Note

On the triangle vertex Folkman numbers

Nedyalko Dimov Nenov
Faculty of Mathematics and Informatics, 'St. Kliment Ohridski' University of Sofia,
5 Blvd James Bourchier, Sofia BG-1164, Bulgaria

Received 29 January 2002; received in revised form 10 February 2003; accepted 10 March 2003

Abstract

For a graph G the symbol $G \rightarrow (3, \ldots, 3)$ means that in every r-colouring of the vertices of G
there exists a monochromatic triangle. The triangle vertex Folkman numbers $F_r(3) = \min \{|V(G)| : G \rightarrow (3, \ldots, 3) \text{ and } \cl(G) < 2r\}$ are considered. We prove that $F_r(3) = 2r + 7$, $r \geq 3$.

© 2003 Elsevier B.V. All rights reserved.

MSC: 05C55

Keywords: Vertex Folkman numbers; Triangle vertex Folkman numbers

1. Notation

We consider only finite, non-oriented graphs, without loops and multiple edges. We
call a p-clique of the graph G a set of p vertices, each two of which are adjacent.
The largest positive integer p such that the graph G contains a p-clique is denoted by
$
\cl(G).
$
In this paper we shall use also the following notation:

$V(G)$—vertex set of the graph G;
$E(G)$—edge set of the graph G;
$G - v, v \in V(G)$—subgraph of G obtained from G by the removal of v and all edges
adjacent to v;
$G - e, e \in E(G)$—subgraph of G such that $V(G - e) = V(G)$ and $E(G - e) = E(G) \setminus \{e\}$;
$G + e, e \in E(G)$—supergraph of G such that $V(G + e) = V(G)$ and $E(G + e) = E(G) \cup \{e\}$;
C_n—simple cycle on n vertices;

E-mail address: nenov@fmi.uni-sofia.bg (N.D. Nenov).
Let G_1 and G_2 be two graphs without common vertices. We denote by $G_1 + G_2$ the graph G for which $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2) \cup E'$, where $E' = \{[x, y]: x \in V(G_1), y \in V(G_2)\}$.

2. Vertex Folkman numbers

Definition. Let G be a graph and a_1, \ldots, a_r be positive integers. The symbol $G \to (a_1, \ldots, a_r)$ means that for every r-colouring of the vertices of

$$V(G) = V_1 \cup \cdots \cup V_r, \quad V_i \cap V_j = \emptyset, \quad i \neq j,$$

there exists $i \in \{1, 2, \ldots, r\}$ such that the graph G contains a monochromatic a_i-clique K of colour i, i.e. $V(K) \subseteq V_i$.

Define

$$H(a_1, \ldots, a_r; q) = \{G : G \to (a_1, \ldots, a_r) \text{ and } \text{cl}(G) < q\};$$

$$F(a_1, \ldots, a_r; q) = \min\{|V(G)| : G \in H(a_1, \ldots, a_r; q)\}.$$

It is clear that $G \to (a_1, \ldots, a_r)$ implies $\text{cl}(G) \geq \max\{a_1, \ldots, a_r\}$. Folkman [2], proves that there exists a graph G such that $G \to (a_1, \ldots, a_r)$ and $\text{cl}(G) = \max\{a_1, \ldots, a_r\}$. Therefore the numbers $F(a_1, \ldots, a_r; q)$ exist only if $q > \max\{a_1, \ldots, a_r\}$. These numbers are called vertex Folkman numbers. The numbers $F(3, \ldots, 3; q)$ are called triangle vertex Folkman numbers.

Let a_1, \ldots, a_r be positive integers. We define

$$m = \sum_{i=1}^{r} (a_i - 1) + 1 \quad \text{and} \quad p = \max\{a_1, \ldots, a_r\}.$$

Obviously, $K_m \to (a_1, \ldots, a_r)$ and $K_{m-1} \to (a_1, \ldots, a_r)$. Hence, if $q \geq m + 1$, then $F(a_1, \ldots, a_r; q) = m$.

The following propositions hold:

Proposition 1 ([13]). If $G \to (a_1, \ldots, a_r)$, then $\chi(G) \geq m$.

The numbers $F(a_1, \ldots, a_r; m)$ exist only if $m \geq p + 1$. Łuczak and Urbański proved that $F(a_1, \ldots, a_r; m) = m + p$ [5]. The numbers $F(a_1, \ldots, a_r; m-1)$ exist only if $m \geq p+2$. The exact values of very few of the numbers $F(a_1, \ldots, a_r; m - 1)$ are known. All of these known values are given in [14]. We need only the following two numbers.

Proposition 2 ([14]). $F(2, 3, 3; 5) = 12$.

Proposition 3. $F(3, 3; 4) = 14$.

K_n—complete graph on n vertices;
$\chi(G)$—chromatic number of the graph G.

Inequality $F(3, 3; 4) \leq 14$ is proved in [9] and the opposite inequality $F(3, 3; 4) \geq 14$ is verified by means of computer in [15].

3. Main result

Consider the vertex Folkman numbers $F(a_1, \ldots, a_r; m-1)$ in the case $a_1 = \cdots = a_r = p$. Define

$$H_r(p) = H(p, \ldots, p; (p - 1)r) \quad \text{and} \quad F_r(p) = F(p, \ldots, p; (p - 1)r).$$

For the numbers $F_r(2)$ it is known that:

Proposition 4.

$$F_r(2) = \begin{cases} 11, & r = 3 \text{ or } r = 4, \\ r + 5, & r \geq 5. \end{cases}$$

In [7] Mycielski presents an 11-vertex graph G such that $G \rightarrow (2, 2, 2)$ and $\text{cl}(G) = 2$, proving that $F_3(2) \leq 11$. Chvátal [1], proved that the Mycielski graph is the smallest such graph, and hence $F_3(2) = 11$. The inequality $F_4(2) \geq 11$ was proved in [11], and the inequality $F_4(2) \leq 11$ in [8,10] (see also [12]). Since $G \rightarrow (2, \ldots, 2) \iff \chi(G) \geq r + 1$, the equality $F_r(2) = r + 5$ for $r \geq 5$ follows from the next theorem.

Theorem A ([8,10]). Let G be a graph such that $\text{cl}(G) < r$ and $\chi(G) \geq r + 1$, $r \geq 5$. Then $|V(G)| \geq r + 6$ or $G = K_{r-5} + C_5 + C_5$.

The equality $G = K_{r-5} + C_5 + C_5$ means that G is isomorphic to $K_{r-5} + C_5 + C_5$. The equality $F_r(2) = r + 5$, $r \geq 5$, is proved also in [6]. In this paper, we shall give a new proof of Theorem A in Section 7.

Our main result is the following:

Theorem. $F_r(3) = 2r + 7$, $r \geq 3$.

Łuczak et al. [6] proved that $2r + 5 \leq F_r(3) \leq 2r + 10$ for $r \geq 4$, and $11 \leq F_3(3) \leq 20$. The bound $F_r(3) \geq 2r + 7$ for $r \geq 4$ is also announced in [6]. However, a proof of this inequality published by these authors is unknown to us. In [13] we prove that $2r + 6 \leq F_r(3) \leq 2r + 8$, $r \geq 3$.

4. Some facts about critical chromatic graphs

A graph G is called edge-critical k-chromatic if $\chi(G) = k$ and $\chi(G') < k$ for each proper subgraph G' of G. It is clear that G is an edge-critical k-chromatic graph if and
only if \(G \) is connected, \(\chi(G) = k \) and \(\chi(G - e) < k \), \(\forall e \in E(G) \). A graph \(G \) is defined to be vertex-critical \(k \)-chromatic if \(\chi(G) = k \) and \(\chi(G - v) < k \), \(\forall v \in V(G) \).

We shall use the following two theorems in the proof of the main result:

Theorem B ([3], see also [4]). Let \(G \) be a vertex-critical \(k \)-chromatic graph, \(k \geq 2 \). If \(|V(G)| < 2k - 1 \), then \(G = G_1 + G_2 \), where \(V(G_i) \neq \emptyset \), \(i = 1, 2 \).

Theorem C ([3], see also [4]). Let \(G \) be a vertex-critical \(k \)-chromatic graph, \(|V(G)| = n \) and \(k \geq 3 \). Then there exist \(\geq \lceil \frac{3}{2}(\frac{2}{3}k - n) \rceil \) vertices with the property that each of them is adjacent to all the other \(n - 1 \) vertices.

Remark 1. In the original statement of Theorems B and C, the graph \(G \) is edge-critical \(k \)-chromatic (and not vertex-critical \(k \)-chromatic). Since each vertex-critical \(k \)-chromatic graph \(G \) contains an edge-critical \(k \)-chromatic subgraph \(H \) such that \(V(G) = V(H) \), the above statements of these theorems are equivalent to the original ones. They are also more convenient for the proof of the main result.

Remark 2. The original statement of Theorem C includes also the condition \(n \geq \frac{2}{3}k \). This condition is redundant, since if \(n \geq \frac{2}{3}k \) then the claim of Theorem C is trivial.

5. Lemmas

Lemma 1. Let \(G \) be a graph such that
\[
G \rightarrow (\underbrace{3, \ldots, 3}_r), \quad r \geq 2.
\]
Then \(K_1 + G \rightarrow (\underbrace{3, \ldots, 3}_r) \).

Proof. Let \(V_1 \cup \cdots \cup V_{r+1} \) be an \((r + 1) \)-colouring of \(V(K_1 + G) \), and let \(V(K_1) = \{ a \} \). Suppose that \(V_1 \) is an independent set. Then \(V_i = \{ a \} \) or \(a \notin V_i \). If \(V_1 = \{ a \} \), then \(V_2 \cup \cdots \cup V_{r+1} \) is an \(r \)-colouring of \(V(G) \). By (1), for some \(i \geq 2 \), \(V_i \) contains a 3-clique. If \(a \notin V_1 \), then we may assume that \(a \in V_2 \). Let \(V'_2 = V_2 \setminus \{ a \} \). Suppose that each \(V_i \), \(i \geq 3 \), does not contain a 3-clique. Consider the \(r \)-colouring \((V_1 \cup V'_2) \cup V_3 \cup \cdots \cup V_{r+1} \) of \(V(G) \). By (1), \(V_1 \cup V'_2 \) contains a 3-clique. Since \(V_1 \) is an independent set, \(V'_2 \) is not an independent set. Thus, \(V_2 \) contains a 3-clique. \(\square \)

Lemma 2. Let \(G \) be a graph such that
\[
G \rightarrow (\underbrace{2, 3, \ldots, 3}_{r-1}), \quad r \geq 2.
\]
Then \(K_1 + G \rightarrow (\underbrace{3, \ldots, 3}_r) \).
Proof. Let \(V(K_1) = \{ a \} \). Assume the contrary and let \(V_1 \cup \cdots \cup V_r \) be an \(r \)-colouring of \(V(K_1 + G) \) without monochromatic 3-cliques. Let \(a \in V_i \). Then \(V'_i = V_i \setminus \{ a \} \) is an independent set. From (2) it follows that

\[
G \to (3, \ldots, 2, \ldots, 3). \tag{3}
\]

Consider the \(r \)-colouring \(V_1 \cup \cdots \cup V'_1 \cup \cdots \cup V_r \) of \(V(G) \). Since \(V'_i \) is an independent set, (3) implies that for some \(j \neq i \) the set \(V_j \) contains a 3-clique, which is a contradiction.

Lemma 3. Let \(G \) be a graph such that \(G \to (3, \ldots, 3) \). Then \(K_{2r} + G \to (3, \ldots, 3) \).

Proof. We prove this lemma by induction on \(r \). The base \(r = 0 \) is clear. Assume that \(r \geq 1 \). Applying the inductive hypothesis for \(K_{2r-2} + G \), we conclude that \(K_{2r-2} + G \to (3, \ldots, 3) \). By Lemma 1, \(K_{2r-1} + G \to (2, 3, \ldots, 3) \). From Lemma 2 it follows that

\[
K_{2r} + G \to (3, \ldots, 3). \tag{r+1}
\]

Lemma 4. Let \(G \) be a graph and \(G \in H_r(3) \), \(r \geq 3 \). If for some \(v \in V(G) \), \(\chi(G - v) \geq 2r + 1 \), then \(|V(G)| \geq 2r + 7 \).

Proof. Suppose the contrary, i.e. \(|V(G)| \leq 2r + 6 \). Then \(|V(G - v)| \leq 2r + 5 \). Since \(\text{cl}(G - v) < 2r \) and \(\chi(G - v) \geq 2r + 1 \), from Theorem A it follows that \(G - v = K_{2r-4} + C_5 + C_5 \). Thus, \(G \) is a subgraph of \(K_{2r-4} + C_5 + C_5 \). From the obvious equation

\[
K_{2r-4} + C_5 + C_5 = K_2 + \cdots + K_2 + C_5 + C_5
\]

it becomes clear that \(K_{2r-4} + C_5 + C_5 \to (3, \ldots, 3) \). Hence, \(G \to (3, \ldots, 3) \). This contradicts \(G \in H_r(3) \).

6. Proof of the Theorem

6.1. Proof of the inequality \(F_r(3) \geq 2r + 7, r \geq 3 \)

We prove this inequality by induction on \(r \). The base of the induction is \(r = 3 \). We need to prove that \(F_3(3) \geq 13 \). Assume the opposite. Let \(G \in H_3(3) \) and \(|V(G)| \leq 12 \). By Proposition 1 we have \(\chi(G) \geq 7 \). From Lemma 4 it follows that \(G \) is a vertex-critical 7-chromatic graph. By Theorem B, we have \(G = G_1 + G_2 \). Obviously, it is enough to consider only the situation when \(\text{cl}(G_1) \leq \text{cl}(G_2) \). Since \(\text{cl}(G) < 6 \), we must have \(\text{cl}(G_1) = 1 \) or \(\text{cl}(G_1) = 2 \). If\(\text{cl}(G_1) = 1 \), then from \(G \in H_3(3) \) we deduce that \(G_2 \in H(2, 3, 3; 5) \). This contradicts Proposition 2. If \(\text{cl}(G_1) = 2 \), then from \(G \in H_3(3) \) it follows that \(G_2 \in H_2(3) \), which contradicts Proposition 3.
Let $r \geq 4$ and $G \in H_r(3)$. We need to prove that $|V(G)| \geq 2r + 7$. Assume that \(\frac{1}{2}(\frac{5}{3}(2r+1) - n) \leq 1 \), where $n = |V(G)|$. Then $n \geq \left\lceil \frac{(10r+3)}{3} \right\rceil$. Since $r \geq 4$, we have $\left\lceil \frac{(10r+3)}{3} \right\rceil \geq 2r + 7$. Thus, $n = |V(G)| \geq 2r + 7$. Hence we can assume that

\[
\left\lceil \frac{3}{2} \left(\frac{5}{3}(2r+1) - n \right) \right\rceil \geq 2.
\] (4)

By Proposition 1, $\chi(G) \geq 2r + 1$. If for some $v \in V(G)$, $\chi(G - v) \geq 2r + 1$, then by Lemma 4, $|V(G)| \geq 2r + 7$. Hence, we need to consider only the case when G is a vertex-critical $(2r + 1)$-chromatic graph. This, together with (4) and Theorem C, implies that $G = K_2 + G_1$. From $G \in H_r(3)$ it follows that $G_1 \in H_{r-1}(3)$. By the inductive hypothesis, $|V(G_1)| \geq 2r + 5$. Therefore, $|V(G)| \geq 2r + 7$.

6.2. Proof of the inequality $F_r(3) \leq 2r + 7$

Consider the graph P, whose complementary graph \overline{P} is given in Fig. 1. In [14] it is proved that

\[
P \to (2, 3, 3).
\] (5)

By (5) and Lemma 2, $K_1 + P \to (3, 3, 3)$. Lemma 3 gives

\[
K_{2r-6} + (K_1 + P) = K_{2r-5} + P \to 3, \ldots, 3.
\]

Since $\text{cl}(P) = 4$, $\text{cl}(K_{2r-5} + P) = 2r - 1$. Hence $K_{2r-5} + P \in H_r(3)$. From $|V(K_{2r-5} + P)| = 2r + 7$ it follows that $F_r(3) \leq 2r + 7$. This completes the proof of the theorem. \(\square \)
7. Proof of Theorem A

Define $G_r = K_r - 5 + C_4 + C_5$, $r \geq 5$. Let G be a graph such that $\text{cl}(G) < r$, $\chi(G) \geq r+1$ and $|V(G)| \leq r + 5$, $r \geq 5$. We need to prove that $G = G_r$. The proof starts by observing that

If G_r is a subgraph of G then $G = G_r$. \hspace{1cm} (6)

Indeed, the relations $|V(G)| \leq r + 5$ and $|V(G_r)| = r + 5$ imply $V(G_r) = V(G)$. Since $\text{cl}(G) < r$ and $\text{cl}(G_r + e) = r$, $\forall e \in E(G_r)$, we have $G = G_r$.

It follows from $\chi(G) \geq r + 1$ that G contains a vertex-critical $(r + 1)$-chromatic subgraph. This fact and (6) imply that it suffices to prove the following statement:

If G is a vertex-critical $(r + 1)$-chromatic graph such that $\text{cl}(G) < r$ and $|V(G)| \leq r + 5$ then $G = G_r$.

The proof is by induction on r, with induction base $r = 5$. Let G be a vertex-critical 6-chromatic graph satisfying $\text{cl}(G) < 5$ and $|V(G)| \leq 10$. We claim that $G = G_5$. By Theorem B, we have $G = G_1 + G_2$. We will prove that

$$\text{cl}(G_1) = \text{cl}(G_2) = 2$$ \hspace{1cm} (7)

and

$$\chi(G_i) \geq 3, \quad i = 1, 2.$$ \hspace{1cm} (8)

Since $\text{cl}(G) = \text{cl}(G_1) + \text{cl}(G_2) \leq 4$, (7) will follow from the inequalities $\text{cl}(G_i) \geq 2$, $i = 1, 2$, which we are about to establish. Assume on the contrary that, for instance, $\text{cl}(G_1) = 1$. Clearly, $\chi(G_1) = 1$. We infer from $\text{cl}(G_1) = \chi(G_1) = 1$ that $\text{cl}(G_2) < 4$ and $\chi(G_2) = 5$. Since $|V(G_2)| \leq 9$, this is impossible by $F_4(2) = 11$ [11]. The contradiction proves (7). Assume that (8) is false. Let, for instance, $\chi(G_1) \leq 2$. Then $\chi(G_2) \geq 4$. Since $\text{cl}(G_2) = 2$, Chvátal’s result in [1] implies that $|V(G_2)| \geq 11$, contradicting $|V(G_2)| \leq 9$.

Now (7) and (8) yield $|V(G_i)| \geq 5$, $i = 1, 2$. Because $|V(G)| \leq 10$, we obtain

$$|V(G_i)| = 5, \quad i = 1, 2.$$ \hspace{1cm} (9)

It follows from (7) to (9) that $G_1 = G_2 = C_5$, i.e. $G = C_5 + C_5 = G_5$. We are done with the base case $r = 5$.

Let $r \geq 6$. Then

$$\frac{5}{3}(r + 1) - |V(G)| \geq \frac{5}{3}(r + 1) - (r + 5) > 0.$$

By Theorem C, we have $G = K_1 + G'$. It is clear that G' is a vertex-critical r'-chromatic graph satisfying $\text{cl}(G') < r - 1$ and $|V(G')| \leq r + 4$. We obtain $G' = G_{r - 1}$ by the inductive hypothesis. Hence $G = G_r$, and Theorem A follows.

References