̈ − H f ′φ̇
)]

(53)

and

φ̈ + 3Hφ̇ + dV

dφ
= 3

8πG

(
Ḣ + H2) f ′ (54)

Now choosing f (φ) = 1 + F (φ), the field equation (53) can be 
rewritten as

Ḣ − k

a2
= −4πG

[
(ρ + p) + φ̇2 + (

F ′′φ̇2 + F ′φ̈ − H F ′φ̇
)

+ F

4πG

(
Ḣ − k

a2

)]
(55)

Hence we have

ρe + pe = φ̇2 + (
F ′′φ̇2 + F ′φ̈ − H F ′φ

) + F

4πG

(
Ḣ − k

a2

)
(56)

Considering ξ as given by Eq. (28) (for apparent horizon) or by 
Eq. (35) (for event horizon) and proceeding in the same way as 
before, for the validity of the unified first law, the expression of 
the entropy on the horizon (apparent/event) is given by

S A = A A

4G
− 4π2

∫ [
φ̇2 + (

F ′′φ̇2 + F ′φ̈ − H F ′φ
) − Fε

2πG R2
A

]

× R3
A

ε
dR A, for apparent horizon (57)

and

S E = AE

4G
− 4π2

∫ [{
φ̇2 + (

F ′′φ̇2 + F ′φ̈ − H F ′φ
) − Fε

2πG R2
A

}

× (H R E + 1)

(H R E − 1)

R E R2
A

1 − ε

]
dR E , for event horizon. (58)

Using similar conformal transformation as in f (R)-gravity we 
can write down the expressions of the entropy on the horizons in 
Einstein frame of scalar–tensor theory.

3. Einstein–Gauss–Bonnet gravity

In Einstein–Gauss–Bonnet gravity, the action in (3 + 1) dimen-
sions can be written as

I = 1

2

∫ (√−g(R + αG)
)
dx4 + Im

where α, the coupling parameter has the dimension of (length)2

and Im is the matter action. Now varying the action I over the 
metric tensor gμν , we have the equations of motion: Gμν −
αHμν = Tμν , where

Hμν = 4RμλRλ
ν + 4Rρσ Rμρνσ − 2R Rμν − 2Rρσλ

μ Rνρσλ

+ 1
gμν RG B
2
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is the Lovelock tensor. Hence for the metric given in Eq. (2), 
the nonvanishing components of the modified Einstein’s equations 
are(

H2 + k

a2

)[
1 + α̃

(
H2 + k

a2

)]
= 8πGρ

3
(59)

and[
1 + 2α̃

(
H2 + k

a2

)](
Ḣ − k

a2

)
= −4πG(ρ + p) (60)

Here α̃ is the Gauss–Bonnet coupling parameter which is a func-
tion of α. Now from Eq. (60), we have

ρe + pe = α̃

2πG

(
Ḣ − k

a2

)(
H2 + k

a2

)
, (61)

so for this modified gravity theory the expressions for the entropy 
on the horizon (apparent/event) is given by

S A = A A

4G
+ 4π

G
α̃ ln(R A), for apparent horizon (62)

and

S E = AE

4G
+ 4πα̃

G

∫ (
ε

1 − ε

)
R E

R2
A

(
H R E + 1

H R E − 1

)
dR E , (63)

for event horizon.
Thus in the present work, we have considered universal ther-

modynamics for three different gravity theories (namely f (R)-
gravity, Scalar–tensor theory and Einstein–Gauss–Bonnet gravity) 
for FRW model of the universe bounded by apparent/event hori-
zon. Assuming the temperature on the horizon as Hawking tem-
perature we have examined the validity of the unified first law 
and it turns out that the entropy on the horizon is no longer 
the Bekenstein entropy, rather there are correction terms in in-
tegral form. An interesting result is obtained for Einstein–Gauss–
Bonnet gravity. In this modified gravity theory the entropy of 
the apparent horizon achieves a logarithmic correction to Beken-
stein entropy. This result is not trivial. One may get the similar 
result in loop quantum gravity and also in the holographic de-
scription (one of the promising descriptions of quantum general 
relativity) of entropic cosmology. In fact, for a cosmological model 
involving two holographic screens the universe can arrive at ther-
mal equilibrium only after taking into account of this logarithmic 
correction [29,30]. Therefore, we conclude that Universal thermo-
dynamics in different gravity theories corresponds to equilibrium 
configuration – there is no need of choosing any entropy produc-
tion term, instead the entropy on the horizon is non-Bekenstein in 
form.
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