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a b s t r a c t

This work investigates the effect of chain length on the degree of compaction of intrinsically disor-
dered proteins (IDPs). The three main IDP types, native coil (NC), pre-molten globule (PMG) and mol-
ten globule (MG), are compared by means of a compaction index (CI) normalized for chain length.
The results point out a strong variability of compactness as a function of chain length within each
group, with larger proteins populating more compact states. While qualitative sequence features are
responsible for the main differences among groups, chain length seems to have an unspecific effect
modulating the extent of compaction within each group. The results are consistent with a cooper-
ative character of the weak interactions responsible for chain collapse.
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Intrinsically disordered proteins (IDPs) are characterized by the
lack of ordered 3D-structure, but can completely or partially fold
upon binding to specific partners [1,2]. Molecular recognition by
IDPs is interesting as an extreme example of conformational adap-
tation during binding, whose mechanism can help understand
intermolecular interactions in general. Furthermore, these proteins
perform key regulatory functions, such as cell-cycle and transcrip-
tion regulation [1–5]. Structural disorder is crucial for functional
peculiarities of IDPs, including binding promiscuity, binding plas-
ticity (the ability to adjust to multiple, differently shaped interac-
tors), fast association kinetics, and regulation by post-translational
modifications [1–5]. In order to interpret molecular recognition by
these proteins, it is essential to understand their conformational
properties in the free state. Although recently developed NMR ap-
proaches provide rather accurate description of IDP conformational
ensembles [6–8], low resolution techniques continue to play an
important role in structural characterization of these highly dy-
namic systems.
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Using combined information from size-exclusion chromatogra-
phy and circular dichroism, the conformational states of IDPs have
been classified as either native coil (NC), pre-molten globule (PMG)
or molten globule (MG), according to increasing compaction
[4,5,9]. The degree of IDP compaction has been shown to be af-
fected, although to different extents, by several factors, such as
net charge, hydrophobicity, proline content, histidine tag and sec-
ondary-structure propensity [10–12]. One of the most striking fea-
tures of highly disordered proteins (NCs or PMGs) is abundance of
charged residues and high net charge [13]. This feature seems to be
crucial to maintain the polypeptide chain in an extended confor-
mation [10], since sequences that are rich in uncharged, polar ami-
no acids, although devoid of canonical hydrophobic residues, have
been repeatedly shown to form heterogeneous ensembles of col-
lapsed structures in aqueous solutions [10,14–17]. Based on the
analysis of a set of highly charged polypeptides, it has been con-
cluded that the net charge per residue can modulate the intrinsic
preference of polypeptide backbones for collapsed structures
[10]. Furthermore, extensive simulations by coarse-grained mod-
els, over a wide range of sequence hydrophobicity, net charge,
and length, revealed that conformational properties of natively un-
folded proteins can be described by a coil-to-globule transition in a
charge/hydrophobicity sequence space [18]. In agreement with
this hypothesis, it has been recently shown that nucleoporins
(Nups) with low charge content possess more compact configura-
tions, whereas highly charged Nups adopt more dynamic, ex-
tended, coil-like conformations [11]. This study intends to test
lsevier B.V. All rights reserved.

https://core.ac.uk/display/82412996?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.febslet.2011.11.026
mailto:vuversky@health.usf.edu
mailto:rita.grandori@unimib.it
mailto:rita.grandori@unimib.it
http://dx.doi.org/10.1016/j.febslet.2011.11.026
http://www.FEBSLetters.org


Fig. 1. CI dependence on chain length for NCs (long-dashed line), PMGs (dot-
dashed line), and MGs (solid line) IDPs. The circles indicate the values for full-length
Sic1 (black) and its C-terminal fragment (gray) [21]. The dotted line represents data
fitting by a linear combination of the PMG and MG equations
(0.6 �MG + 0.4 � PMG). The thin line shows the CI calculated for the generic
equation y = aNb obtained as the best fit of the curve of isocompactness y = 1/
2Rc

h + 1/2Rf
h . The short-dashed line shows the CI calculated from the Rh equation for

a self-avoiding random coil obtained by computational simulations in an athermal
solvent [26]. Data fitting and other calculations were done by the program Origin
7.0 (Originlab, Northampton, MA, USA). The Rh values of the proteins used in this
work are listed in references [5,9].
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the hypothesis that the degree of an IDP compaction might also be
affected by the protein chain length.

2. Methodological approach

One way to evaluate the degree of protein compaction is to
measure the hydrodynamic radius, Rh, of a given protein in solution
and to compare the measured value with the reference values of
normally folded and completely unfolded proteins [4,5]. A fre-
quently used parameter is Rh=Rc

h, where Rc
h is the Rh value calcu-

lated for a random coil polypeptide of the same length as the
considered protein. However, for a more general comparison, one
has to take into account the dependence of Rh on chain length. In
fact, the equilibrium conformations of globular and denatured pro-
teins are characterized by very different dependency of hydrody-
namic properties on chain length [4,5,19,20]. The Rh values of
folded and completely unfolded proteins vary with the number
of residues, N, according to different power-laws [12]. As a result,
these curves diverge significantly as N increases. Due to these fea-
tures of the reference curves, Rh=Rc

h can only be used to compare
the extent of compaction among proteins of similar size. For in-
stance, natively folded, globular proteins, which all display similar
compaction degree, will give rise to Rh=Rc

h values that vary from al-
most 1 to �0.4 as N increases [12]. In order to allow for comparison
among proteins of different sizes, it is necessary to normalize for
the maximal possible variation of Rh at each value of N. Therefore,
we use the previously defined compaction index, CI [21,22]:

CI ¼ ðRc
h � RhÞ=ðRc

h � Rf
hÞ ð1Þ

where Rc
h and Rf

h are the reference values for fully unfolded (random
coil) and folded, globular proteins of the same size as the examined
protein. Its value ideally ranges from 0 for minimal compaction and
1 for maximal compaction. This normalization makes the definition
of CI independent of chain length, enabling comparison of structural
compaction among proteins of different sizes. This means that the
calculation of the parameter is not biased by chain length, while
obviously not implying any constraint on its variability with length.
Whether or not its value will be constant for a given set of proteins,
or how it will vary with N, depends on the function that will de-
scribe Rh = f(N) in the specific case. Thus, CI is an adequate tool to
explore possible effects of chain length on chain compactness. Its
variations with N would reveal actual differences in chain compact-
ness, free from the systematic bias that affects, instead, Rh=Rc

h.
The Rh values of IDPs can be derived from the known equations

of Rh versus protein size for NCs, PMGs and MGs [4,5,9]. These
equations were derived from the available viscometry, gel-filtra-
tion chromatography and dynamic light scattering data on the
hydrodynamic dimensions of globular proteins in different confor-
mational states and on the hydrodynamic behavior of 60 IDPs un-
der conditions of neutral pH and physiological salt concentrations
(100–150 mM). It is important to remember that charge interac-
tions are known to modulate dimensions of IDPs [23]. Therefore,
the hydrodynamic properties of IDPs are extremely sensitive to
the pH and ionic strength of the solution. Furthermore, the hydro-
dynamic measurements were performed in a broad range of pro-
tein concentrations, to ensure that the derived hydrodynamic
dimensions are not concentration dependent. Available data pro-
vide us with a large list of experimentally determined Rh values
for proteins of different lengths, classified according to the confor-
mational class and IDP type. The size of the considered proteins
varies between 25 and 1000 residues. In this range falls the vast
majority of the predicted IDPs, with mean length values of 457
for the Mus musculus proteome and 319 for Escherichia coli [24].
Since the original equations were expressed as Rh functions of pro-
tein mass, and since protein molecular mass, in turn, correlates
with chain length, we reanalyzed the original data to obtain the
chain length dependence of the Rh for NCs, PMGs and MGs, as well
as for folded and chemically unfolded globular proteins:

logRNC
h ¼ ð0:454� 0:017Þ þ ð0:493� 0:008Þ � logN ð2Þ

logRPMG
h ¼ ð0:587� 0:029Þ þ ð0:402� 0:012Þ � logN ð3Þ

logRMG
h ¼ ð0:629� 0:051Þ þ ð0:334� 0:021Þ � logN ð4Þ

logRf
h ¼ ð0:525� 0:012Þ þ ð0:358� 0:005Þ � logN ð5Þ

logRc
h ¼ ð0:385� 0:017Þ þ ð0:543� 0:007Þ � logN ð6Þ

These equations are simple fits of empiric data and are not
based on a theoretical physical model. Furthermore, their validity
is limited to the range spanned by the experimental points and
there is no theoretical argument allowing any extrapolation out-
side such a range. The same is true for the reference curves
themselves. For instance, those curves intersect at N = 5.7, leading
to a meaningless behavior of the model for very small values of N.
It should be noted to this regard that also simulations yield an ill-
defined coil-to-globule transition for the case of a penta-peptide
[25]. However, the present analysis focuses exclusively on the size
range where experimental points are available. The empiric Eqs.
(2)–(6) have been used here to compute CI. The values of Rc

h and
Rf

h have been used as the references for fully unfolded and folded,
globular proteins [4,5].

3. Results and discussion

The plot in Fig. 1 reports the CI profiles obtained for the three
IDP classes. The results show the expected differences in compact-
ness among the three groups. The average CI value calculated from
the equations, for N varying from 25 to 1000, are (0.21 ± 0.08) for
NCs, (0.50 ± 0.21) for PMGs, and (0.86 ± 0.15) for MGs. Most
importantly, there is a clear effect of chain length on the extent
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of compaction within each group. The profiles derived from exper-
imental data are compared in Fig. 1 with the profile based on
computational simulations for unfolded proteins in an athermal
solvent ([26] and personal communication). In such a model
system, the protein interacts with itself just as well as with the
solvent. This assumption is introduced in order to simulate
random-coil polymers in solution, accounting for the excluded-
volume effect [26]. The CI profile calculated from the simulation
data lies between zero and the experimental profile for the NC
class. The model system, too, displays some length-dependence
compaction. Thus, simulations of random-flight polymer chains
with excluded volume give results similar to what is seen with un-
folded proteins, somewhat in between NCs under non-denaturing
conditions and unfolded proteins in the presence of denaturants
(CI = 0).

It is important to underscore that the IDP behavior reported in
Fig. 1 is not merely a consequence of the equations and definitions
employed in the present analysis. A first important observation to
this regard is that constant CI values would be possible within the
here considered model. The curves of isocompactness are defined by

ðRc
h � yÞ=ðRc

h � Rf
hÞ ¼ k ð7Þ

implying

y ¼ ð1� kÞRc
h þ kRf

h; ð8Þ

which can be satisfied for any value of k between 0 and 1. Nonethe-
less, Eq. (8) also shows that the condition for CI = const. = k is that
the function y, describing dependence of Rh on N, is a linear combi-
nation of power-law functions. A simple power-law function, like
those generally used to fit Rh data versus N, would never yield CI = -
const. Therefore, it is important to examine how much CI could vary
for a generic power-law function and, in particular, what is the min-
imal variation implied by such a model. To retrieve this information,
the parameters of simple power-law equations y = aNb were opti-
mized to approach at the best the condition CI = const. = k (Eq.
(7)) for different values of k. The best fits provide examples of sim-
ple power-law functions that closely approximate curves of isocom-
pactness. Fig. 1 reports the CI profile obtained for the power-law
function with CI � 0.5. The same results for other values of k are
summarized in Fig. S1 of the Supplementary material. All the
power-law functions identified by this procedure, indeed, give rise
to very flat CI profiles. In general, infinite equations could be found
that generate an almost constant CI, even within a simple power-
law model describing Rh dependence on N. The variations in CI cal-
culated for IDPs and reported in Fig. 1 are much more pronounced,
particularly for N below 200. It is important to note that 36% of the
proteins in UniProt (http://www.uniprot.org/) are shorter than 200
residues.

To further describe the landscape of possible CI profiles, a set of
equations y = aNb was generated by random assignment of the
parameters. These functions and the relative CI profiles are re-
ported in Fig. S2 of the Supplementary material. As can be seen,
CI profiles can be very diverse. For particular values of the param-
eters, CI can even markedly decrease as N increases, in the typical
range of protein chain length (80–400 residues). Therefore, we can
conclude that the data reported in Fig. 1 reveal a trend that would
not be necessarily expected a priori on the basis of the here em-
ployed mathematical model. These data strongly support the
hypothesis that protein size is another factor that can affect IDP
compaction.

One possible interpretation of the observed effect is that weak,
intramolecular interactions can be unspecifically amplified by an
increase in protein size. CI increases rapidly with chain length for
low molecular weight, while the increase is very slow and almost
constant at high molecular weight. This effect is consistent with
some degree of cooperativity of weak interactions. Thus, it seems
that qualitative features of the amino acid sequence are responsi-
ble for the major differences among NCs, PMGs and MGs, whereas
a unspecifically effect of chain length modulates the degree of
compaction within each group.

The relative role of weak forces (hydrophobic interactions,
hydrogen bonds, electrostatic interactions, and van der Waals con-
tacts) mediating such length effect remains to be investigated. The
modest effect on NCs, compared to PMG-like and MG-like IDPs,
would be compatible with the involvement of hydrophobic resi-
dues. Indeed, highly extended IDPs are characterized by low over-
all hydrophobicity and high net charge [13]. In particular, NCs
contain, on average, fewer hydrophobic residues than PMGs and
MGs [4]. It is conceivable that, for such hydrophilic sequences,
length increase might not be enough to promote noticeable com-
paction. However, further experimental and theoretical studies
will be needed to elucidate the specific contribution of each type
of interaction.

It should also be noted that many IDPs, while mostly disor-
dered, have transient elements of preformed secondary structure,
which are highly interaction-prone and are used by those IDPs
for binding to specific partners [27]. The existence of such pre-
formed binding sites enables faster and more effective interactions
of IDPs with their targets [27]. In the unbound state, these ele-
ments can be involved in a set of intramolecular interactions,
which are off-pathway for complex formation [28]. Based on these
observations, a functional misfolding concept was formulated [29],
according to which potential binding elements transiently formed
in highly disordered IDPs interact with each other intramolecularly
and are sequestered inside structural cages, preventing them from
unnecessary and unwanted interactions with non-native binding
partners. Obviously, such functional misfolding is accompanied
by a partial compaction of the polypeptide chain. Since the proba-
bility of forming and docking such elements increases with protein
length [27], the probability of functional misfolding increases as
well. Such a mechanism could prevent that interaction propensity
towards non-natural partners increases with IDP chain length.

Previous analysis of the yeast IDP Sic1 (a cyclin-dependent
kinase inhibitor) and its fragments had first suggested a length
effect on protein compaction [21]. This hypothesis was based on
the observation that the isolated kinase inhibitory domain (KID)
displays a smaller CI value than the full-length protein, although
partial proteolysis and other order-propensity parameters suggest
that this is the most ordered/compact region of the protein
[30,31]. The CI values for Sic1 and its C-terminal fragment are
reported as circles in Fig. 1. These points can be fit by a curve repre-
senting a linear combination of the MG and PMG equations
(0.6 �MG + 0.4 � PMG). In agreement with previous evidence
[21,30,31], these results suggest that Sic1 is a relatively compact
IDP. That the two experimental points lie on the same curve can
be rationalized by the relative homogeneous amino acidic composi-
tion [30] and secondary structure propensity [32] of this protein.
Since Sic1 binds to the cyclin-kinase complex in an extended confor-
mation, compact forms are likely unproductive for complex forma-
tion. Hence, as previously suggested [21], loss of tertiary structure
could be required for association, implying a binding-induced
unfolding event in addition to the well known binding-induced
folding. The engagement of part of the chain in interactions with
partners will reduce the effective length sensed by the chain, reduc-
ing compaction. Such a mechanism could mediate binding-induced
unfolding.

In conclusion, the results of this study suggest that chain length
represents an important factor determining the compaction degree
of IDPs, in addition to sequence features. Further experimental evi-
dence is needed to clarify the relative role of weak interactions
promoting IDP compaction. Intrinsic structural compactness could
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be important to protect IDPs from non-physiological interactions
and from protein degradation. Furthermore, it may also provide
an additional level of regulation by post-translational modifica-
tions, such as phosphorylation.
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