Nearly Commuting Projections

Alan C. Wilde
Department of Mathematics
University of Michigan
Ann Arbor, Michigan 48109

Submitted by Richard A. Brualdi

Abstract

It is well known that projection operators are typical elements in Boolean algebras, and a number of relevant theorems have been proved for commutative projections. We propose an extension of the concept of commutativity, which we call near-commutativity. We extend to this concept the main theorems on commutative projections, and in various ways we frame the class of nearly commutative projections in Boolean algebras.

1. INTRODUCTION

If p and q are two linear projections on a vector space V over \mathbb{C}, we say they nearly commute if

$$
\begin{equation*}
p q p=q p \quad \text { and } \quad q p q=p q \tag{1}
\end{equation*}
$$

We say they antinearly commute if

$$
\begin{equation*}
p q p-p q \quad \text { and } \quad q p q=q p \tag{2}
\end{equation*}
$$

If p and q commute, then they both nearly commute and antinearly commute. Also, p and q nearly commute if and only if their complements $I-p$ and $I-q$ antinearly commute.

Section 2 displays examples of these kinds of projections. Basic properties of nearly commuting projections appear in Section 3. Section 4 introduces
two operators on sets of nearly commuting projections. Section 5 derives orthogonal projections from nearly commuting projections, and Section 6 does a decomposition of projections using orthogonal projections.

2. EXAMPLES

Let V be the vector space of functions $f: \mathbb{C}^{3} \rightarrow \mathbb{C}$. Let

$$
p(f)\left(z_{1}, z_{2}, z_{3}\right)=f\left(0,0, z_{3}\right)
$$

and

$$
q(f)\left(z_{1}, z_{2}, z_{3}\right)=f\left(z_{1}, 0,0\right) .
$$

Then p and q are commuting projections on V. Now let

$$
p(f)\left(z_{1}, z_{2}, z_{3}\right)=f\left(0,0, z_{3}\right)
$$

and

$$
q(f)\left(z_{1}, z_{2}, z_{3}\right)=f\left(z_{1}, 1,1\right)
$$

Then

$$
\begin{aligned}
p q(f)\left(z_{1}, z_{2}, z_{3}\right) & =f(0,1,1) \\
q p q(f)\left(z_{1}, z_{2}, z_{3}\right) & =f(0,1,1) \\
q p(f)\left(z_{1}, z_{2}, z_{3}\right) & =f(0,0,1) \\
p q p(f)\left(z_{1}, z_{2}, z_{3}\right) & =f(0,0,1)
\end{aligned}
$$

Thus

$$
p q p(f)=q p(f) \quad \text { and } \quad q p q(f)=p q(f)
$$

In general, if V is the set of functions $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$, the projections which substitute the same constant for different arguments all commute; whereas the projections which substitute different constants for arguments, in general, nearly commute.

Let p and q be linear projections on a vector space V over \mathbb{C} and let a and b be two elements in V such that $a \in \operatorname{Ran}(I-p)$ and $b \in \operatorname{Ran}(I-q)$. Also, let $P(x)=a+p(x)$ and $Q(x)=b+q(x)$ for all $x \in V$. Then $P^{2}=P$ and $Q^{2}=Q$, i.e., P and Q are affine projections on V (see Wilde [1]). If p and q commute, then in general $P Q P=P Q$ and $Q P Q=Q P$. Also, $P Q P=$ $P Q$ if and only if $p q p=p q$.

Our final example is a set of $(n+2) \times(n+2)$ matrices over \mathbb{C}. Let $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{C}$. Let $E_{i j}$ be the $(n+2) \times(n+2)$ matrix with a 1 in the (i, j) spot and 0 's elsewhere. Let $p_{i}=E_{11}+a_{i} E_{12}$ for $i=1,2, \ldots, n$, and let $q_{j}=E_{2+j, 2+j}$ for $j=1,2, \ldots, n$. Then $p_{i} p_{j}=p_{j}$ and $p_{j} p_{i}=p_{i}$ for $i \neq j$; and q_{1}, \ldots, q_{n} are pairwise orthogonal. Also, $p_{i} q_{j}=q_{j} p_{i}=0$ for all i and j in $\{1,2, \ldots, n\}$. All projections of the form " p_{i} plus sums of the q_{j} 's" nearly commute. For instance, if $i \neq j$, then

$$
\begin{array}{r}
\left(p_{i}+q_{i}\right)\left(p_{j}+q_{i}+q_{j}\right)=p_{j}+q_{i} \\
\left(p_{j}+q_{i}+q_{i}\right)\left(p_{i}+q_{i}\right)\left(p_{j}+q_{i}+q_{j}\right)=p_{j}+q_{i} \\
\left(p_{j}+q_{i}+q_{j}\right)\left(p_{i}+q_{i}\right)=p_{i}+q_{i} \\
\left(p_{i}+q_{i}\right)\left(p_{j}+q_{i}+q_{j}\right)\left(p_{i}+q_{i}\right)=p_{i}+q_{i}
\end{array}
$$

i.e., $p_{i}+q_{i}$ and $p_{j}+q_{i}+q_{j}$ nearly commute.

3. MISCELLANEOUS PROPERTIES

We prove the following theorem.
Theorem 1. Let p, q, r be linear, pairwise nearly commuting projections on V. Then
(1) $p q, p+q-p q, p+p q-q p$, and $\frac{1}{2}(p q+q p)$ are linear projections on V;
(2) r nearly commutes with $p q, p+q-p q, p+p q-q p$, and $\frac{1}{2}(p q+$ $q p$);
(3) $\operatorname{Ran} p \cap \operatorname{Ran} q=\operatorname{Ran} p q=\operatorname{Ran} q p$; and
(4) $\operatorname{Ran} p+\operatorname{Ran} q=\operatorname{Ran}(p+q-p q)=\operatorname{Ran}(p+q-q p)$.

Proof. (1): Easy.
(2): r nearly commutes with $p q$ because

$$
\begin{aligned}
r(p q) r & =r p(q r)=r p(r q r)=(r p r) q r \\
& =(p r) q r=p(r q r)=p(q r)=(p q) r
\end{aligned}
$$

and

$$
(p q) r(p q)=p q(r p) q=p(r p) q=(p r p) q=(r p) q=r(p q)
$$

This rest is just more calculation.
(3): Let $x \in \operatorname{Ran} p q$. Then $x=p q(x), p(x)=p(p q(x))=p q(x)=x$, and $q(x)=q(p q(x))=p q(x)=x$. Thus Ran $p q \subset \operatorname{Ran} p \cap \operatorname{Ran} q$. Let $x \in \operatorname{Ran} p \cap \operatorname{Ran} q$. Then $p(x)=x$ and $q(x)=x$; thus $p q(x)=p(x)=x$, and so $\operatorname{Ran} p \cap \operatorname{Ran} q \subset \operatorname{Ran} p q$. By symmetry, $\operatorname{Ran} p \cap \operatorname{Ran} q=\operatorname{Ran} q p$, although $p q$ does not always equal $q p$.
(4): Let $x \in \operatorname{Ran} p$ and $y \in \operatorname{Ran} q$; then $p(x)=x$ and $q(y)=y$, and

$$
\begin{aligned}
(p+q-p q)(x+y) & =p(x)+q(x)-p q(x)+p(y)+q(y)-p q(y) \\
& =x+q p(x)-p q p(x)+p q(y)+y-p q(y) \\
& =x+q p(x)-q p(x)+y=x+y
\end{aligned}
$$

or $\operatorname{Ran} p+\operatorname{Ran} q \subset \operatorname{Ran}(p+q-p q)$. Let $x \in \operatorname{Ran}(p+q-p q)$. Then $x=(p+q-p q)(x)=p(x)+(I-p) q(x)$, where $p(x) \in \operatorname{Ran} p$ and $(I$ $-p) q(x) \in \operatorname{Ran} q$, since $q((I-p) q(x))=(I-p) q(x)$. Thus Ran $(p+q$ $-p q) \subset \operatorname{Ran} p+\operatorname{Ran} q$. By symmetry, $\operatorname{Ran} p+\operatorname{Ran} q=\operatorname{Ran}(p+q-$ $q p$).

Suppose p, q, r are linear, pairwise nearly commuting projections on V. Let

$$
\begin{equation*}
E=\frac{1}{2}(p q+q p) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
N=\frac{1}{2}(p q-q p) \tag{4}
\end{equation*}
$$

Then we can prove the following.
Theorem 2.
(1) $E^{2}=E, N^{2}=0$;
(2) $p E=E, q E=E$;
(3) $p N=N, q N=N$;
(4) $E p=E-N, E q=E+N$;
(5) $N p=0, N q=0$; and
(6) $E N=N, N E=0$.

Also, $p+c N, E+c N$, and $p+q-E+c N$, for a scalar $c \in \mathbb{C}$, are linear projections, and r nearly commutes with them. For this reason, we let X be a maximal set of linear, pairwise nearly commuting projections on V, closed under the operations $p+c N, E+c N$, and $p+q-E+c N$. Note also the following theorem.

Theorem 3.
(1) $\operatorname{Ran} p=\operatorname{Ran}(p+c N)$;
(2) $\operatorname{Ran} p q=\operatorname{Ran}(E+c N)$; and
(3) $\operatorname{Ran}(p+q-p q)=\operatorname{Ran}(p+q-E+c N)$.

Proof. $\quad p(p+c N)=p+c N$, so $\operatorname{Ran}(p+c N) \subset \operatorname{Ran} p$. Also, $(p+$ $c N) p=p$, so $\operatorname{Ran} p \subset \operatorname{Ran}(p+c N)$. Therefore, $\operatorname{Ran} p=\operatorname{Ran}(p+c N)$. The other identities follow analogously.

Now let

$$
\begin{align*}
& E_{1}=E+c N \tag{5.1}\\
& E_{2}=p-E+N \tag{5.2}\\
& E_{3}=q-E-N \tag{5.3}\\
& E_{4}=I-p-q+E-c N \tag{5.4}
\end{align*}
$$

for a scalar $c \in \mathbb{C}$. Then

$$
\begin{gather*}
E_{i}^{2}=E_{i} \quad(i=1,2,3,4) \tag{6.1}\\
E_{i} E_{j}=E_{j} E_{i}=0 \quad(i \neq j) \tag{6.2}\\
E_{1}+E_{2}+E_{3}+E_{4}=I \tag{6.3}
\end{gather*}
$$

i.e. $E_{1}, E_{2}, E_{3}, E_{4}$ are linear, idempotent, and orthogonal operators on V that add to I. They generate a set closed under the operations

$$
x \vee y=x+y-x y, \quad x \wedge y=x y, \quad \text { and } \quad x^{\prime}=I-x
$$

Now we decompose p and q that are nearly commuting projections on V.

Theorem 4. $\quad p$ and q are two linear, nearly commuting projections on V if and only if p and q can be decomposed into sums

$$
\begin{aligned}
& p=p_{1}+p_{2}, \\
& q=q_{1}+q_{2}
\end{aligned}
$$

where
(1) $p_{1}, p_{2}, q_{1}, q_{2}$ are linear projections on V;
(2) $p_{1} p_{2}=p_{2} p_{1}=0, q_{1} q_{2}=q_{2} q_{1}=0$;
(3) $p_{1} q_{2}=q_{2} p_{1}=0, p_{2} q_{1}=q_{1} p_{2}=0$;
(4) $p_{1} q_{1}=q_{1}, q_{1} p_{1}=p_{1}$; and
(5) $p_{2} q_{2}=q_{2} p_{2}=0$.

Moreover, this decomposition is unique and is given by $p_{1}=q p, p_{2}=(I-$ q) $p, q_{1}=p q$, and $q_{2}=(I-p) q$.

Proof. Let $p=p_{1}+p_{2}$ and $q=q_{1}+q_{2}$, where $p_{1}, p_{2}, q_{1}, q_{2}$ satisfy conditions (1)-(5). Then p and q are linear projections on V; and $q p=p_{1}$, $p q p=p_{1}, p q=q_{1}$, and $q p q=q_{1}$. Thus $p q p=q p$ and $q p q=p q$, making p and q nearly commute. Also, $p_{1}=q p, p_{2}=(I-q) p, q_{1}=p q$, and $q_{2}=(I-p) q$.

On the other hand, let p and q be any two linear, nearly commuting projections on V, and let $p_{1}=q p, p_{2}=(I-q) p, q_{1}=p q$, and $q_{2}=(I-$ $p) q$. Then $p=p_{1}+p_{2}$ and $q=q_{1}+q_{2}$; and $p_{1}, p_{2}, q_{1}, q_{2}$ satisfy conditions (1)-(5).

By methods similar to those used for Theorem 4, one can show that any two nearly commuting projections on any vector space V are given, after a suitable choice of basis for V, by matrices in the block form

$$
\left[\begin{array}{llllll}
I & I & & & & 0 \\
0 & 0 & & & & \\
& & I & & & \\
& & & I & & \\
0 & & & & 0 & \\
0 & & & & & 0
\end{array}\right] \text { and }\left[\begin{array}{cccccc}
I & -I & & & & 0 \\
0 & 0 & & & & \\
& & I & & & \\
& & & 0 & & \\
0 & & & & I & \\
& & & & & 0
\end{array}\right]
$$

4. TWO OPERATORS

Let X be a maximal set of pairwise nearly commuting projections on a vector space V over \mathbb{C}, as before. Let H_{p} and F_{p} be two projection operators
on X defined by

$$
\begin{equation*}
H_{p}(x)=p+p x-x p \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{p}(x)=x-p x+x p \tag{8}
\end{equation*}
$$

for $p, x \in X$. Note that $F_{p}(x)=H_{x}(p)$. Their basic properties are as follows.
Theorem 5.
(1) $x \in \operatorname{Ran} H_{p}$ if and only if $p x=x$ and $x p=p$.
(2) The condition " $p q=q$ and $y p-p$ " is that of an equivalence relation.
(3) $x \in \operatorname{Ran} F_{p}$ if and only if $p x=x p$.
(4) If $p, x, y \in X$, then $F_{p}(x y)=F_{p}(x) F_{p}(y)$.
(5) If $p, x, y \in X$, then $F_{p}(x+y-x y)=F_{p}(x)+F_{p}(y)-F_{p}(x) F_{p}(y)$.
(6) If $p, x, y \in X$, then $F_{p}(x+x y-y x)=F_{p}(x)+F_{p}(x) F_{p}(y)-$ $F_{p}(y) F_{p}(x)$.

Proof. We need only prove (2). The relation is
(i) symmetric: $p p=p$ and $p p=p$;
(ii) reflexive: $p q=q$ and $q p=p$ implies $q p=p$ and $p q=q$; and
(iii) transitive: if $p q=q$ and $q p=p$, and if $q r=r$ and $r q=q$, then $p r=p(q r)=(p q) r=q r=r$ and $r p=r(q p)=(r q) p=q p=p$.

Therefore, Ran H_{p} for each $p \in X$ is an equivalence class. Note that, for all $p, q \in X, p q$ and $q p$ are equivalent, and $p+q-p q$ and $p+q-q p$ are equivalent.

Let $p_{1}, p_{2}, \ldots, p_{n}, p, q, x, r$ be linear projections on V that nearly commute. Let $F_{0}(x)=x$, and let $F_{n}=F_{p_{1}} F_{p_{2}} \cdots F_{p_{n}}$. Now we prove a lemma.

Lemma. $\quad F_{n}(p q)=F_{n}(p) F_{n}(q)$.
Proof of lemma. By Theorem 5(4), $F_{r}(p q)=F_{r}(p) F_{r}(q)$. Note that q nearly commutes with $F_{r}(p)$ for any three projections $r, p, q \in X$. So we can apply $F_{r}(p q)=F_{r}(p) F_{r}(q)$ repeatedly with $p_{n}, p_{n-1}, \ldots, p_{1}$ as r.

Let $p_{i}^{*}-F_{i-1}\left(p_{i}\right)$ for $i-1, \ldots, n$. Now we prove a theorem.
Theorem 6. $p_{1}^{*}, p_{2}^{*}, \ldots, p_{n}^{*}$ pairwise commute.

Proof. We want to show that $p_{i}^{*} p_{n}^{*}=p_{n}^{*} p_{i}^{*}$ for $i=1, \ldots, n-1$. Note that $p_{n}^{*}=F_{i-1} F_{p_{i}} F_{p_{i+1}} \cdots F_{p_{n-1}}\left(p_{n}\right)$. Let $g_{i}=F_{p_{i}} F_{p_{i+1}} \cdots F_{p_{n-1}}\left(p_{n}\right)$. Now p_{i} commutes with g_{i}, and p_{i} and g_{i} each pairwise nearly commute with $p_{1}, p_{2}, \ldots, p_{i-1}$, which as a set of pairwise nearly commute. So, by our lemma,

$$
\begin{aligned}
p_{i}^{*} p_{n}^{*} & =F_{i-1}\left(p_{i}\right) F_{i-1}\left(g_{i}\right) \\
& =F_{i-1}\left(p_{i} g_{i}\right) \\
& =F_{i-1}\left(g_{i} p_{i}\right) \\
& =F_{i-1}\left(g_{i}\right) F_{i-1}\left(p_{i}\right) \\
& =p_{n}^{*} p_{i}^{*}
\end{aligned}
$$

Now we prove another theorem.
Theorem 7. Let $p_{1}, p_{2}, \ldots, p_{n}, x$ be linear projections on V that pairwise nearly commute. Then for each $n>2$,

$$
\begin{equation*}
F_{p_{n-1}^{*}} F_{p_{n-2}^{*}} \cdots F_{p_{1}^{*}}(x)=F_{p_{1}} F_{p_{2}} \cdots F_{p_{n-1}}(x) \tag{*}
\end{equation*}
$$

Proof. Let $p_{1}=p, p_{2}=q$, and $x=r$. Then

$$
\begin{aligned}
F_{q^{*}} F_{p^{*}}(r) & =F_{F_{p}(q)}\left(F_{p}(r)\right) \\
& =F_{p}(r)-F_{p}(q) F_{p}(r)+F_{p}(r) F_{p}(q) \\
& =F_{p}(r-q r+r q) \\
& =F_{p} F_{q}(r)
\end{aligned}
$$

So

$$
\begin{equation*}
F_{F_{p}(q)} F_{p}(r)=F_{p} F_{q}(r) \tag{**}
\end{equation*}
$$

and ($*$) is true for $n=3$. Assume it is true for $n .(*)$ can be written as

$$
\begin{aligned}
S_{n} & =F_{F_{p_{1}} \cdots F_{p_{n-2}}\left(p_{n-1}\right)} F_{F_{p_{1}-}-F_{p_{n-3}}\left(p_{n-2}\right)} \cdots F_{F_{p_{1}\left(p_{2}\right)}} F_{p_{1}}(x) \\
& =F_{p_{1}} \cdots F_{p_{n-1}}(x) .
\end{aligned}
$$

So

$$
\begin{aligned}
S_{n+1} & =F_{F_{p_{1}-F_{p_{n-1}}\left(p_{n}\right)} F_{F_{p_{1}}-F_{p_{n-2}}\left(p_{n-1}\right)} \cdots F_{F_{p_{1}}\left(p_{2}\right)} F_{p_{1}}(x)}=F_{F_{p_{1}-F_{p_{n-1}}\left(p_{n}\right)} S_{n}} \\
& =F_{F_{p_{1}}\left(F_{p_{2}}-F_{p_{n-1}-1}\right)\left(p_{n}\right)} F_{p_{1}}\left(F_{p_{2}} \cdots F_{p_{n-1}}\right)(x) .
\end{aligned}
$$

We can prove by induction on k, using ($* *)$, that

$$
S_{n+1}=F_{p_{1}} \cdots F_{p_{k-1}} F_{F_{p_{k}}\left(F_{p_{k+1}}-F_{p_{n-1}}\right)\left(p_{n}\right)} F_{p_{k}}\left(F_{p_{k+1}} \cdots F_{p_{n-1}}\right)(x)
$$

Thus $S_{n+1}=F_{p_{1}} F_{p_{2}} \cdots F_{p_{n-1}} F_{p_{n}}(x)$. Thus $(*)$ is true by induction.
By equation $(* *)$,

$$
\begin{aligned}
F_{p} F_{q} F_{p}(x) & =F_{F_{p}(q)} F_{p} F_{p}(x) \\
& =F_{F_{p}(q)} F_{p}(x) \\
& =F_{p} F_{q}(x)
\end{aligned}
$$

so F_{p} and F_{q} antinearly commute. Also, if p and q commute, p and x nearly commute, and q and x nearly commute, then $F_{p}(q)=q$ and $F_{p} F_{q}(x)=$ $F_{F_{p}(q)} F_{p}(x)=F_{q} F_{p}(x)$, i.e., F_{p} and F_{q} commute. The projection operators $F_{p_{1}^{*}}^{p}, F_{p_{2}^{*}}^{*}, \ldots, F_{p_{n}^{*}}$ pairwise commute.

5. ORTHOGONAL PROJECTIONS

In Section 2, we displayed linear projections $E_{1}, E_{2}, E_{3}, E_{4}$ which were functions of p and q, and which were four orthogonal projections adding to I. Let $p_{0}, p_{1}, \ldots, p_{n-1}, p_{n}$ be $n+1$ linear projections on V that pairwise nearly commute. Suppose $E_{1}, E_{2}, \ldots, E_{2^{n}}$ are functions of $p_{0}, p_{1}, \ldots, p_{n-1}$ that are 2^{n} orthogonal projections that add to I. Then $p_{n} E_{i} p_{n}=E_{i} p_{n}$, and we have the following theorem.

Theorem 8. $\left\{E_{i} p_{n} \mid i=1,2, \ldots, 2^{n}\right\}$ and $\left\{\left(I-p_{n}\right) E_{i} \mid i=1,2, \ldots, 2^{n}\right\}$ are sets of 2^{n+1} orthogonal projections that add to I.

Proof. If $i \neq j$, then
(1) $E_{i} p_{n} E_{i} p_{n}=E_{i} E_{i} p_{n}=E_{i} p_{n}$;
(2) $\left(I-p_{n}\right) E_{i}\left(I-p_{n}\right) E_{i}=E_{i} E_{i}-E_{i} p_{n} E_{i}-p_{n} E_{i} E_{i}+p_{n} E_{i} p_{n} E_{i}=E_{i}$
$-E_{i} p_{n} E_{i}-p_{n} E_{i}+E_{i} p_{n} E_{i}=E_{i}-p_{n} E_{i}=\left(I-p_{n}\right) E_{i}$;
(3) $E_{i} p_{n}\left(I-p_{n}\right) E_{i}=0$;
(4) $\left(I-p_{n}\right) E_{i} E_{i} p_{n}=E_{i} p_{n}-p_{n} E_{i} p_{n}=E_{i} p_{n}-E_{i} p_{n}=0$;
(5) $E_{i} p_{n}\left(I-p_{n}\right) E_{j}=0$;
(6) $\left(I-p_{n}\right) E_{j} E_{i} p_{n}=0$;
(7) $E_{i} p_{n} E_{j} p_{n}=E_{i} E_{j} p_{n}=0$;
(8) $\left(I-p_{n}\right) E_{i}\left(I-p_{n}\right) E_{j}=E_{i} E_{j}-E_{i} p_{n} E_{j}-p_{n} E_{i} E_{j}+p_{n} E_{i} p_{n} E_{j}=0$
$-E_{i} p_{n} E_{j}-0+E_{i} p_{n} E_{j}=0$;
(9) $\sum_{i=1}^{2^{n}} E_{i} p_{n}+\sum_{i=1}^{2^{n}}\left(I-p_{n}\right) E_{i}=I p_{n}+\left(I-p_{n}\right) I=I$.

6. A FURTHER DECOMPOSITION

Suppose p, q, r, x are linear, pairwise nearly commuting projections on V. Then $F_{p}(x)=x p+p^{\prime} x$ where $p^{\prime}=I-p$. Let $q^{\prime}=I-q$ and $r^{\prime}=I$ $-r$ also. Let $P=p, Q=F_{p}(q)$, and $R=F_{p} F_{q}(r)$. Then, by Theorem 6, P, Q, and R pairwise commute. Also,

$$
\begin{align*}
P & =p=q p+q^{\prime} p \\
& =\left(r q p \text { । } r^{\prime} q p\right)+\left(q^{\prime} r p+q^{\prime} r^{\prime} p\right) \tag{9}\\
Q & =F_{p}(q)=q p+p^{\prime} q \\
& =\left(r q p+r^{\prime} q p\right)+\left(p^{\prime} r q+p^{\prime} r^{\prime} q\right) \tag{10}\\
R & =F_{p} F_{q}(r)=F_{q}(r) p+p^{\prime} F_{q}(r) \\
& =\left(r q+q^{\prime} r\right) p+p^{\prime}\left(r q+q^{\prime} r\right) \\
& =r q p+q^{\prime} r p+p^{\prime} r q+p^{\prime} q^{\prime} r . \tag{11}
\end{align*}
$$

By Theorem 8, these triples of $p, q, r, p^{\prime}, q^{\prime}$, and r^{\prime} are orthogonal.
We generalize these formulas to n projections. Let $p_{1}, p_{2}, \ldots, p_{n}$ be n linear, pairwise nearly commuting projections on V, let $p_{i}^{(1)}=p_{i}$, and let
$p_{i}^{(0)}=p_{i}^{\prime}$ for $i=1, \ldots, n$. For $k=1, \ldots, n$, let $E_{k}^{n}\left(i_{k}, \ldots, i_{n}\right)$ be a function from $\{0,1\}^{n-k+1}$ into the set of linear projections on V, defined recursively by
(i) $E_{n}^{n}\left(i_{n}\right)=p_{n}^{\left(i_{n}\right)}$,
(ii) $E_{k-1}^{n}\left(1, i_{k}, \ldots, i_{n}\right)=E_{k}^{n}\left(i_{k}, \ldots, i_{n}\right) p_{k-1} \quad$ and $E_{k-1}^{n}\left(0, i_{k}, \ldots, i_{n}\right)=$ $p_{k-1}^{\prime} E_{k}^{n}\left(i_{k}, \ldots, i_{n}\right)$
for $n \geqslant k \geqslant 2$. Then $E_{1}^{n}\left(i_{1}, \ldots, i_{n}\right)$ is in general a product of n projections such that the first few are primed p_{i} 's in numerical order followed by the rest unprimed in reverse numerical order. Moreover, the products $E_{1}^{n}\left(i_{1}, \ldots, i_{n}\right)$ for $i_{1}=0,1 ; \ldots ; i_{n}=0,1$ are (by Theorem 8) 2^{n} orthogonal projections that add to I.

Taking k such that $k=1, \ldots, n$, note that p_{k+1} is in the same position in $E_{1}^{k+1}\left(i_{1}, \ldots, i_{k}, 1\right)$ that p_{k+1}^{\prime} is in $E_{1}^{k+1}\left(i_{1}, \ldots, i_{k}, 0\right)$. Removing p_{k+1} or p_{k+1}^{\prime} from their positions gives us $E_{1}^{k}\left(i_{1}, \ldots, i_{k}\right)$. Since $p_{k+1}+p_{k+1}^{\prime}=I$,

$$
E_{1}^{k}\left(i_{1}, \ldots, i_{k}\right)=E_{1}^{k+1}\left(i_{1}, \ldots, i_{k}, 1\right)+E_{1}^{k+1}\left(i_{1}, \ldots, i_{k}, 0\right)
$$

By induction,

$$
\begin{equation*}
E_{1}^{k}\left(i_{1}, \ldots, i_{k}\right)=\sum_{i_{k+1}=0}^{1} \cdots \sum_{i_{n}=0}^{1} E_{1}^{n}\left(i_{1}, \ldots, i_{k}, i_{k+1}, \ldots, i_{n}\right) \tag{12}
\end{equation*}
$$

Let $P_{1}=p_{1}$ and $P_{k}=F_{p_{1}} \cdots F_{p_{k}}\left(p_{k}\right)$ for $k=2, \ldots, n$. Then by (12) and $F_{p}(x)=x p+p^{\prime} x$,

$$
\begin{align*}
P_{k}^{(1)} & =P_{k}=\sum E_{1}^{k}\left(i_{1}, \ldots, i_{k-1}, 1\right) \\
& =\sum E_{1}^{n}\left(i_{1}, \ldots, i_{k-1}, 1, i_{k+1}, \ldots, i_{n}\right) \tag{13}
\end{align*}
$$

where \sum denotes the sum over all indices i_{j} without substituted values. Since $P_{k}^{(0)}=I-P_{k}^{(1)}$,

$$
\begin{equation*}
P_{k}^{(0)}=P_{k}^{\prime}=\sum E_{1}^{n}\left(i_{1}, \ldots, i_{k-1}, 0, i_{k+1}, \ldots, i_{n}\right) \tag{14}
\end{equation*}
$$

where \sum denotes the same type of sum. By Theorem $6, P_{1}, \ldots, P_{n}$ pairwise commute. So the product

$$
\begin{equation*}
P_{1}^{\left(i_{1}\right)} \cdots P_{n}^{\left(i_{n}\right)}=E_{1}^{n}\left(i_{1}, \ldots, i_{n}\right) \tag{15}
\end{equation*}
$$

follows by Equations (13) and (14) and the fact that all products of the right-hand side of (15) are orthogonal.

REFERENCES

1 Alan C. Wilde, Properties of affine projections, Rev. Mat. Univ. Parma Ser. 4 14:223-229 (1989).
2 George Boole, An Investigation of the Laws of Thought, first printing, 1854; Dover, New York, 1951.

Received 2 July 1991; final manuscript accepted 17 January 1992

