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Given the "inborn" nature of the innate immune system, it is surprising to find that innate immune function
does in fact change with age. Similar patterns of distinct Toll-like-receptor-mediated immune responses
come to light when one contrasts innate immune development at the beginning of life with that toward the
end of life. Importantly, these developmental patterns of innate cytokine responses correlate with clinical
patterns of susceptibility to disease: A heightened risk of suffering from excessive inflammation is often de-
tected in prematurely born infants, disappears over the first fewmonths of life, and reappears toward the end
of life. In addition, risk periods for particular infections in early life reemerge in older adults. The near-mirror-
image patterns that emerge in contrasts of early versus late innate immune ontogeny emphasize changes in
host-environment interactions as the underlying molecular and teleologic drivers.
Introduction
Susceptibility to infection is greatest early and late in life.

Although the mechanistic basis for these clinical observations

might differ for different age groups, the functional parallels are

striking. For example, the risk for infection rapidly decreases

from pre-term to term newborns and decreases even further in

infancy (Goldenberg et al., 2010; Lawn et al., 2005). However,

after �65 years of age, the risk of suffering severe infections

increases again with advancing age (Ongradi and Kovesdi,

2010; Yoshikawa, 1981). Severe infections early in life often

have lasting impact even on those who survive, resulting in alter-

ation of the immune response to subsequent infections (Strunk

et al., 2012a; Strunk et al., 2012c) as well as affecting the risk

for autoimmune disease (Lisciandro and van den Biggelaar,

2010; Shanks et al., 2000) and malignancy (Goldin et al., 2011).

Infections late in life not only accelerate the general aging

process but also often represent "catastrophic events" from

which seniors do not fully recover (McElhaney and Effros,

2009). Furthermore, both of these age-defined high-risk groups

also display a suboptimal response to many vaccines, impairing

our ability to protect these large segments of the population

(Mortellaro and Ricciardi-Castagnoli, 2011).

Innate immune function can broadly be categorized into

sensor, effector, and regulatory functions; sensor activation of

innate immune cells triggers the downstream effector and regu-

latory function (Mantovani et al., 2011; Netea et al., 2011a). The

best-known innate sensors are pattern-recognition receptors

(PRRs), of which the Toll-like receptors (TLRs) have received

substantial attention (Travis, 2011); however, other PRRs (e.g.,

integrins, C-type lectin receptors, NOD-like receptors, and in-

flammasomes) are equally important sensor pathways, both on

their own and via crosstalk with TLRs (Kawai and Akira, 2011;

Negishi et al., 2012). Here, we discuss how age-dependent

changes in innate TLR responses correlate with specific periods
of susceptibility to infection, inflammatory diseases, and re-

sponses to vaccination. These correlations suggest that TLR-

mediated innate immune responses are most critically important

at the extreme ends of life.

Early Life
TLR Expression, Signaling, and Function

TLR sensor function is well developed in newborns (Strunk et al.,

2011). The expression of TLRs, as well as downstream signaling

molecules, in mononuclear cells of healthy infants over the first

5 years of life appears to be stable and to occur at adult-like

levels (Danis et al., 2008; Dasari et al., 2011; Reece et al.,

2011; Tulic et al., 2011). Furthermore, human newborns with

bacterial sepsis are able to appropriately upregulate TLR expres-

sion on peripheral blood mononuclear cells (Zhang et al., 2010).

Thus, differential TLR expression appears unlikely to be a main

cause for altered susceptibility to infection, inflammation, or

vaccine response in early versus adult life.

Although, TLR expression and signaling in early life appear

similar to expression and signaling in adults, TLR-mediated

production of innate immune effector molecules such as oxygen

radicals is strikingly reduced in early life (Chang et al., 2011; De

Paepe et al., 2011; Lavoie et al., 2010; Vento and Tanko,

2009). The response of preterm infants to oxygen radicals, on

the other hand, is exaggerated; lower superoxide dismutase

expression results in decreased clearance of oxygen radicals

(Nassi et al., 2009). Further compounding this tissue-damaging

response in premature infants, oxygen radicals themselves

signal via TLR2 (Paul-Clark et al., 2009) and increase the sensi-

tivity of TLR8 (Yanagisawa et al., 2009), whereas membrane

phospholipids oxidized by oxygen radicals directly signal via

TLR4 (Imai et al., 2008). These mechanisms further enhance

the already tissue-damaging inflammation (Rubartelli et al.,

2011; Zhou et al., 2010).
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Figure 1. Age-Dependent Changes in TLR-
Induced Immune Regulatory Function
Early Life: Upon in vitro stimulation with TLR
agonists, the following results are obtained. (1)
Cord blood of pre-term infants produces large
amounts of the anti-inflammatory cytokine IL-10
but low amounts of proinflammatory cytokines. (2)
Whole blood of term newborns produces large
quantities of IL-6 and IL-23 after TLR stimulation;
these cytokines are known to support Th17 cell
differentiation. (3) Induction of type 1 IFN in pDCs
is markedly reduced at birth but rapidly reaches
adult-level function within a few weeks after Over
the first few years of life, TLR-induced Generation
of proinflammatory cytokines such as TNF-a and
IL-1b steadily increases in monocytes and cDCs
over the first few years of life. The gradual post-
natal increase in the ability to produce TNF-a and
IL-1b is paralleled by a slow decline of IL-10, IL-6,
and IL-23. (5) Production of Th1-cell-supporting
cytokines such as IL-12p70 reaches adult levels

only after 2 years of age. Later Life: Chronic low-grade systemic inflammation (inflammaging) is reflected by higher plasma levels of IL-6, TNF-a, and other innate
cytokines; healthy, ‘‘unimpaired’’ older people instead express higher levels of IL-10 and lower levels of most other innate cytokines in response to whole-blood
TLR stimulation.
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The developmental pattern of cytokine production after TLR

stimulation has been characterized in detail from premature

infants to adults (Figure 1). These cytokines released upon TLR

stimulation have potent regulatory effect, on both innate and

adaptive immune cells (Buonaguro and Pulendran, 2011; Kasturi

et al., 2011; Pulendran and Ahmed, 2006). For example, after

TLR stimulation of whole blood, production of anti-inflammatory

innate cytokines (IL-10) dominates in preterm infants, whereas

production of Th17 cell-promoting cytokines IL-6 and IL-23

dominates in term infants (Belderbos et al., 2009; Burl et al.,

2011; Corbett et al., 2010; Kollmann et al., 2009; Lavoie et al.,

2010; Lisciandro et al., 2012; Nguyen et al., 2010). As a result,

compared to adults, term infants have elevated numbers and

increased function of Th17 cells (Black et al., 2012). Interestingly,

production of IL-10, IL-6, and IL-23 declines over the first few

years of life; this decline is paralleled by a steady increase in

production of the proinflammatory cytokines TNFa, IL-1b in

whole blood, monocytes, and conventional dendritic cells

(cDCs) (Belderbos et al., 2009; Burl et al., 2011; Corbett et al.,

2010; Kollmann et al., 2009; Lavoie et al., 2010; Lisciandro

et al., 2012; Nguyen et al., 2010). TLR-induced antiviral and

Th1 cell-supporting type 1 IFNs in plasmacytoid dendritic cells

(pDCs), although substantially reduced at birth, rapidly reach

adult-level function within a few weeks after birth (Nguyen

et al., 2010). One of the last cytokines to reach adult-level

production in cDCs after TLR stimulation is IL-12p70, which

promotes the development of Th1 cell immune responses (Cor-

bett et al., 2010).

Molecular Mechanisms

Very little is known about the underlyingmolecular mechanism(s)

responsible for developmental change of TLR-mediated innate

function early in life (Figure 2). Among the best-studied differ-

ences in transcriptional regulation of innate immune gene

expression between newborns and adults are the interferon

response factor (IRF) family of transcription factors, namely

IRF3, IRF5, and IRF7 (Goriely and Goldman, 2008; Goriely

et al., 2008). Production of type 1 IFN after TLR stimulation is

strikingly reduced in newborn as compared to adult blood (Danis

et al., 2008). TLR7- and TLR9-mediated production of IFN-a
772 Immunity 37, November 16, 2012 ª2012 Elsevier Inc.
and -b is regulated by assembly of a multi-component complex

comprised of MyD88, IRAK1, IRAK4, TRAF3, and TRAF6, which

allows direct recruitment and activation of IRF7. All of the mole-

cules regulating IRF7 function, as well as IRF7 itself, are ex-

pressed at similar amounts in purified neonatal and adult

pDCs. Phosphorylation by IRAK1 and subsequent activation

via TRAF6 allow IRF7 to translocate to the nucleus and initiate

IFN-a and -b transcription. This nuclear translocation of IRF7

appears to be impaired in the newborn, leading to markedly

reduced type 1 IFN production in purified cord blood pDCs as

compared to adult peripheral blood pDCs (Danis et al., 2008).

It is currently not clear which of the specific aspects involved in

this complex interaction are responsible for the reduced nuclear

translocation. The rapid maturation of type 1 IFN production to

adult levels within weeks of birth suggests that underlying regu-

latory mechanisms affecting nuclear translocation of IRF7

change over a relatively short time period.

IRF5 nuclear translocation, together with activation of the

transcription factors NF-kB and MAPK, is crucial for the expres-

sion of IL-12 p40 and IL-23 p19. TLR agonist stimulation of

newborn blood induces coordinated expression of p19 and

p40, resulting in IL-23 secretion at amounts markedly higher

than those of adults (Corbett et al., 2010; Kollmann et al.,

2009; Vanden Eijnden et al., 2006). These observations suggest

that IRF5-, NF-kB-, and MAPK-mediated responses are func-

tioning at least at adult levels in newborn cells. In contrast,

TRIF-dependent activation of IRF3 downstream of TLR3 or

TLR4 is compromised in neonatal DCs. This alteration leads to

impaired production of type 1 IFNs and interferon-dependent

genes (Aksoy et al., 2007). Induction of IL-12p35, which together

with IL-12p40 is necessary for production of IL-12p70, requires

direct recruitment of IRF3 and activation of the autocrine feed-

back loop triggered by type 1 IFNs. Interestingly, early steps of

IRF3 activation—phosphorylation, dimerization, and nuclear

translocation—occur at similar levels in adult and neonatal

DCs after TLR stimulation. However, IRF3 DNA-binding activity

and association with the coactivator CREB-binding protein

(CBP) appear to be decreased in the human neonate as

compared to the adult (Aksoy et al., 2007). The precisemolecular
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Figure 2. Molecular Mechanisms Active Early in Life
NF-kB activation downstream of cell-surface TLRs in newborn monocytes
occurs at least at adult levels, suggesting that age-dependent differences in
NF-kB-dependent cytokine production must be the result of other pathways.
For example, (1) higher levels of extracellular adenosine early in life, coupled
with an elevated sensitivity of G protein-coupled adenosine receptors, leads to
higher cytosolic concentrations of cAMP, which might produce a bias toward
Th2- and against Th1-cell-supporting responses. (2) For endosomal TLRs,
TLR8 signaling in newborn cells occurs at least at adult levels, leading to robust
TNF-a production. However, in cord-blood plasmacytoid DCs, (3) signals
downstream of TLR7 or TLR9 leading to IRF7 phosphorylation and nuclear
translocation are reduced, and production of type 1 IFN is thus impaired.
Furthermore, although TRIF-dependent activation and nuclear translocation of
IRF3 downstreamof TLR3 or TLR4 occurs at adult levels in cord-blood-derived
myeloid DCs, (4) IRF3 DNA-binding activity and association with CBP is
decreased in newborn DCs as compared to adult DCs, providing a basis for (5)
impaired neonatal IL-12p35 and IFN- b production.
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events underlying the decreased stability of the IRF3-CBP-DNA

complex formation are currently not known. They might reflect

differential regulation of the two-step activation process of

IRF3; phosphorylation of Ser396 via the TBK1 pathway, which

is sufficient for IRF3 nuclear translocation, occurs at comparable

levels in neonatal and adult cells (Aksoy et al., 2007). This

suggests that phosphorylation of other Ser or Thr residues

required for CBP recruitment and IRF3 binding to promoter

regions might be reduced in newborn DCs. A more global age-

dependent perturbation in chromatin remodeling could also be

involved through an impact on the stability of transcriptional

complexes for IRF3-dependent genes. Support for the latter

idea comes from observations indicating impaired nucleosome

remodeling in neonatal DCs at the IRF3-dependent IL12A locus

(Goriely et al., 2004). IRF3 is required for initiation of SWI-SNF-

mediated nucleosome remodeling for several innate cytokine
genes (Ramirez-Carrozzi et al., 2009). Chromatin remodeling

early in life is known to progress through developmentally regu-

lated stages (Martino et al., 2011). For example, epigenetic regu-

lation is centrally involved in the ontogeny of T cell IFN-g produc-

tion (Balasubramani et al., 2010; Vuillermin et al., 2009). Although

it is currently unclear how expression of IFN-g is regulated in

innate immune cells, IFN-g and SWI-SNF functionally coregulate

immune gene expression at multiple levels (Pattenden et al.,

2002). Thus, SWI-SNF activity, similar to IFN-g expression, might

also undergo developmentally regulated changes.

Among the mechanisms that serve to polarize neonatal

immune responses, the effects of soluble plasma factors feature

prominently (Levy et al., 2006). Studies of human cord blood

plasma and leukocytes demonstrate that soluble factors in

human newborn cord-blood plasma differentially modulate

TLR-mediated cytokine production, and that they have a rela-

tively greater impact on TLR2 agonists (bacterial lipopeptides),

whereas TLR7 and TLR8 agonists such as imidazoquinolines

and single-stranded RNAs appear to be relatively refractory to

this inhibition (Levy et al., 2004; Philbin et al., 2012). Compared

to adult blood plasma, human cord-blood plasma contains

�4-fold-higher concentrations of adenosine, an endogenous

purine metabolite that acts via seven-transmembrane adeno-

sine receptors to enhance intracellular concentrations of the

second messenger cyclic adenosine monophosphate (cAMP).

In turn, cAMP inhibits production of Th1-cell-polarizing cyto-

kines by both protein-kinase-A-dependent and -independent

mechanisms. In addition, neonatal mononuclear cells are

more sensitive to the inhibitory effects of adenosine. The aden-

osine-cAMP signaling pathway generally appears to suppress

production of Th1-cell-polarizing cytokines such as IL-12p70

and IFN-g while enhancing production of anti-inflammatory

(IL-10) and Th17 cell (IL-6, IL-23)-supporting innate cytokines.

This pattern matches neonatal immune polarization (Drygianna-

kis et al., 2011; Levy, 2007; Levy et al., 2006; Levy et al., 2004;

Philbin et al., 2012; Power Coombs et al., 2011). Of note,

expression of soluble factors that impair TLR4-mediated IL-

12p70 production and enhance TLR4-mediated IL-10 produc-

tion evolve distinctly over the first weeks of life, raising the

possibility that additional soluble factors contribute to immune

polarization (Belderbos et al., 2012). Overall, age-dependent

expression of plasma-modulating factors appears to be an

important mechanism that regulates ontogeny of responses to

TLR agonists.

Innate immune ontogeny is further impacted by early expo-

sure to environmental triggers that alter molecular mechanisms

of TLR-mediated cytokine production. For example, upon an

infant’s initial exposure to LPS shortly after birth, intestinal

epithelial cells become hypo-responsive to subsequent TLR

stimulation, presumably to facilitate microbial colonization and

host-microbe homeostasis. The mechanisms underlying this

transition include micro-RNA-mediated downregulation of IL-1

receptor-associated kinase-1 (IRAK-1)(Lotz et al., 2006) and

increased expression of the negative regulator IRAK-M (Leavy,

2010; Nanthakumar et al., 2011). Lastly, it is possible that innate

immune cells develop from different stem cell lineages at dif-

ferent times during life, as has been shown for human T cells

(Mold et al., 2010); a different origin might support different regu-

latory mechanisms in the same innate cell lineages.
Immunity 37, November 16, 2012 ª2012 Elsevier Inc. 773



Table 1. Age-Associated Patterns of Innate TLR Response and Risk for Infection

Age and Innate Immune Status Associations with Infectious Disease

Premature newborn; mostly anti-inflammatory (high IL-10);

all other innate responses low

Invasive infections due to extracellular pathogens such as E. coli, coagulase-

negative staphylococcus (CoNS), and Candida spp. are largely restricted to

premature infants. Optimal defense against all of these depends on Th17-type

adaptive immunity. This pattern of susceptibility correlateswith the respective low-

TLR-induced production of Th17-supporting cytokines (Brereton et al., 2011;

Cheung and Otto, 2010; Gaffen et al., 2011; Gow et al., 2011; Smeekens et al.,

2011; Strunk et al., 2009; Strunk et al., 2010; Strunk et al., 2012b; Strunk et al.,

2007; van de Veerdonk et al., 2011; Venkatesh et al., 2006).

Term newborn and up to �2-month-old infant; strong innate

Th17 cell support; low innate antiviral type 1 IFN response;

low innate Th1 cell support

Host defense against herpes simplex virus (HSV), Listeria monocytogenes, and

group B streptococci (GBS) is profoundly impacted by type 1 IFN (Charrel-Dennis

et al., 2008; Currie et al., 2011; Mancuso et al., 2009; Melchjorsen, 2012; Posfay-

Barbe andWald, 2009; Rayamajhi et al., 2010; Xiao et al., 2009; Zhang et al., 2008).

The highest risk period for severe HSV, listeriosis, andGBS infection is restricted to

infants less than 2 months of age, correlating with the period of low TLR-mediated

type 1 IFN production (Charrel-Dennis et al., 2008; Currie et al., 2011; Mancuso

et al., 2009; Melchjorsen, 2012; Posfay-Barbe and Wald, 2009; Rayamajhi et al.,

2010; Xiao et al., 2009; Zhang et al., 2008).

Child up to �2-5 years of age; low innate Th1 cell support Defense against Mycobacterium tuberculosis (Mtb), Burkholderia pseudomallei,

and Salmonella spp. is largely dependent on Th1-cell-type immunity (Ottenhoff

et al., 2005; Simpson et al., 2003; White, 2003). Outside of immunocompromised

adults, disseminated infections with Mtb, Burkholderia pseudomallei, and

Salmonella spp. are largely restricted to children under 5 years of age (Cheng and

Currie, 2005; Donald et al., 2010; Gan, 2005; Wiersinga et al., 2006). This pattern

closely corresponds to reduced childhood expression of the innate cytokines that

support optimal Th1 defense against these intracellular pathogens, namely IFN-g

and IL-12p70 (Ottenhoff et al., 2005; Simpson et al., 2003; White, 2003).

Older adult; decrease in nearly all innate TLR-induced

responses; higher basal level of many proinflammatory

innate cytokines in ‘‘inflammaging"

(1) Decreased TLR1 expression on monocytes correlates with high risk of

reactivation of Mtb in the elderly; Mtb reactivation is a common cause of geriatric

pulmonary infections (Uciechowski et al., 2011). (2) Impaired pDC function in the

elderly, along with impaired type 1 IFN production, probably contributes to

increased susceptibility to herpes viruses, in particular VZV reactivation and

associated complications (Goldstein, 2012; Kittan et al., 2007; Leng andGoldstein,

2010; Mueller et al., 2008) as well as influenza (Canaday et al., 2010; Ferrucci et al.,

1997; Fleming and Elliot, 2005; Reichert et al., 2004; Thompson et al., 2003) and

listeriosis (Mook et al., 2012). (3) Older subjects fail to downregulate TLR3 in

response to WNV infection; this leads to prolonged proinflammatory cytokine

production, which in turn may contribute to increased permeability of the blood-

brain barrier andmore severeWNV infection in older individuals (Kong et al., 2008).

(4) Elevated production of cytokines at baseline (i.e., inflammaging), but reduced

response to stimulation, correlates with increased severity of sepsis after

community-acquired pneumonia in the elderly (Mira et al., 2008).
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Impact on Host Immune Response in Early Life

The TLR-induced innate cytokine response pattern in early life

correlates with patterns of age-specific susceptibility to several

of the most common serious systemic infections of early child-

hood (Table 1) (Kenzel and Henneke, 2006).

The TLR-mediated innate cytokine response pattern de-

scribed above for early life also correlates with patterns of

vaccine responsiveness. Consistent with the mostly anti-inflam-

matory response to innate immune stimulation in premature

infants, impaired responses to vaccines given around birth

have been noted (Baxter, 2010; D’Angio, 2007; Tsuda et al.,

2011). However, TLR-mediated cytokine responses of preterm

infants change over the first year of life. Accordingly, vaccines

administered to premature infants later during the first year

of life induce a response similar to that of full-term infants of

the same postnatal age (D’Angio, 2007; Esposito et al., 2009).

Furthermore, in term infants, vaccines, such as hepatitis B virus
774 Immunity 37, November 16, 2012 ª2012 Elsevier Inc.
and Bordetella pertussis vaccines induce weak Th1-cell-type

responses if administered at birth. Consistent with the change

in TLR-mediated cytokine response patterns described above,

the immune response to BCG immunization changes from a

Th17-cell-dominated response when given at birth to a more

Th1-cell-dominated response when BCG immunization is de-

layed for several months (Burl et al., 2010; Ota et al., 2002).

These findings suggest that the strong influence of postnatal

age on the quality of adaptive vaccine responses is mediated

by changes in innate immunity.

Lastly, developmental changes in the TLR response in early life

also correlate with periods of high vulnerability to organ injury

from innate immune hyperactivity (Fleer and Krediet, 2007). For

example, necrotizing enterocolitis (NEC) is characterized by dys-

regulated innate inflammatory responses in the premature

infant’s intestine (Afrazi et al., 2011; Gourlay, 2012; Lin and Stoll,

2006; Martin and Walker, 2006; Nanthakumar et al., 2011;
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Figure 3. Molecular Mechanisms Active Late in Life
(1) Reduced expression of most TLRs, except TLR5, leads to lower TLR
responses in older adults. Older adults also display altered signaling down-
stream of TLRs. For example, they display (2) lower p38 signaling via TLR4 and
(3) diminished induction of late-phase responses mediated by STAT1, IRF7,
and IRF1. This, in turn, leads to (4) defective regulation of the type 1 IFN axis in
DCs. Some differences in older adults are lineage specific: Monocytes
demonstrate greater TLR5 expression and increased p38 signaling, whereas
macrophages demonstrate impaired downregulation of TLR3 and elevated
cytokine production. Furthermore, (5) an age-associated decrease of auto-
phagy reduces clearance of damaged mitochondria, which elevates cellular
ROS production and associated RLR signaling and inflammation, setting into
motion a vicious cycle.
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Sampath et al., 2011). Excessive reactivity of the TLR innate

response also contributes to periventricular white-matter injury

(PWMI) (Volpe, 2008) and neonatal chronic lung disease (CLD),

both affecting extremely premature infants (De Paepe et al.,

2011; Kramer et al., 2009; Nathe et al., 2009; Petrikin et al., 2010).

Although this heightened risk of inflammation at first appears

contrary to the aforementioned elevated amount of immune

suppressive IL-10 production in preterm cord blood, regulation

of innate immune responses is specific to each anatomic site,

and the elevated cord blood IL-10 response is found around

the time of preterm birth but not beyond that (Lavoie et al.,

2010). Overall, existing data suggest that a dysregulated TLR-

mediated tissue-damaging innate inflammatory response in

premature infants contributes to NEC, CLD, and PWMI.

Later Life
TLR Expression, Signaling, and Function

Despite the challenge of defining "normal" aging (Ligthart et al.,

1984), there is strong evidence that innate immunity and, in

particular, certain TLR-mediated responses change dramatically

with advancing age (McElhaney and Effros, 2009; Panda et al.,

2009; Panda et al., 2010; Shaw et al., 2010). For example,

whereas TLR2 expression in monocytes and cDCs (Panda et al.,

2010; van Duin et al., 2007b) and TLR9 expression in pDCs

(Panda et al., 2010) appears to be unchanged as age increases,

TLR1 and TLR4 in monocytes and TLR1, TLR7, and TLR8 in

cDCs and pDCs are generally expressed at lower levels in older

individuals (Jing et al., 2009; Panda et al., 2010). In contrast,

TLR5 expression in monocytes increases as age increases

(Qian et al., 2012). Basal levels of TLR3 inmacrophages are lower

in older donors. However, the virus-induced downregulation of

TLR3 expression noted in young adults fails to occur in older

subjects (Kong et al., 2008). Overall, distinct, but not uniformly

lower, TLR expression in later life (Panda et al., 2009; Panda

et al., 2010; Shaw et al., 2010; Shaw et al., 2011) might contribute

to altered innate immune function as individuals age.

Little is known regarding TLR-mediated innate effector

responses late in life. Multiple macrophage and neutrophil

effector functions, including priming, activation, phagocytosis

of microbes, and TLR-induced superoxide generation, are

reduced in later life (Fortin et al., 2008; Plackett et al., 2004).

Innate TLR-mediated regulation of adaptive immune function

appears to be generally diminished in old versus young adults

(Panda et al., 2010; Shaw et al., 2011; van Duin et al., 2007b).

Healthy, "unimpaired" older adults express increasingly higher

amounts of IL-10 with advancing age (Shurin et al., 2007; Vallejo

et al., 2011), in a pattern that is the reverse of that found in early

life (Figure 1). However, the innate immune system of the frail

elderly is often found in a state of heightened inflammation,

called "inflammaging" (Figure 1)(Franceschi et al., 2007; Panda

et al., 2010; Qian et al., 2012). This term most often refers to

increases in circulating IL-6, C-reactive protein (CRP), and

TNF-a concentrations in older individuals, but it also includes

higher basal concentrations of IFN-g, IL-12p70, IP-10, and

CXCL9. However, this increased basal production of proinflam-

matory cytokines in the frail elderly does not necessarily translate

to a generally elevated response after stimulation of TLRs

(Bruunsgaard et al., 1999). For example, whereas TLR5- or

TLR9-induced cytokine responses are often elevated in the
elderly (Agrawal et al., 2007a; Qian et al., 2012), age-associated

impairments of TLR1-, TLR2-, or TLR7-induced production of IL-

6 and TNF-a are frequently observed (Nyugen et al., 2010; van

Duin et al., 2007b). pDCs of older donors also produce markedly

lower type 1 IFN than do those of younger adult donors (Jing

et al., 2009; Qian et al., 2011; Shaw et al., 2011). Further under-

scoring the complexity of changes in the TLR system with

advancing age, differences in in vitro TLR4-mediated cytokine

responses between the elderly and younger adults depend on

the cell type investigated (Ciaramella et al., 2011; Della Bella

et al., 2007; Shaw et al., 2011; van Duin et al., 2007a).

Molecular Mechanisms

Our understanding of the cellular and molecular mechanisms

underlying age-dependent changes in TLR function and age-

associated chronic inflammation is only now emerging (Figure 3).

Because chronic metabolic disorders (e.g., atherosclerosis,

hyperlipidemia, and type 2 diabetes) also contribute to age-

related inflammation, multiple signaling pathways can in fact

directly or indirectly be implicated in the maintenance of this

inflammatory state. It has been proposed that with aging, local
Immunity 37, November 16, 2012 ª2012 Elsevier Inc. 775
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accumulation of DNA damage within stromal and stem cells

leads to cytokine release, an event further amplified by tissue-

resident macrophages responding the these cytokines (Bonafe

et al., 2012). Moreover, increased TLR-mediated IL-6 and

TNF-a production by monocyte-derived DCs appears to be

related to decreased activity of phospho-inositol 3 (PI3) kinase,

in a mechanism relevant to the inflammaging processes men-

tioned above (Agrawal et al., 2007a; Agrawal et al., 2007b;

Shaw et al., 2011).

The molecular mechanisms underlying the decrease that

occurs in innate immune function as people age have been delin-

eated in detail for only some of these observations (Figure 3). The

striking dysregulation of West-Nile-virus-induced downregula-

tion of TLR3 apparently relates to impairment of the signal trans-

ducer and activator of transcription 1 (STAT1) pathway (Kong

et al., 2008). Purified cDCs from older donors display diminished

induction of late-phase responses that are mediated by STAT1,

IRF7, and IRF1, suggesting defective regulation of the type 1 IFN

axis (Qian et al., 2011); this defective regulation is also noted

in TLR9-mediated antiviral responses (Stout-Delgado et al.,

2008). A further insult to antiviral capacity is the age-related

increase in expression of Axl, a member of the TAM (Tyro3,

Axl, and Mer) family of receptor tyrosine kinases, which broadly

inhibit both TLR and TLR-induced cytokine receptor cascades

(Lemke and Rothlin, 2008). Higher Axl activity in the DCs of older

donors is believed to negatively regulate TLR signaling and

contribute to a reduced efficiency of antiviral responses (Qian

et al., 2011).

Dysregulation of innate immune responses in the elderly is also

influenced by intracellular crosstalk of TLRs with other innate

mechanisms. One of the leading theories of age-induced cellular

damage, the ‘‘free radical theory of aging,’’ posits that the accu-

mulation of reactive oxygen species (ROS) in older subjects

leads to damage of biomolecules (Finkel and Holbrook, 2000).

According to this theory, oxidative stress inhibits cellular path-

ways directly, e.g., ROS inhibits IFN-a-induced antiviral gene

expression by blocking the JAK-STAT pathway (Di Bona et al.,

2006). Intricately linked with this is autophagy, the cellular pro-

cess for appropriate clearance of dysfunctional proteins and

organelles within the cell. It has been shown that autophagy

declines with aging, and recent work suggests that this event

can lead to amplification of antiviral signaling through the RIG-

I-like pathway (Tal et al., 2009). Damaged mitochondria that

are not removed by autophagy provide an ongoing source of

ROS that can enhance RLR signaling and inflammation, setting

up a vicious cycle (Cuervo et al., 2005; Tal et al., 2009; Vellai,

2009). Further, accumulation of damaged mitochondria leads

to release of mitochondrial DNA, which contributes to activation

of the NLRP3 inflammasome (Hipkiss, 2010; Tal and Iwasaki,

2011; Terman et al., 2010; Vandanmagsar et al., 2011). The

scenario in the older adult overall appears to be similar to that

found in the premature infant, where oxygen radicals themselves

activate TLRs, either directly or indirectly via damaged biomole-

cules, and further amplify destructive inflammation (Paul-Clark

et al., 2009; Yanagisawa et al., 2009; Imai et al., 2008).

Impact on Host Immune Response in Later Life

The aforementioned pattern of TLR-mediated innate responses

correlates with pathogen-specific clinical patterns of increased

susceptibility to infection in the older adult (Table 1).
776 Immunity 37, November 16, 2012 ª2012 Elsevier Inc.
TLR-mediated cytokine responses late in life also correlate

with reduced vaccine responses (McElhaney et al., 2012).

Although influenza vaccination in the elderly is effective at

inducing protection (Bourée, 2003; Gruver et al., 2007; Nichol

et al., 2003; Ongradi andKovesdi, 2010), decreased TLR respon-

siveness is associated with the inability to mount protective anti-

body responses to the trivalent inactivated influenza vaccine

(Panda et al., 2010; van Duin et al., 2007a; van Duin et al.,

2007b). In addition, the age-associated elevation of serum IL-6

and TNF-a concentrations in inflammaging are associated with

dampened responses to influenza vaccine (Panda et al., 2010;

Trzonkowski et al., 2003) and pneumococcal vaccine (Ridda

et al., 2009).

Although functional proinflammatory responses are beneficial

for survival in older adults, (Wijsman et al., 2011), innate re-

sponse patterns late in life strongly and consistently correlate

with patterns of pathological inflammation and associated com-

plications. For example, the elevated concentration of circulat-

ing IL-6 in inflammaging on its own is a strong predictor of

thromboembolic complications and cardiovascular diseases

(Ferrucci et al., 2005), whereas elevated TNF-a concentrations

correlate with frailty (Bruunsgaard et al., 2003; Forsey et al.,

2003; Krabbe et al., 2004; My�sliwska et al., 1998). Elevated

TNF-a serum concentrations in the elderly also associate with

increased risk of malignancies (Chen et al., 2007; Fulop et al.,

2010; Malaguarnera et al., 2010) and neurodegeneration (Carty

and Bowie, 2011; Krabbe et al., 2004; Ravaglia et al., 2007).

Even depression in older adults is associated with an increased

serum proinflammatory cytokine profile, and antidepressant

therapy decreases IL-1b and IL-6 amounts in depressed patients

(Bouhuys et al., 2004; Irwin andMiller, 2007; Penninx et al., 2003;

Trzonkowski et al., 2004). Overall, elevated proinflammatory

levels in the aged—perhaps under the influence of elevated

levels of TLR5—predict a more than 6-fold increased risk of

three-year mortality and a more than 3-fold higher risk for

seven-year mortality independently of other measures of health

status (Krabbe et al., 2004; Reuben et al., 2002; van den Bigge-

laar et al., 2004; Wikby et al., 2006). TLR pathways in older

individuals with marked atherosclerosis are activated even at

baseline (Huang et al., 2011); obesity further enhances this

basal activation of the TLR pathway (Scholtes et al., 2011).

Specific TLR4 allelic variants associate with increased body fat

and decreased insulin sensitivity, suggesting that TLR4 might

link obesity and insulin resistance and thereby contribute to dia-

betes (Weyrich et al., 2010). Age-dependent changes in TLR

responses thus feature prominently in several aspects of inflam-

maging.

Perspective
Deciphering the clinical role of innate immune function might be

most readily accomplished during periods of reduced or absent

adaptive immune function, i.e., early and late in life. Recent

studies indicate that in addition to age-dependent changes of

adaptive immunity, innate immune function changes dramati-

cally with age. For adaptive immunity, these changes with age

are inherent in its characteristic function, namely antigen spe-

cificity and memory formation (Lewis et al., 2006; Wilson and

Kollmann, 2008). It is possible that such changes in adaptive

immunity contribute to changes in TLR-mediated innate immune
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responses. However, the above-summarized changes that

occur in the TLR response as individuals age are found in purified

innate cells, suggesting that at least some of these age-specific

changes in innate immune function are cell autonomous. This

suggestion points to the existence of innate-specific mecha-

nisms directing innate immune ontogeny. Are the mechanisms

that drive changes in TLR-induced innate responses over life

related to genetically encoded developmental programs, or are

they due to particular age-dependent changes of environmental

exposures, or both (Netea et al., 2012)? The answer to this ques-

tion not only is of great academic interest but also holds the key

to identifying possible interventions aimed at reducing the risk for

infectious and inflammatory diseases early and late in life.

Genetics influences innate immune ontogeny early (Netea and

van der Meer, 2011) as well as late in life (Weyrich et al., 2010).

Genetic defects of pattern recognition probably manifest them-

selves throughout life as limited, focused immunodeficiencies

(Casanova and Abel, 2007; Netea et al., 2011b). On the basis of

the paradigm of evolutionary purifying selection (Casals et al.,

2011), onewould predict that genetic programs of innate immune

ontogeny more likely direct developmental patterns in early

rather than late life. Indeed, the influence of genetic programs

in early life can readily be identified in the strong influence of

family history of atopy on lower IL-12p70 responses in infants

suffering from allergy and asthma (Gabrielsson et al., 2001; Nils-

son et al., 2004; van den Biggelaar et al., 2009). Moreover, TLR

polymorphisms associate with an altered immune response to

BCG administered to infants at birth (Randhawa et al., 2011),

and genetic defects, such as IRAK-4 and MyD88 deficiency,

that impair signaling downstream from TLRs demonstrate the

greatest clinical impact early in life, as evidenced by the fact

that those surviving through the teenage years go on to an appar-

ently normal lifespan (Ku et al., 2007). These observations

strongly suggest that the TLR system is most important for

optimal host defense early in life.

Environmental exposure is amajormodulator of innate immune

ontogeny aswell (Belderbos et al., 2012; Reikie et al., 2012; Renz

et al., 2012; Taylor et al., 2006). For example, innate immune

development in the young and very old is modulated by changes

in the composition of the intestinal microbiome (Biagi et al., 2010;

Renz et al., 2012), a relationship most apparent in situations of

a compromised intestinal barrier (Figueiredo et al., 2009; Schiffrin

et al., 2010). Recent studies in murine models identify a role for

interplay of TLRs and inflammasome components in influencing

cytokine production and obesity through modulation of the gut

microflora (Elinav et al., 2011; Henao-Mejia et al., 2012; Vandan-

magsar et al., 2011). Furthermore, nutrition directly impacts

innate immune function (LeBouder et al., 2006; Taylor et al.,

2006). Mode and season of birth also impact postnatal innate

immune ontogeny long into adulthood (Belderbos et al., 2012;

Blimkie et al., 2011; Malamitsi-Puchner et al., 2005; Moore

et al., 2006a; Moore et al., 2006b). Even prenatal environmental

stimuli potentially have long-lasting effects on postnatal innate

immunedevelopment (Grahamet al., 2006), a paradigm furthered

in the "developmental origin of health and disease" (Barker,

2007). An emerging concept, age-specific windows of vulnera-

bility to external influences that modulate long-term immune

development have also been observed in the field of develop-

mental immunotoxicology (Dietert, 2011).
Teleologically, the innate immune system has to be particularly

sensitive to being molded by external environmental stimuli

because its sentinel function is meant to detect changes in the

internal and external environment (Graham et al., 2006). A

recently described concept points to the memory-like innate

immune function after microbial encounters of plants, inverte-

brates, and mammals and is labeled "trained immunity" (Netea

et al., 2011a). This concept is supported by the correlations of

laboratory to clinical findings regarding innate immune ontogeny

we describe here, in that specific stages of innate immune func-

tion correlate with specific windows of vulnerability to particular

infections. Recent clinical evidence also supports this hypoth-

esis: TLR stimulation of a fetus impacts outcomes of subsequent

episodes of postnatal sepsis (Azizia et al., 2012; Strunk et al.,

2012a; Wynn et al., 2008). Taken together, these observations

coalesce to form a testable hypothesis for interventions. Namely,

exposure to specific environmental stimuli might trigger long-

lasting, clinically relevant changes in innate immunity.

Interventions aimed at altering the innate immune status of the

young or old thus appear to be rational pharmaceutical targets

(Hedayat et al., 2011; Melvan et al., 2010; Romagne, 2007).

However, many questions need to be addressed before we

can confidently chart the course for therapeutic or preventive

manipulation of innate ontogeny early and late in life. For

example, what precise role does prenatal exposure play for

postnatal innate development (Barker, 2007)? What are the

implications of altered TLR function during pregnancy? How

does the innate immune response to TLR stimulation change

when a child is weaned from breast to bottle feeding (Belderbos

et al., 2012)? How does it change around adolescence (puberty)

and menopause or andropause? What impact does altering

innate immune ontogeny have on vaccine responses? Should

we try to boost the budding or the aging innate immune system,

or would that augment a possibly negative impact, e.g., increase

asthma and allergies in the young (Lisciandro and van den Big-

gelaar, 2010) or inflammaging in the elderly? The first tests

have been promising: vaccination with TLR5-targeting adjuvants

in elderly populations that express elevated levels of TLR5

enhanced vaccine responsiveness without overtly increasing

inflammation (Taylor et al., 2011).

The essential first step toward finding answers to these impor-

tant questions is an increased awareness of the age-dependent

changes of innate immune ontogeny and their clinically relevant

implications for infectious risk, vaccine response, and inflamma-

tory diseases, both at the beginning and toward the end of life.

On the basis of our discussion of the ontogeny of TLR responses,

we suggest that innate responses are not static but change with

age and that they do so in ways that appear to be highly relevant

to clinical practice. Delineating the underlying molecular and

cellular mechanisms is likely to provide important insight of

substantial clinical importance for the prevention and treatment

of diseases early and later in life.
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neutrophils: there is still much to do. Rejuvenation Res. 11, 873–882.

Franceschi, C., Capri, M., Monti, D., Giunta, S., Olivieri, F., Sevini, F., Panour-
gia, M.P., Invidia, L., Celani, L., Scurti, M., et al. (2007). Inflammaging and anti-
inflammaging: a systemic perspective on aging and longevity emerged from
studies in humans. Mech. Ageing Dev. 128, 92–105.

Fulop, T., Kotb, R., Fortin, C.F., Pawelec, G., de Angelis, F., and Larbi, A.
(2010). Potential role of immunosenescence in cancer development. Ann. N
Y Acad. Sci. 1197, 158–165.
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