Hydration Effect on Low-Frequency Protein Dynamics Observed in Simulated Neutron Scattering Spectra

Yasumasa Joti,*† Hiroshi Nakagawa, ‡ Mikio Kataoka, §§ and Akio Kitao*†

*Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; † Japan Science and Technology Agency, Core Research for Evolution Science and Technology, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; ‡ Neutron Biophysics Group, Neutron Biology Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan; and §§Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan

ABSTRACT Hydration effects on protein dynamics were investigated by comparing the frequency dependence of the calculated neutron scattering spectra between full and minimal hydration states at temperatures between 100 and 300 K. The protein boson peak is observed in the frequency range 1–4 meV at 100 K in both states. The peak frequency in the minimal hydration state shifts to lower than that in the full hydration state. Protein motions with a frequency higher than 4 meV were shown to undergo almost harmonic motion in both states at all temperatures simulated, whereas those with a frequency lower than 1 meV dominate the total fluctuations above 220 K and contribute to the origin of the glass-like transition. At 300 K, the boson peak becomes buried in the quasielastic contributions in the full hydration state but is still observed in the minimal hydration state. The boson peak is observed when protein dynamics are trapped within a local minimum of its energy surface. Protein motions, which contribute to the boson peak, are distributed throughout the whole protein. The fine structure of the dynamics structure factor is expected to be detected by the experiment if a high resolution instrument (<~20 µeV) is developed in the near future.

INTRODUCTION

The boson peak is a broad peak found in the low frequency region (1–4 meV) of inelastic incoherent neutron and Raman scattering spectra of many glassy materials, such as glass-forming liquids (1), polymers (2), and biological macromolecules (3–9), at cryogenic temperatures below ~200 K. As the temperature rises, the boson peak shifts to a lower frequency and becomes buried in the quasielastic contributions. Moreover, the protein boson peak shifts to higher frequencies upon hydration (5,9); hence, solvent molecules are implicated in the origin of the peak.

A peak corresponding to the boson peak has also been found in simulation studies of hydrated proteins (10–14). Our molecular dynamics (MD) simulation study of proteins in water has revealed that the structured water molecules around a protein molecule increase the number of local minima in the protein energy landscape (15,16), which in turn plays a key role in the origin of the boson peak (12). The peak appears when the protein dynamics are trapped within a local energy minimum at cryogenic temperatures. This trapping causes very low frequency collective motions to shift to higher frequencies. Among the thousands of degrees of freedom of a protein molecule involved with dynamics, only 5% of these need to be considered to understand the origin of the protein boson peak.

The “dynamical” or “glass-like” transition is another temperature-dependent phenomenon of protein dynamics, which is significantly affected by hydration levels. It is characterized as an increase in the atomic mean-square fluctuations, $\langle \Delta r^2 \rangle$, at a temperature above ~200 K. This phenomenon has been detected by various experimental techniques, such as x-ray crystallography (17–19), Mössbauer spectroscopy (20,21), and incoherent neutron scattering (4,9,22–25). This increase has been interpreted as a result of a transition in protein dynamics from harmonic to diffusive anharmonic motions. The glass-like transition in protein was shown to be suppressed in “dry” protein (4,9,24). Interestingly a correspondence between the glass-like transition and the onset of protein activity has been reported, e.g., below the transition temperature, ribonuclease A is unable to bind ligand in its active site (18), and bacteriorhodopsin in a purple membrane is unable to proceed proton pumping (4). It implies that protein function requires activation of diffusive anharmonic motions. Collective motions are often inferred to be important for protein function (26), and a small number of anharmonic collective motions is considered to dominate the total fluctuations (27,28). To find the functionally relevant motions and to gain insight into the protein energy landscape, it is useful to determine collective motions from molecular simulation results by principal component analysis (PCA) (28,29).

Address reprint requests to Akio Kitao, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan. Tel.: 81-3-5841-2297; Fax: 81-3-5841-2297; E-mail: kitaoo@iap.u-tokyo.ac.jp.

This is an Open Access article distributed under the terms of the Creative Commons-Attribution Noncommercial License (http://creativecommons.org/licenses/by-nc/2.0/), which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Editor: Arthur G. Palmer III.

© 2008 by the Biophysical Society

0006-3495/08/06/4435/09 $2.00
doi: 10.1529/biophysj.107.118042
Solvent mobility, or the translational dynamics of water, was shown to be the dominant factor in determining protein fluctuations by MD simulations (30–33). Powder samples are commonly used in neutron experiments on biomolecules (3–9). Molecular interactions between proteins should be considered as well as those between protein and solvent to interpret the results of neutron scattering experiments. MD simulations with crystal and pseudopowder models at cryogenic temperature are employed to study the origin of the protein boson peak (11,13,14). In this work we perform MD simulations of crystalline Staphylococcal nuclease (SNase) for “wet” and “dry” samples at six temperatures ranging from 100 to 300 K and compare the frequency dependence of protein dynamics. First we show that the calculated spectra are in good agreement with those of the experiment (9). Then we confirm that our previous observation on the origin of the protein boson peak, which the trapping of protein dynamics plays a key role (12), is also applicable to the simulation results. Finally we discuss the difference in the frequency dependence of protein dynamics between full hydration state (FHS) and minimal hydration state (MHS) as a function of temperature.

METHODS

Simulation

The results presented here were obtained from constant temperature and pressure MD simulations of the crystalline SNase at six temperatures ranging from 100 to 300 K using the program AMBER9 PMEMD (34). By assuming a powder state as an ensemble of microcrystals, the simulation conditions mimic the powder state of our neutron scattering experiment of SNase (9). The crystal structure of SNase (Protein Data Bank code: 1STN; 149 residues) was used as the initial structure of the simulations. The simulated systems were constructed to imitate the crystal unit cell, which has a space group symmetry of P41. Both the minimal and full hydration systems contained four protein molecules (included as D2O) and counterions (32 chloride ions) as a solvent, which mimics a “dry” state realized under experimental conditions, assuming these water molecules stick to the protein even after lyophilization. FHS is designed to mimic a fully solvated “wet” protein in a microcrystalline state by filling the gaps in the initial structure of MHS with D2O (1832 molecules total). Exchangeable protons in the systems were exchanged to deuterium as in ordinary neutron scattering experiments. The hydration levels of MHS and FHS are h = 0.09 and h = 0.49 g D2O/g protein, respectively. The simulation systems in MHS and FHS contain 10,608 and 15,108 atoms in total, respectively. Periodic boundary conditions were used, and nonbonded interactions were calculated by the particle mesh Ewald method. The AMBER99 force field (35) and TIP3P water model (36) were employed.

MD simulations of MHS and FHS were initiated by 3-ns runs to equilibrate the system to 300 K and 1 bar and gradually relax the restraints. From the equilibrated structures at 3 ns, the system was quenched to 100 K. Raising the temperature from 100 K, simulations were subsequently performed at 140, 180, 220, 260, and 300 K using the structure obtained at the end of the previous temperature simulation. Simulation at each temperature consisted of a 1-ns equilibration run and a 10-ns production run. Each 10-ns trajectory was stored at every 80-ns and was divided into five 2-ns trajectories, and physical quantities (neutron scattering spectra, mean-square fluctuations, etc.) were calculated as the average of the results from the five 2-ns trajectories. This simulation result was also employed for the analysis of hydration dependence of glass-like transition (46).

Inelastic neutron scattering spectra

Neutron scattering experiments essentially measure the total dynamic structure factor, $S(Q,\omega)$, in which Q and ω correspond to the momentum and energy transfers between incident neutron and sample, respectively. We calculate the incoherent dynamic structure factor, $S_{inc}(Q,\omega)$, as the Fourier transform of a time correlation function, i.e., the intermediate scattering function, $I_{inc}(Q,t)$:

$$S_{inc}(Q,\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dt \exp(-i\omega t)I_{inc}(Q,t)$$

$$I_{inc}(Q,t) = \sum_a b_{inc,a}^2 \exp(-iQ \cdot \Delta r_a(0))\exp(iQ \cdot \Delta r_a(t))$$

Here, $b_{inc,a}$ and $\Delta r_a(t)$ are the incoherent atomic scattering length and an instantaneous deviation of position vector of atom a from its average position at time t, respectively. It should be noted that we took into account the contribution from all the nuclei in the system in this work although some of the preceding computational works considered only protons. The functions $I_{inc}(Q,t)$ and $S_{inc}(Q,\omega)$ reported in this work are the respective rotational averages of $I_{inc}(Q,t)$ and $S_{inc}(Q,\omega)$ on the sphere $Q = Q$. To simulate the experimental resolutions, the inelastic neutron scattering spectra calculated from the MD trajectory were broadened by convolution with a Gaussian resolution function. To investigate the resolution dependence of $S_{inc}(Q,\omega)$, two kinds of Gaussian widths (standard deviations), 200 and 20 μmV, were adopted. The former corresponds to the instrumental resolution of the LAM40 spectrometer at KEK, Japan, used in our experiments (9). The latter resolution corresponds to the protein dynamics analyzer (37,38) to be constructed at J-PARC, Japan. The average value of $S_{inc}(Q,\omega)$ calculated at seven scattering angles ranging from 16.3° to 112.3° was employed here to compare the results of calculation to that of experiment by LAM40 (9).

Frequency-dependent protein dynamics

In this work, we examine not only $S_{inc}(Q,\omega)$ but also other kinds of power spectra, $X(\omega)$ and $G(\omega)$. Here, we show their definitions and mutual relationships. First, we introduce a Q-independent spectrum, $X(\omega)$, defined as the power spectrum of the scattering-length weighted coordinate trajectory of atoms:

$$X(\omega) = \frac{1}{2} \sum_a \langle b_{inc,a}^2 \rangle \chi_a(\omega),$$

where

$$\chi_a(\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dt \exp(-i\omega t)\langle \Delta r_a(0) \cdot \Delta r_a(t) \rangle$$

$$= \frac{1}{2\pi \tau_{sim}} \int_{0}^{\tau_{sim}} dt \exp(-i\omega t)\langle \Delta r_a(t) \rangle^2,$$

and τ_{sim} is the simulation time length. When not indicated explicitly, summation in equations is taken over all atoms in the system including both protein and water molecules. From Eq. 2, $I_{inc}(Q,t)$ is approximated in the small Q-region as

$$I_{inc}(Q,t) \sim \sum_a \langle b_{inc,a}^2 \rangle \exp\left(-\frac{1}{3} \langle |\Delta r_a(0)|^2 \rangle Q^2 \right) \times \left(1 + \frac{1}{3} \langle |\Delta r_a(0) \cdot \Delta r_a(t)| Q^2 + \cdots\right).$$

Thus, using Eqs. 1 and 3–5, it is shown that $X(\omega)$ and $S_{inc}(Q,\omega)$ have the following relationship:

$$X(\omega) = \lim_{Q \rightarrow 0} \frac{S_{inc}(Q,\omega)}{Q^2}.$$
This function is defined for $\omega \neq 0$. The magnitude of momentum transfer Q depends on the energy transfer ω (39) at each scattering angle and the average over scattering angles is often employed for better statistics. Although the Q dependence of $S_{\text{inc}}(Q,\omega)$ may provide valuable information on protein dynamics, only the frequency dependence of $S_{\text{inc}}(Q,\omega)$ is discussed indirectly in the ordinary neutron scattering experiments (9).

In the Results and Discussion section, we compare the frequency dependence of $X(\omega)$ to that of $S_{\text{inc}}(Q,\omega)$ averaged over seven scattering angles. The temperature-scaled power spectrum, $G(\omega)$, defined as the spectrum of the mass-weighted coordinate trajectory of atoms, $G(\omega)$, typically called density of states, is related to $\chi_d(\omega)$ as

$$G(\omega) = \frac{1}{k_{\text{B}}T} \sum_i m_i g_i(\omega) = \frac{\omega^2}{k_{\text{B}}T} \sum_i m_i \chi_i(\omega),$$

(7)

where k_{B}, T, and m_i are the Boltzmann constant, temperature, and mass of the ith atom, respectively. Because of the equipartition law of energy, $G(\omega)$ always satisfies the following condition:

$$2 \int_0^\infty d\omega \ G(\omega) = N_i,$$

(9)

where N_i is the total degrees of freedom. Similarly, integration of $\chi_d(\omega)$ from $\omega = 0$ to infinity corresponds to the mean-square fluctuation of the ith atom, $\langle \Delta r_i^2 \rangle$. Here we decompose $\langle \Delta r_i^2 \rangle$ into three parts by the two frequencies, ω_1 and ω_2. Frequency ω_1 is defined as the frequency at which $X(\omega)$ has the lowest minimum below the boson peak (\sim1 meV). Frequency ω_2 is selected to be the minimum frequency of the hydration-independent range of spectral density $X(\omega)$ (\sim4 meV). Components from frequency ranges $\omega \leq \omega_1$, $\omega_1 \leq \omega \leq \omega_2$, and $\omega_2 \leq \omega$ are considered to be “low,” “boson peak,” and “harmonic” modes, respectively, as

$$\langle \Delta r_i^2 \rangle = 2 \int_0^\infty d\omega \chi_i(\omega)$$

$$= 2 \int_0^{\omega_1} d\omega \chi_i(\omega) + 2 \int_{\omega_1}^{\omega_2} d\omega \chi_i(\omega) + 2 \int_{\omega_2}^{\infty} d\omega \chi_i(\omega)$$

$$= \langle \Delta r_i^2 \rangle_{\text{low}} + \langle \Delta r_i^2 \rangle_{\text{boson}} + \langle \Delta r_i^2 \rangle_{\text{harmonic}}.$$

(10)

Thus, the scattering length weighted mean-square fluctuation averaged over protein atoms, $\langle \Delta r^2 \rangle$, is decomposed as

$$\langle \Delta r^2 \rangle = \sum_i b_{\text{inc},a} \langle \Delta r_i^2 \rangle_{\text{low}} + \sum_i b_{\text{inc},a} \langle \Delta r_i^2 \rangle_{\text{boson}} + \sum_i b_{\text{inc},a} \langle \Delta r_i^2 \rangle_{\text{harmonic}}$$

$$= \frac{6 \int_0^{\omega_1} d\omega X(\omega) + 6 \int_{\omega_1}^{\omega_2} d\omega X(\omega) + 6 \int_{\omega_2}^{\infty} d\omega X(\omega)}{\sum_i b_{\text{inc},a}^2}$$

$$= \langle \Delta r^2 \rangle_{\text{low}} + \langle \Delta r^2 \rangle_{\text{boson}} + \langle \Delta r^2 \rangle_{\text{harmonic}}.$$

(11)

Principal component analysis and effective frequency

PCA (28,29) is performed by diagonalizing the variance-covariance matrix A, defined as

$$A = (\mathbf{q} \mathbf{q}^T),$$

(12)

where \mathbf{q} is the mass weighted internal displacement of the positional vector expressed as

$$\mathbf{q} = (\sqrt{m_1 \Delta x_1}, \sqrt{m_1 \Delta y_1}, \sqrt{m_1 \Delta z_1}, \cdots, \sqrt{m_N \Delta x_N}, \sqrt{m_N \Delta y_N}, \sqrt{m_N \Delta z_N})^T.$$

(13)

Diagonalization of A gives a diagonal eigenvalue matrix λ and an eigenvector matrix V. The diagonal elements of λ are the variances or mean-square fluctuations of the corresponding principal components. From the ith diagonal element of λ, it is possible to define an “effective frequency” (28,29), ω_i^eff, of the ith principal component as

$$\omega_i^\text{eff} = \sqrt{\frac{k_{\text{B}}T}{\lambda_i}}.$$

(14)

The effective frequency is the frequency of the harmonic oscillator that would give the same mean-square fluctuation. Any kind of anharmonic motion that contributes to mean-square fluctuations of the principal components is reflected in the value of the effective frequency. Thus, the effective frequency is considered to give information on the curvature of the potential surface.

RESULTS AND DISCUSSION

The incoherent dynamic structure factors, $S_{\text{inc}}(Q,\omega)$, as a function of frequency calculated using the results in FHS and MHS at 100 and 300 K, are shown in Fig. 1. As seen in Fig. 1 a, the calculated spectrum, which was smoothed by convoluting a 200-μeV resolution function corresponding to the LAM40 spectrometer, has a broad peak at \sim3.5 meV at 100 K in FHS, which is higher than that in MHS (\sim2 meV). The peak frequency of the protein boson peak in FHS is higher than that in MHS at temperatures below 220 K (see Supplementary Material, Data S1). At 300 K, the protein boson peak becomes buried in the quasielastic contributions in FHS but is still observed in MHS. The positions of the peak in the calculated spectra in Fig. 1 a agree very well with that of our experiment using the 200-μeV resolution instrument (9). As seen in Fig. 1 b, the high resolution $S_{\text{inc}}(Q,\omega)$ (width = 20-μeV) shows fine structure in the lower frequencies below the boson peak except for FHS at 300 K. To observe such fine structures experimentally, prompt construction of a high resolution spectrometer is required. In the simulation study of carboxymyoglobin at 70-μeV resolution (13), a sharp peak around 1 meV was reported at 150 K. We observed three peaks above 1 meV in both FHS and MHS at 100 K. From the results in Fig. 1, a and b, we judged that ω_1 and ω_2 in Eq. 10 should be 1 and 4 meV, respectively.

From the simulation study, it has been shown that the protein boson peak appears below the glass-transition temperature when the protein conformation is trapped within a local energy minimum and that this trapping causes the peak shift of very low frequency collective motions to higher frequencies (12). However, neither trapping nor the boson peak was observed above the glass-transition temperature. In this study, we observed a boson peak even at 300 K in MHS.
To confirm that the trapping occurs in MHS at 300 K, we examined the effective frequency calculated from PCA against the mode number as shown in Fig. 2. The effective frequencies in MHS at 300 K are significantly higher, suggesting that protein dynamics are trapped within a local minimum even at 300 K in MHS.

$X(\omega)$ and $G(\omega)$, defined as Eqs. 3 and 7 at 20-µeV resolution, are shown in Fig. 1, c and d, respectively. The frequency dependence of $X(\omega)$ (Fig. 1 c) is similar to that of $S_{inc}^{inc}(Q,\omega)$ averaged over seven scattering angles (Fig. 1 b) for all simulation conditions. As discussed in Methods, the averaging of $S_{inc}^{inc}(Q,\omega)$ taken for different scattering angles can be considered as an operation to effectively deduce the Q-independent function, $X(\omega)$.

Compared with the results in MHS, both $S_{inc}^{inc}(Q,\omega)$ (Fig. 1, a and b) and $X(\omega)$ (Fig. 1 c) in FHS are in good agreement in the frequency range $\omega > 4$ meV at both temperatures. On the other hand, the shape of $G(\omega)$ in MHS differs entirely from that in FHS at both temperatures. This is due to the fact that the contribution of water to the spectra is negligibly small in the high frequency region of $S_{inc}^{inc}(Q,\omega)$ and $X(\omega)$, whereas it is significantly large in $G(\omega)$. Fig. 3, a and b, shows the contribution of protein in $G(\omega)$ and that of solvent. Here, it should be noted that $G(\omega)$ satisfies the normalization given by Eq. 9. Let us first compare the spectral densities between the two models at the same temperature. For protein $G(\omega)$ (Fig. 3 a), there is good agreement between FHS and MHS above 4 meV, indicating that the effect of the difference in the hydration levels on protein dynamics does not appear in the frequency range $\omega > 4$ meV. However, solvent $G(\omega)$ in FHS is much larger than in MHS at all temperatures, as the number of solvent degrees of freedom in FHS is about six times larger than that in MHS (Fig. 3 b). Next, we compare the temperature change in each model. Protein $G(\omega)$ in FHS at 100 K significantly drops compared to the results in FHS at 300 K, indicating the density shift to higher frequency. Interestingly, solvent $G(\omega)$ in FHS decreases drastically in low temperature in the frequency range shown in this figure, corresponding to that $\langle \Delta r^2 \rangle$ of water in FHS at 100 K (0.14 Å²) is much smaller than that at 300 K (556.6 Å²). In Fig. 3 c, scaled solvent spectral densities, $G(\omega)/N_{solv}$, where N_{solv} is the number of
large differences are seen in the frequency range higher than 4 meV as the frequency dependence of protein hydration water using H$_2$O as solvent (7). They also observed a boson peak at ~1.5 meV in the calculated spectra of hydration atoms in protein hydration water (10).

Fig. 4 shows the temperature dependence of $\langle \Delta r^2 \rangle_{\text{harmonic}}$ and $\langle \Delta r^2 \rangle_{\text{boson}}$ in MHS (broken line) and H$_2$O (solid line) in the frequency range 0 < ω < 10 meV. It is noted that the contribution of water to the boson peak in MHS is due mainly to the solvent contribution, as well as the number of D$_2$O molecules in FHS is six times larger than that in MHS, we confirmed that the contribution of D$_2$O to $X(\omega)$ is negligible at high frequency ranges, 4 < ω < 25 meV (see Data S1). It is noted that the contribution of water to $S_{\text{inc}}(Q, \omega)$ and $X(\omega)$ at ~4 meV appears when deuterium atoms of water molecules are exchanged to proton atoms. Paciaroni et al. observed a boson peak at ~4 meV in the experimental incoherent neutron scattering spectra of protein hydration water using H$_2$O as solvent (7). They also observed a boson peak at ~1.5 meV in the calculated spectra of hydration atoms in protein hydration water (10).

As mentioned, we defined 1 < ω < 4 meV as the frequency range of the protein boson peak. The contribution of $\langle \Delta r^2 \rangle_{\text{boson}}$ to total $\langle \Delta r^2 \rangle$ is smaller than the other two components in both FHS and MHS at temperatures above 180 K. Fig. 5, a–d, shows the frequency dependence of $\chi_q(\omega)$ (Eq. 4) for the hydrogen atoms connected to α-carbons. It should be noted that the magnitude at 300 K is scaled by the temperature ratio of 100 K to 300 K, 1.3. Here, $\chi_q(\omega)$ is smoothed by a 20-µeV resolution function. The sum of $\chi_q(\omega)$ over the hydrogen atoms connected to α-carbons (H$_a$) are plotted in Fig. 5, g and h, and the frequency dependence is similar to
that over all atoms ($X(\omega)$ in Fig. 1 c). Sharp peaks between 1 and 2 meV are observed, except in FHS at 300 K. As seen in Fig. 5, b and d, $\chi_a(\omega)$ in MHS at 300 K is significantly larger than that in MHS at 100 K below 2 meV. Jumping-among-minima motions are expected to take place partly at 300 K. In the results in FHS at 300 K, peaks between 1 and 2 meV disappear and quasielastic contributions dominate $\chi_a(\omega)$ (Fig. 5 c) since anharmonic motions are supposed to occur frequently.

At 100 K, $\langle \Delta r^2 \rangle_{\text{boson}}$ in FHS are smaller than that in MHS, as shown in Fig. 5 e. The number of hydrogen bonds between protein and water molecules in FHS (360 bonds per single protein) is much larger than that in MHS (~170 per single protein), suggesting the protein in FHS is more restricted in dynamics at 100 K; i.e., the difference in $\langle \Delta r^2 \rangle_{\text{boson}}$ at 100 K between FHS and MHS results in the shift of the protein boson peak (Fig. 1). On the other hand, the magnitude of $\langle \Delta r^2 \rangle_{\text{boson}}$ in FHS at 300 K is comparable to that in MHS as shown in Figs. 3 and 5 f. The motions in the frequency range of the boson peak are distributed over whole protein as shown in Fig. 5, a–d. In other words, collective motions of protein contribute to the protein boson peak, which is consistent with
the views from the experiments of Kataoka and colleagues (8) and the simulations of Tarek and Tobias (11) and Kurkal-Siebert and Smith (13).

Finally, we discuss the frequency dependence of $X(\omega)$ of protein at frequencies lower than 1 meV. Interestingly, a linear relationship between the logarithm of $X(\omega)$ and that of ω is seen in the frequency range between 0.002 meV and 0.1 meV for all simulation conditions in Fig. 6. Here, no resolution function is applied to the spectra. Thus, $X(\omega)$ in this frequency range can be approximated as

$$X(\omega) = \frac{A}{\omega^{\alpha}},$$ \hspace{1cm} (15)

where A and α depend on the simulation conditions. When only the protein contribution was considered (Fig. 6 b), differences in α values are not particularly large. However, the contribution of water molecules is significantly large as seen in the α value difference between 100 and 300 K in FHS. As mentioned, the contribution from a proton ($b_p^2 = 6.36$ barn) to $X(\omega)$ is much larger than that of a deuterium ($b_d^2 = 0.16$ barn). The total numbers of protons and deuteriums in the system are comparable (3688 and 4824, respectively). The significant contribution from water is due to the bulk-like water at 300 K in FHS. A total of 95% of water molecules have mean-square fluctuations two orders greater than the average value of the proton in the protein. In the very low frequency region, these bulk-like water molecules contribute to $X(\omega)$ significantly. In other cases, the protein contribution mostly determines the A and α values. A $1/\omega^2$ trend was also found for the Fourier transformed autocorrelation function of the potential energy functions of plastocyanin at frequencies between \sim0.4 and \sim4 meV (44) and for $S_{inc}(Q,\omega)$ of lysozyme at frequencies between \sim0.01 and \sim0.4 meV (45). The fractional Brownian dynamics model is discussed in both cases (44,45), considering the fractality of the energy landscape. Here, we found a $1/\omega^2$ trend in the lower frequency range $\omega < \sim$0.01 meV. Protein dynamics, which occur on a much longer than nanosecond timescale, are related to function and are expected to be investigated from the combination of simulations and experiment.

To summarize, the protein boson peak is observed in the frequency range 1–4 meV at 100 K in both the minimal and FHS. Protein motions with frequencies higher than 4 meV are shown to undergo almost harmonic motion in both states at all temperatures simulated, whereas those with frequencies lower than 1 meV dominate the total fluctuations above 220 K and contribute to the origin of the glass-like transition. At 300 K, the protein boson peak becomes buried in the quasielastic contributions in the FHS but is still observed in the MHS. The peak frequency of the protein boson peak in the MHS is lower than that in the FHS at 100 K. These results are consistent with our experiment (9). Protein motions, which contribute to the protein boson peak, are collective motions expanding over the whole protein. The protein boson peak is observed when protein dynamics are trapped within a local minimum of its energy surface. The fine structure of the dynamics structure, $S_{inc}(Q,\omega)$, is expected to be detected by the experiment if a high resolution instrument ($<\sim$20 μeV) is developed in the near future.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this article, visit www.biophysj.org.

The computations were partly performed using the facilities of the Supercomputer Center, Institute for Solid State Physics, University of Tokyo, and the supercomputers at the Research Center for Computational Science, Okazaki Research Facilities, National Institutes of Natural Sciences. This work was supported by the Next Generation Supercomputing Project, Nanoscience Program to A.K. and Y.J., by a Grant-in-Aid for Young...

REFERENCES

