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ABSTRACT 

It is well known that projection operators are typical elements in Boolean 
algebras, and a number of relevant theorems have been proved for commutative 

projections. We propose an extension of the concept of commutativity, which we call 
near-commutativity. We extend to this concept the main theorems on commutative 
projections, and in various ways we frame the class of nearly commutative projections 
in Boolean algebras. 

1. INTRODUCTION 

If p and q are two linear projections on a vector space V over C, we say 

they nearly commute if 

PqP = qP and 4134 = Pq’ (1) 

We say they antinearly commute if 

PqP = Pq and qPq = qP. (2) 

If p and q commute, then they both nearly commute and antinearly 
commute. Also, p and q nearly commute if and only if their complements 
I - p and Z - q antinearly commute. 

Section 2 displays examples of these kinds of projections. Basic properties 
of nearly commuting projections appear in Section 3. Section 4 introduces 
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two operators on sets of nearly commuting projections. Section 5 derives 
orthogonal projections from nearly commuting projections, and Section 6 
does a decomposition of projections using orthogonal projections. 

2. EXAMPLES 

Let V be the vector space of functions f : C” + @. Let 

p(f)(-,,~g,23) =f(~),O,=.,y) 

and 

df >( 21, z2> 23) =f(q,O,O). 

Then p and q are commuting projections on V. Now let 

p(f)(z,, z,> 3) =f(O,O, z,) 

and 

Then 

Pdf)(%, z2, =J =fCO, 1, I), 

w7(f)(%~ zz> “3) =f(R 1,1>> 

qp(f)(z,, z2>4 =f(O,O, 11, 

wdf)(z,, 227 4 =f(O,%l). 

Thus 

In general, if V is the set of functions f: C" + C, the projections which 
substitute the same constant for different arguments all commute; whereas 
the projections which substitute different constants for arguments, in general, 
nearly commute. 
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Let p and q be linear projections on a vector space V over a= and let a 

and b be two elements in V such that a E Ran(Z - p) and b E Ran(Z - q>. 
Also, let P(x) = a + p(x)and Q(x) = b + q(x)forall x E V. Then P2 = P 

and Q” = Q, i.e., P and Q are affine projections on V (see Wilde [l]>. If p 

and q commute, then in general PQP = PQ and QPQ = QP. Also, PQP = 
PQ if and only if pqp = pq. 

Our final example is a set of (n + 2) X (n + 2) matrices over C. Let 

al,az,..., a, E @. Let Eij be the (n + 2) X (n + 2) matrix with a 1 in the 
(i,j) spot and O’s elsewhere. Let pi = E,, + a,E,, for i = 1,2,. , n, and 
let qj = Ez+j,2+j for j = 1,2,. . , n. Then pi pj = pj and pjp, = pi for 
i #j; and ql,..., 

and j in {1,2, . , . , 
qn are pairwise orthogonal. Also, piqj = qj pi = 0 for all i 
n}. All projections of the form “pi plus sums of the qj’s” 

nearly commute. For instance, if i #j, then 

(Pi + 4i)( Pj + 4i + 4j) = Pj + 4i> 

(Pi + 4i)( Pj + 4i + 4j)( Pi + 4i) = Pi + 9i, 

i.e., pi + qi and pj + qi + qj nearly commute. 

3. MISCELLANEOUS PROPERTIES 

We prove the following theorem. 

THEOREM 1. Let p, q, r be linear, pairwise nearly commuting projec- 
tions on V. Then 

(1) pq, p + q - pq, p + pq - qp, and i(pq ‘t qp) are linear projec- 
tions on V; 

(2) r nearly commutes with pq, p + q - pq, p + pq - qp, and +j( pq + 

qp); 
(3) Ran p f~ Ran q = Ran pq = Ran qp; and 
(4) Ranp+Ranq=Ran(p+q-pq)=Ran(p+q-qp). 

Proof. (1): Easy. 
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(2): r nearly commutes with p9 because 

and 

r( p9)r = rp(9r) = 7)7(7-9r) = (rpr)9r 

= (prI9r = p(r9r) = p(9r) = (p9)r 

(p9)r( p9) = p9(rp)9 = p(rpI9 = ( prp)9 = (r7)9 = t-C p9). 

This rest is just more calculation. 
(3): Let x E Ran p9. Then x = pq(x), p(x) = p(pq(x)) = pq(x) = x, 

and 9(x) = q(pq(x)) = pq(x) = x. Thus Ran p9 C Ran p fl Ran 9. Let 
x E Ran p f~ Ran 9. Then p(x) = x and 9(x> = x; thus pq(x) = p(x) = x, 
and so Ran p n Ran 9 c Ran p9. By symmetry, Ran p CT Ran 9 = Ran qp, 
although p9 does not always equal 9p. 

(4): Let x E Ran p and y E Ran 9; then p(x) = x and 9(y) = y, and 

(P + 9 - P9C + Y> = P(X) + 9(x) - P9(X) + P(Y) + 9(Y) - P9CY) 

=x+9p(x) -P9P(x) fP9(Y) +Y _P9(Y) 

= x + 9p( x> - 9p(x) + y = x + y, 

or Ranp+RanqcRan(p+q-~9). Let x~Ran(p+q-~9). Then 

x = (p + 9 - p9Xx) = p (xl + (I - p)q(x), where p(x) E Ran p and (I 
- p)q(r) E Ran 9, since 9((Z - p)q(x)) = (I - p)q(x). Thus Ramp + 9 
- p9) c Ran p + Ran 9. By symmetry, Ran p + Ran 9 = Ramp + 9 - 

9P). n 

Suppose p, 9, r are linear, pairwise nearly commuting projections on V. 
Let 

and 

E = +( P9 + 97) (3) 

N = 8 P9 - 9P). 

Then we can prove the following. 

THEOREM 2. 

(4) 

(1) E2 = E, N2 = 0; 
(2) pE = E, 9E = E; 
(3) pN = N, 9N = N; 
(4) Ep = E - N, E9 = E + N; 
(5) Np = 0, N - 0; and 
(6) EN = N, :E-= 0. 
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Also, p + cN, E + cN, and p + q - E + cN, for a scalar c E @, are 

linear projections, and r nearly commutes with them. For this reason, we let 

X be a maximal set of linear, pairwise nearly commuting projections on V, 
closed under the operations p + cN, E + cN, and p + q - E + cN. Note 
also the following theorem. 

THEOREM 3. 

(1) Ran p = Ran( p + cN ); 

(2) Ran pq = Ran( E + cN ); and 

(3) Ran( p + q - pq) = Ran( p + q - E + cN). 

Proof. p( p + cN) = p + cN, so Ran( p + cN) C Ran p. Also, ( p + 
cN)p = p, so Ran p c Ran( p + cN). Therefore, Ran p = Ramp + cN). 
The other identities follow analogously. n 

Now let 

E, = E + cN, (5.1) 

E,=p-E+N, (5.2) 

E,=q-E-N, (5.3) 

E4=I-p-q+E-cN (5.4) 

for a scalar c E @. Then 

E,? = Ei (i = 1,2,3,4), (6.1) 

E,E, = E,E, = 0 (i +j>, (6.2) 

E, + E, + E, + E, = I, (6.3) 

i.e. E,, E,, E,, E, are linear, idempotent, and orthogonal operators on V that 

add to I. They generate a set closed under the operations 

xvy=x+y-xy, xr\y=ry, and x’=Z-x. 

Now we decompose p and q that are nearly commuting projections on V. 
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THEOREM 4. p and q are two linear, nearly commuting projections on V 

if and only if p and q can be decomposed into sums 

P = Pl + P2, 

9 =41 +92> 

where 

(1) p,, p,, ql, q2 are linear projections on V; 

c2) PIP, = P,P, = 0, 9192 = 9291 = O; 
(3) Plq2 = 92 Pl = 0, p2q1 = 41 P2 = 0; 

(4) Pl91 = 912 91 Pl = Pli and 
c5) P,q, = 92 P2 = O. 

Moreover, this decomposition is unique and is given by p, = qp, p, = (I - 

q)p, 9l = p9, and 92 = (1 - ph. 

Proof. Let p = p, + p, and q = 9l + q2, where p,, p,, ql, q2 satisfy 
conditions (l)-(5). Then p and q are linear projections on V; and 9p = p,, 

p9p = pl, p9 = 91, and 9~9 = ql. Thus p9p = 9p and 9139 = pq, making 

p and q nearly commute. Also, p, = qp, p2 = (I - 9)p, ql = pq, and 

92 = (1 - p)q. 

On the other hand, let p and 9 be any two linear, nearly commuting 
projections on V, and let p, = qp, p2 = (1 - 9)p, ql = p9, and 92 = (1 - 
~19. Then p = p, + p, and q = ql + q2; and p,, p,, 91, q2 satisfy condi- 
tions (l)-(5). n 

By methods similar to those used for Theorem 4, one can show that any 
two nearly commuting projections on any vector space V are given, after a 
suitable choice of basis for V, by matrices in the block form 

1 1 0 
0 0 

I 
I 

0 

-0 0 

4. TWO OPERATORS 

Z -Z 0 
0 0 

and 
I 

0 
1 

-0 0 

Let X be a maximal set of pairwise nearly commuting projections on a 
vector space V over @, as before. Let H, and Fp be two projection operators 
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on X defined by 

H,(x) =p+px-xp 

and 

79 

(7) 

F,(x) =x-px+xp (8) 

for p, x E X. Note that F,(x) = H,(p). Th err asic properties are as follows. . b 

THEOREM 5. 

(1) x E Ran H, ifuand only ifpx = x and xp = p. 
(2) The condition “py = q and qp = p” is that of an equivalence rela- 

tion. 
(3) x E Ran FI, if and only if px = xp. 

(4) Zf p, x, y E X, then F,(xy) = F,(x)F,( y). 
(5) Ifp, x, y E X, th 
(6) Zf p, x, y E x, 

en FP,C,cx + y - xy> = F,(x) + F,(y) - F,(x)F,(y). 

F& y)F,(x). 

then F,(x + xy - yx) = F,(x) + F,(x)F,(y) - 

Proof. We need only prove (2). The relation is 

(i) symmetric: pp = p and pp = p; 
(ii> reflexive: pq = q and qp = p implies qp = p and pq = q; and 
(iii) transitive: if pq = q and qp = p, and if yr = r and rq = q, then 

pr = p(qr) = ( pq)r = qr = r and rp = r(qp) = (rq)p = qp = p. M 

Therefore, Ran H) for each p E X is an equivalence class. Note that, for 
all p, q E X, pq an d qp are equivalent, and p + q - pq and p + q - qp 
are equivalent. 

Let pl, p,, , p,, p, q, x. r be linear projections on V that nearly 
commute. Let F,,(x) = x, and let F,, = Fp, Fr,2 *.. Fr ,,,. Now we prove a 
lemma. 

LEMMA. F,,( pq> = F,( p)F,(y). 

Proof of lemma. By Theorem 5(4), F,( pq) = F,.( p)F,.(q). Note that 4 
nearly commutes with F,.( p) for any three projections r, p, q E X. So we can 
apply FJpq) = F,(p)F,(q) repeatedly with p,, p,_ 1, . . , p, as r. q 

Let p* = F,_,(p,) for i = 1,. . , n. Now we prove a theorem. 

THEOREM 6. pT, pl, . , p,* pairwise commute 
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Proof. We want to show that p,*p,* = pip,? for i = 1, . . , n - 1. Note 

that P,T = FiplFp,Fp,+, ... Fp,_I(p,). Let gi = Fp,Fpi,, -a* F,,_,(p,>. Now pi 
commutes with gi, and pi and gi each pairwise nearly commute with 

PI, p2, ” . > pi- 1, which as a set of pairwise nearly commute. So, by our 
lemma, 

PFPZ = Fi-,( Pi)%,(gi) 

= 8-d Pi&) 

= Fi-l(gi Pi) 

= Fi-l(gi)Fi-l( Pi) 

= p,*p*. 

Now we prove another theorem. 

THEOREM 7. Let p,, p,, . . , p,, x be linear projections on V that pair- 
wise nearly commute. Then for each n > 2, 

Proof. Let p, = p, p, = q, and x = r. Then 

Fq*FpW = FFJ,,(I;,W) 

= F,(r) - Fp(dFp(r) + FpWFpW 

= Fp(r - qr + rq) 

= F,F,(r). 

so 

F FPCy,FP(r) = % F,( r, 1 (**> 

and ( * > is true for n = 3. Assume it is true for n. ( * > can be written as 
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so 

S n+l = FF,,-F,m_,(~.) F F,,-Fpn_,(pn-d *‘* FFp,(~z,F~l<x) 

= FFp,-Fpn_,(~,)Sn 

We can prove by induction on k, using ( * * 1, that 

S n+l = F p, “’ F~,-,FF,,(F Pk+l -Fpn&WFpk(%~+, *** Fp _I>(+ n 

Thus S,,+i = Fp,Fp2 **a Fp _ ,FP (xl. Thus (* > is true by induction. n 

By equation (* *), n ” 

FpFqFp(x) = FF,(q,FpFp(x) 

= FF,(q,Fp( ‘1 

= FpFq( x), 

so Fp and Fg antinearly commute. Also, if p and q commute, p and x nearly 
commute, and q and x nearly commute, then F,(q) = q and F,F,(x) = 
F F@)Fp(“) = F,F,(d, i.e., Fp and F4 commute. The projection operators 

Fpr> Fp;>. . , , Fp:, pairwise commute. 

5. ORTHOGONAL PROJECTIONS 

In Section 2, we displayed linear projections E,, E,, E,, E, which were 
functions of p and q, and which were four orthogonal projections adding to 
I. Let p,, p,, . . , p, _ 1, p, be n + 1 linear projections on V that pair-wise 
nearly commute. Suppose E,, E,, . . . , E,. are functions of p,, p,, . . .T P,-1 
that are 2” orthogonal projections that add to I. Then p,E, p, = Ei p,, and 
we have the following theorem. 

THEOREM 8. {Eip,li = 1,2,. . . ,2”) and {(I - p,)Eili = 1,2,. . . ,2”} 
are sets of 2”+ i orthogonal projections that add to I. 
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Proof. If i # j, then 

(I) Ei p, Ei p, = Ei Ei p, = E, p,; 
(2) (Z - p,)Ei(Z - p,,)Ei = EiEi - Eip,E, - pnEiEi + p,E,p,E, = Ei 

- E,p,E, - p,E, + E,p,E, = Ei - p,E, = (I - p,)E,; 
(3) Ei p,(Z - p,)Ei = 0; 
(4) (I - p,)E,E, p,=Eip,-p,,E,p,=E,p,-E,p,=O; 
(5) Ei p,(Z - p,>Ej = 0; 
(6) (I - p,>EjEipfL = 0; 
(7) Ei p, Ej p,, = Ei Ej p, = 0; 
(8) (Z - p,)E,(Z - p,,)E, = E,Ej - Ejp,Ej - p,E,Ej + p,E,p,Ej = 0 

- Ei p, E. - 0 + Ei p,, Ej = 0; 
(9) &Eip, + Cf:,(Z - p,)E, = Zpn + (I - p,)Z = I. n 

6. A FURTHER DECOMPOSITION 

Suppose p, q, r, x are linear, pair-wise nearly commuting projections on 
V. Then F,(x) = xp + p’x where p’ = Z - p. Let q’ = Z - q and r’ = Z 
- r also. Let P = p, Q = F,(q), and R = Fp F<,(r). Then, by Theorem 6, P, 
Q, and R pair-wise commute. Also, 

P = p = qp + q’p 

= (rqp + r’qp) + (q’r77 + q’r’p), (9) 

Q = F,(q) = v + p’q 

= (rqp + r’qp) + ( p’rq + p’r’q), (10) 

R = F,F,b-) = F,(r)p + p’F,(r) 

= (rq + q’r) p + p’( rq + q’r) 

= rqp + q’rp + p’rq + p’q’r. (11) 

By Theorem 8, these triples of p, q, r, p’, q’, and r’ are orthogonal. 
We generalize these formulas to n projections. Let pi, p,, . . . , p, be n 

linear, pairwise nearly commuting projections on V, let pi” = pi, and let 
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pl!“’ = pl for i = 1,. , n. For k = 1, . , n., let Ei(ik, . . . , i,) be a function 
from {0, l}“- k+ ’ into the set of linear projections on V, defined recursively 

bY 

(i) E,“(i,) = pm), 
(ii) E;_l(l,ik ,..., i,) = Ec(ik,. ..,i”)~~_~ and E;_l(O,ikr...,in)= 

p;_ lE;(ik,. . . , i,) 

for n > k > 2. Then E;(i,, . . . , i,) is in general a product of n projections 
such that the first few are primed pi’s in numerical order followed by the rest 
unprimed in reverse numerical order. Moreover, the products E;(i,, . . , i,) 
for i, = 0,l;. . . ; i, = 0,l are (by Theorem 8) 2” orthogonal projections that 
add to I. 

Taking k such that k = 1, . . . , n, note that pk+ r is in the same position 
in Ef+‘(il,. . . , i,, 1)that P;+~ isin E,k+l(il,...,il;,O). Removing pk+l or 
pi+ 1 from their positions gives us Ef(il,. . . , i,). Since pk+r f pi,1 = I, 

Elk&,. . . ,ik) = Ef+‘(il,. .) ik, 1) + Ef+‘(il,. . .) ik,O). 

By induction, 

Ef(il,...,ik) = i 
1 

... C E;(i,,.. .,ik.ik+l,. ..,i,). (12) 
i,+,=o in=0 

Let P, = p, and Pk = FpI ... F,t_l(pk) for k = 2,. . . , n. Then by (12) and 
F,(x) = xp + p’x, 

P/y) = Pk = CE,k(il,...&+l) 

= zE;(i,,.. .,ik-l, l,i,+,,.. .,i,), (13) 

where C denotes the sum over all indices ij without substituted values. Since 
pk’0’ = Z - p$‘l’, 

Pi” = Pk) = CE;(i,, . . . , ik_l,O, ik+l,. . ., i,), (14) 

where C denotes the same type of sum. By Theorem 6, P,, . . . , P, pairwise 
commute. So the product 

p1(‘1) ... PC’“) = E;(i,, 
n 

i ) 
...> n (15) 
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follows by Equations (13) and (14) and the fact that all products of the 
right-hand side of (15) are orthogonal. 
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