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1. Introduction

What is a Gromov hyperbolic space? A geodesic metric space is called hyperbolic in the Gromov sense if there exists an
upper bound of the distance from every point in a side of any geodesic triangle to the union of the two other sides (see
Definition 2.2). This condition is known as Rips condition. The underlying idea with regard to triangles is that in a Gromov
hyperbolic space the geodesic triangles are thin, i.e., the Rips condition is another way to understand the negative curvature
that the one traditionally formulated as the sum of the internal angles of any geodesic triangles is less than π .

The theory of Gromov hyperbolic spaces was introduced by Mikhail Gromov in the 1980s, cf. [14,15], and from then it
has thereafter been studied and developed by many authors, e.g. [7,13,27,36]. It is specially remarkable the fact that this
“new” theory grasps the connections between graphs and Potential Theory on Riemannian manifolds (see e.g. [4,18,21]).

The study of Gromov hyperbolicity of a Riemann surface with its Poincaré metric is non-trivial. An obvious reason is that
homological “obstacles” may be surrounded by geodesic triangles which are not thin, as in the case of the two-dimensional
jungle gym (a Z

2-covering of a torus with genus two). An even stronger reason is the result, proved in [35], that the usual
classes O G , O H P , O H B , O H D , and surfaces with linear isoperimetric inequality, are independent of the Gromov hyperbolic
class. More precisely, in each of these classes, as well as in its complement, some surfaces are Gromov hyperbolic and some
are not (even in the case of plane domains). This has stimulated a good number of works on the subject, e.g. [17,28,29,31,35]
for negative constant curvature and [30,32] with negative variable curvature.

We are interested in studying conditions which determine when a given complete Riemannian surface S is Gromov
hyperbolic. In order to do it, the main goal of this work is to get graph-structures G , which are good models for surfaces
and, in this way, moving the study of Gromov hyperbolicity from the surface to its associated graph, whose structure is
very much simpler and, therefore, to study Rips condition shall be easier. Gromov hyperbolicity is of quite interest in metric
graphs theory since it is closely related to concepts arising in the study of trees: in fact, we can consider hyperbolic graphs
as a generalization of metric trees.

To replace surfaces, manifolds or even metric spaces by graphs (ε-nets) in order to study Gromov hyperbolicity, and other
properties, has been a fruitful idea with many different applications (see [1,16,21]). In recent years, numerous techniques
have been developed for the polygonization of surfaces, usually in triangles and quadrilaterals, like the triangulation for the
protein design. The advantage of our results is that we use very simple graphs instead of ε-nets.

There are many applications which rely on the concept of Gromov hyperbolic graphs, for instance, measurements on the
Internet indicate that it is negatively curved in the sense of Gromov (see [5]), the celebrated growth/preferential attachment
process as a mean to construct a scale-free graph leads to a (scaled) Gromov negatively curved graph (see [19,20]), the
greedy geographical routing is based on embedding the network graph in the Gromov hyperbolic Poincaré disk, such an
embedding is accomplished with minimal distortion if the graph is Gromov hyperbolic (see [22]).

In Section 4, it will be presented a very simple technique for construction of appropriate grids in an extensive class of
Riemannian surfaces. The idea is to get a suitable “discretization” of S , selecting particular points in it and connecting them
by geodesics, obtaining a polygonization of the surface into hexagons, quadrilaterals and triangles. The important objects
in this polygonization are the geodesic triangles, which will grasp all the necessary information about S from the point of
view of the Gromov hyperbolicity. From this “triangulation” in the surface it is possible to get a graph G , called skeleton (see
Definition 4.14), and to obtain the equivalence of the hyperbolicity between both metric spaces.

The main result in this paper is Theorem 4.22, which can be stated in an informal way as follows:

An appropriate complete Riemannian surface, with curvature K satisfying −k2
2 � K � −k2

1 < 0, is hyperbolic if and only if its
1-skeleton, a graph whose edges have length exactly 1, is hyperbolic.

In [35] we obtained a result in the same line for negative constant curvature, K = −1. In that work we constructed
graphs using strongly the constant curvature. Hence, in this current paper, it has been necessary to prove alternative new
results that are valid for negative variable curvature. These new arguments have let us improve the previous paper, also in
the following sense: we replace the graphs in [35] by simpler graphs whose edges have length exactly 1.

In order to prove our main theorem, we need technical results which are interesting by themselves. So Theorems 4.3
and 4.7 give some metric inequalities for Y -pieces with variable negative curvature.

The value of Theorem 4.22 is strengthened for the increasing interest of the study of Gromov hyperbolic graphs (see e.g.
[6,23,25,26,34]).

Notation and terminology. We denote by X or Xn geodesic metric spaces. By dX , L X and diamX we shall denote, respec-
tively, the distance, the length and the diameter with the metric of X . We denote by S or Sn complete Riemannian surfaces,
and by AK the area in a simply connected Riemannian surface with curvature K .

As usual, we denote by x+ the positive part of x: x+ := x if x � 0 and x+ := 0 if x < 0.
For brevity we use the following notation: we write A � B , where A, B depend on some parameters, if there exists a

constant c such that A � cB for every value of the parameters. We write A ≈ B if A � B � A.
We say that a claim holds quantitatively, if it holds for parameters depending only on the constants in the assumptions.

For instance, the first part of Theorem 2.13 says that if Y is δ-hyperbolic, then X is δ′-hyperbolic, where δ′ is a constant
which just depends on δ, a and b.
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2. Background on Gromov hyperbolic spaces

In general, Gromov hyperbolicity can be defined in non-geodesic spaces, but the definition which we use in this paper
(which involves thin triangles definition) is valid only in geodesic spaces. Furthermore, it has the virtue of being intuitively
simple. We refer to [15] for more background and further results about Gromov hyperbolic spaces.

2.1. The notion of Gromov hyperbolicity

Definition 2.1. A geodesic γ on a metric space X is an isometry between an interval I ⊂ R and X , i.e., length(γ |[t,s]) =
d(γ (t), γ (s)) = |t − s| for every s, t ∈ I . We say that X is a geodesic metric space if for every x, y ∈ X there exists a geodesic
joining x and y; we denote by [x, y] any of such geodesics (since we do not require uniqueness of geodesics, this notation
is ambiguous, but it is convenient). A geodesic ray in a space X is an isometric image of the half-line [0,∞).

Definition 2.2. If X is a geodesic metric space and J is a polygon whose sides are J1, J2, . . . , Jn , we say that J is δ-thin if
for every x ∈ J i we have that d(x,

⋃
j �=i J j) � δ. We say that a polygon is geodesic if all of its sides are geodesics.

A geodesic metric space (X,d) is said to be Gromov δ-hyperbolic, if every geodesic triangle in X is δ-thin. We say that X
is hyperbolic (in the Gromov sense) if it is δ-hyperbolic for some δ � 0.

Definition 2.3. We define the Gromov boundary of X , ∂ X , as the set of all geodesic rays emanating from some fixed point
w ∈ X , modulo the equivalence relation given by taking any two rays which lie within a bounded Hausdorff distance of
each other as equivalent; this definition is independent of w .

Remark 2.4. If X is δ-hyperbolic, it is easy to check that every geodesic polygon with n sides is (n − 2)δ-thin. We also have
that every “ideal” geodesic polygon with n1 sides in X and n2 vertices in the Gromov boundary ∂ X is (n1 + n2 − 2)δ-thin,
i.e., a vertex in ∂ X plays a similar role to an additional side.

Examples.

(1) Every bounded metric space X is (diam X)-hyperbolic (see e.g. [15, p. 29]).
(2) Every complete simply connected Riemannian manifold with sectional curvature K � −k2 is δ1-hyperbolic, with δ1 :=

1
k log(1 + √

2) (see e.g. [3, p. 130] and [15, p. 52]).
(3) Every tree with edges of arbitrary length is 0-hyperbolic (see e.g. [15, p. 29]).

Definition 2.5. A tripod, T := (V , E), is a tree (a graph with no cycles) with vertices V := {v, v1, v2, v3} and edges E :=⋃3
i=1[v, vi]; hence the vertex v has degree 3 (i.e., deg(v) = 3) and the vertices v1, v2, v3 have degree 1 (i.e., deg(vi) = 1

for every i = 1,2,3).

Definition 2.6. Given a geodesic triangle T = {x1, x2, x3} in a geodesic metric space X , let T E be a Euclidean triangle whose
sides have the same lengths as those of T . Since there is no possible confusion, we will use the same notation for the
corresponding points in T and T E . The maximum inscribed circle in T E meets the side [x j, xk] in a point yi , for every
permutation {i, j,k} of {1,2,3}, such that dX (xi, y j) = dX (xi, yk) for every permutation {i, j,k} of {1,2,3}. We call the
points y1, y2, y3 the internal points of T . There is a unique local isometry f of T onto a tripod T0, with z the vertex of
degree 3, and z1, z2, z3 the vertices of degree 1, such that dT0 (z, zi) = dX (y j, xi) = dX (yk, xi) for every permutation {i, j,k}
of {1,2,3}.

The triangle T is δ-fine if f (p) = f (q) implies that dX (p,q) � δ. The space X is δ-fine if every geodesic triangle in X is
δ-fine.

A basic result is that hyperbolicity is equivalent to the property of being fine:

Theorem 2.7. (See [15, p. 41].) Let us consider a geodesic metric space X.

(1) If X is δ-hyperbolic, then it is 4δ-fine.
(2) If X is δ-fine, then it is δ-hyperbolic.

2.2. Auxiliary results on metric spaces

For Cartan–Hadamard manifolds, it is possible to generalize the concept of “fine” to triangles with vertices in the bound-
ary, i.e., to ideal geodesic triangles. Recall that a Cartan–Hadamard manifold is a complete, connected and simply connected
Riemannian n-manifold, n � 2, of non-positive sectional curvature. We shall need the following two lemmas.
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Lemma 2.8. Let M be a Cartan–Hadamard manifold with sectional curvatures K � −k2 , and T be a right-angled geodesic triangle in
M with sides A, B, C , of respective lengths a, b, c, and opposite angles θ1 , θ2 , π/2. Then a + b − 2

k log 2 � c � a + b.

Proof. It is easily seen by the triangle inequality that c � a + b. Now, by Aleksandrov’s Comparison Theorem, it is known
that cosh kc � cosh ka cosh kb; hence, ekc � 1

4 ekaekb , and we have the required inequality. �
Lemma 2.9. Let M be a Cartan–Hadamard manifold with sectional curvatures K � −k2 , and Q be a geodesic quadrilateral in M with
consecutive sides A, B, C and D, of respective lengths a, b, c and a. Let us assume also that A and C meet orthogonally the sides B
and D, respectively. Then we have that |b − c| � 2

k log 2.

Proof. Notice that LM(A) = LM(D) = a by hypothesis. We can split the quadrilateral into two right-angled geodesic triangles
with a common side, the hypotenuse (with length r), whose sides have lengths a, b, r and a, c, r respectively. By Lemma 2.8
it holds c � r − a and b � r − a + 2

k log 2; hence, |b − c| � 2
k log 2. �

We can give now a definition of fine ideal triangles.

Definition 2.10. Given a Cartan–Hadamard surface M , let us consider an ideal geodesic triangle T = {x1, x2, x3} in M ∪ ∂M
with some xi ∈ ∂M , and an inscribed circle C contained in T , which is tangent to the side [x j, xk] at some point y′

i , for every
permutation {i, j,k} of {1,2,3}. We call the internal points of T (with respect to C ) to those points yi ∈ [x j, xk] satisfying:

(1) If xi ∈ ∂M for every i = 1,2,3, then yi = y′
i for every i = 1,2,3.

(2) If x1, x2 ∈ ∂M and x3 ∈ M , then y1 = y′
1, y3 = y′

3 and dM(x3, y2) = dM(x3, y1).
(3) If x1 ∈ ∂M and x2, x3 ∈ M , then y1 = y′

1, dM(x2, y1) = dM(x2, y3) and dM(x3, y1) = dM(x3, y2).

There is a unique local isometry f of T onto a tripod T0, with z the vertex of degree 3, and z1, z2, z3 the vertices of
degree 1, such that dT0(z, zi) = dM(y j, xi) = dM(yk, xi) for every permutation {i, j,k} of {1,2,3}. Note hat LT0([z, zi]) ∈
(0,∞].

The triangle T is δ-fine if f (p) = f (q) implies that dX (p,q) � δ for some choice of circle C .

Theorem 2.11. Any geodesic triangle (ideal or not) in a Cartan–Hadamard surface M with curvature K � −k2 is 4δ1-fine, with
δ1 := 1

k log(1 + √
2 ).

Proof. Let us consider a geodesic triangle T = {x1, x2, x3} in M ∪ ∂M . If T is not ideal, i.e., T ⊂ M , since M is δ1-hyperbolic
(see [3, p. 130] and [15, p. 52]), by Theorem 2.7 we can conclude T is 4δ1-fine.

If T is an ideal geodesic triangle, let us consider the set E bounded by T . Next, we shall draw an inscribed ball B(z, r)
contained in E , which is tangent to the side [x j, xk] in the points y′

i , for every permutation {i, j,k} of {1,2,3}. Since
K � −k2, we have that

4π

k2
sinh2(kr/2) � AK

(
B(z, r)

)
� AK (E).

Denoting by θ1, θ2, θ3 the internal angles of T , and according to Gauss–Bonnet formula, it holds

k2 AK (E) � −
∫ ∫

E

K dA = π −
3∑

i=1

θi � π.

Therefore, 4 sinh2(kr/2) � 1 and r � 2
k ar sinh(1/2).

Let us consider the ideal geodesic quadrilateral [x3, y′
1]∪ [y′

1, z]∪ [z, y′
2]∪ [y′

2, x3], where the geodesics [y′
1, z] and [z, y′

2]
meet orthogonally the geodesics [x3, y′

1] and [y′
2, x3], respectively. Notice first that LM([y′

1, z]) = LM([z, y′
2]) = r and, since

the curvature can be non-constant, it is possible to have LM([x3, y′
1]) �= LM([y′

2, x3]). Denoting by t := LM([x3, y′
1]) and

s := LM([y′
2, x3]), we can apply Lemma 2.9 and conclude that |s − t| � 2

k log 2. We shall repeat the argument with the other

quadrilaterals and, if we denote by y1, y2, y3 the internal points of T , it holds that dM(yi, y′
i) � 2

k log 2 for i = 1,2,3.

According to Definition 2.10, it is easily seen that T is 2
k (log 2 + 2 ar sinh(1/2))-fine. Therefore, and taking into account

that 2
k (log 2 + 2 ar sinh(1/2)) � 4δ1, we can assert that every ideal geodesic triangle in M is 4δ1-fine. �

We present now the class of maps which play the main role in the theory.
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Fig. 1.

Definition 2.12. A function between two metric spaces f : X → Y is a quasi-isometry if there are constants a � 1, b � 0 with

1

a
dX (x1, x2) − b � dY

(
f (x1), f (x2)

)
� adX (x1, x2) + b, for every x1, x2 ∈ X;

such a function is called an (a,b)-quasi-isometry.
An (a,b)-quasigeodesic in X is an (a,b)-quasi-isometry between an interval of R and X .

Notice that quasi-isometries are a very flexible kind of maps (they can be even discontinuous); however they are an
important tool in Gromov theory, since they preserve the hyperbolicity:

Theorem 2.13. (See [15, p. 88].) Let us consider an (a,b)-quasi-isometry between two geodesic metric spaces f : X → Y . If Y is hyper-
bolic, then X is hyperbolic, quantitatively. Furthermore, if f is onto, then X is hyperbolic if and only if Y is hyperbolic, quantitatively.

The following result will be useful in the next sections (see Theorems 3.14 and 4.22) in order to determine whether a
given Riemannian surface is not hyperbolic.

Theorem 2.14. (See [28, Theorem 2.1].) Let us consider a geodesic metric space X, and X1, X2 ⊂ X two geodesic metric spaces such
that X1 ∩ X2 = η1 ∪ η2 , with ηi compact sets, dX2 (η1, η2) � c2 and diamXi (η j) � c1 for i, j = 1,2. If X is δ-hyperbolic, then
δ � c2/2 − c1 .

3. Background and previous results on Riemannian surfaces

3.1. Background

From now on, we will work just with orientable Riemannian surfaces and we always assume that the Riemannian metric
is C∞ unless perhaps in some simple closed geodesics, each of them bounding a funnel (see Definition 3.2), where we
allow the metric to be C1 and piecewise C∞ , with the “singularities” along these geodesics. Then the curvature is a (possibly
discontinuous) function along these geodesics. There is a natural way to define a distance in subsets of Riemannian surfaces.

Definition 3.1. If S0 is a path-connected subset of a Riemannian surface S , we can consider the inner distance as follows:

dS0(x, y) := dS |S0(x, y) := inf
{

LS0(γ ): γ ⊂ S0 is a continuous curve joining x and y
}

� dS(x, y).

Definition 3.2. A bordered or nonbordered surface is doubly connected if its fundamental group is isomorphic to Z.
A funnel is a doubly connected bordered Riemannian surface whose border is a simple closed geodesic γ . If the curvature

verifies K � −k2 < 0 then there is no other simple closed geodesic freely homotopic to the border of the funnel, and γ
minimizes the length in its free homotopy class. (See Fig. 1(a).)

A puncture is a doubly connected bordered Riemannian surface whose fundamental group is generated by a simple closed
curve σ and there is no closed geodesic γ ∈ [σ ]. If the curvature verifies K � −k2 < 0 then L([σ ]) = infγ ∈[σ ] L(γ ) = 0. (See
Fig. 1(b).)

A Y -piece is a bordered Riemannian surface which is homeomorphic to a sphere minus three open disks and whose
boundary curves are simple closed geodesics. They are a standard tool for constructing Riemannian surfaces with negative
curvature. A clear description of these Y -pieces and their use are given in [8, Chapter 1] and [9, Chapter X.3]. (See Fig. 1(c).)

A generalized Y -piece is a Riemannian surface (with or without boundary) which is homeomorphic to a sphere without
n open disks and m points, with integers n,m � 0 such that n + m = 3, the n boundary curves are simple closed geodesics
and the m deleted points are punctures. Notice that a generalized Y -piece is topologically the union of a Y -piece and m
cylinders. (See Fig. 1(d).)
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Definition 3.3. Given a Riemannian surface S , a geodesic γ in S , and a continuous unit vector field ξ along γ , orthogonal
to γ , we define the Fermi coordinates based on γ as the map Y (θ, r) := expγ (θ) rξ(θ).

It is well known that the Riemannian metric can be expressed in Fermi coordinates as ds2 = dr2 + G(θ, r)2 dθ2, where
G(θ, r) is the solution of the scalar equation

∂2G

∂r2
(θ, r) + K (θ, r)G(θ, r) = 0, G(θ,0) = 1,

∂G

∂r
(θ,0) = 0 (3.4)

(see e.g. [9, p. 247]).

Lemma 3.5. (See [32, Lemma 3.1].) Let us consider the positive function G(θ, r) which is the solution of Eq. (3.4). The following
inequalities hold:

(1) If K (θ, r) � −k2 < 0, then G(θ, r) � cosh kr for every θ, r ∈ R.
(2) If K (θ, r) � −k2 , then G(θ, r) � cosh kr for every θ, r ∈ R.

As a consequence of this previous lemma we obtain the following results.

Lemma 3.6. (See [32, Lemma 3.2].) Let us consider R
2 = {(θ, r): θ, r ∈ R} with two different metrics given in Fermi coordinates

as ds2
1 = dr2 + G1(θ, r)2 dθ2 and ds2

2 = dr2 + G2(θ, r)2 dθ2 , such that their respective curvatures, K1 and K2 , satisfy K1(θ, r) �
K2(θ, r) = −k2 < 0. Let us consider two curves σ1 and σ2 in R

2 with the same endpoints, such that σi is a geodesic for dsi (i = 1,2).
Then, Lds1 (σ1) � Lds2 (σ2).

Lemma 3.7. Let us consider R
2 = {(θ, r): θ, r ∈ R} with two different metrics given in Fermi coordinates as ds2

1 = dr2 + G1(θ, r)2 dθ2

and ds2
2 = dr2 + G2(θ, r)2 dθ2 , such that their respective curvatures, K1 and K2 , verify K1(θ, r) � K2(θ, r) = −k2 < 0. Let us consider

the simply connected right-angled quadrilateral Q := {(θ, r): 0 � θ � c, 0 � r � a} in R
2 , then

AK1(Q ) � AK2(Q ) = c

k
sinh ka.

Remark 3.8. Note that Q is not a geodesic quadrilateral, although three of its sides are geodesics.

Proof. Notice that G2(θ, r) = cosh kr; by Lemma 3.5, we have that G1(θ, r) � G2(θ, r) for every (θ, r) ∈ R
2. Since dAKi =

Gi(θ, r)dr dθ for i = 1,2, we deduce

AK1(Q ) =
c∫

0

a∫
0

G1(θ, r)dr dθ �
c∫

0

a∫
0

G2(θ, r)dr dθ =
c∫

0

a∫
0

cosh kr dr dθ = c

k
sinh ka = AK2(Q ). �

In [10] Chavel and Feldman have proved the following theorem, which generalizes to negative variable curvature the
Randol’s Collar Lemma about the existence of collars centered on simple closed geodesics with constant curvature K = −1
(see [33]).

Definition 3.9. A collar in a Riemannian surface S about a simple closed geodesic γ is a doubly connected domain in S
bounded by two Jordan curves (called the boundary curves of the collar) orthogonal to the pencil of geodesics emanating
from γ ; such a collar is equal to {p ∈ S: dS (p, γ ) < d}, for some positive constant d. The constant d is called the width of
the collar.

Theorem 3.10. (See [10, p. 446].) Let S be a Riemannian surface with curvature satisfying −k2 � K � 0, and γ a simple closed geodesic
on S of length Lγ . Then there exists a collar whose width d satisfies

d � 1

k
ar cosh

(
coth

(
kLγ

2

))
. (3.11)

Let η1, η2 be the boundary curves of such cylinder centered on γ and of width d = 1
k ar cosh(coth(

kLγ

2 )); Lemma 3.5 and
−k2 � K allow to deduce

LS(ηi) � Lγ coth

(
kLγ

2

)
for i = 1,2. (3.12)
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3.2. Criteria to deduce the non-hyperbolicity of surfaces

Definition 3.13. If c is a positive constant, we say that a complete Riemannian surface S has c-wide genus if every simple
closed geodesic γ ⊂ S such that S \ γ is connected, verifies L S(γ ) � c. We say that S has narrow genus if there is not c > 0
such that S has c-wide genus.

Notice that any planar domain has c-wide genus for every c, and that any Riemannian surface with finite genus has
c-wide genus for some c.

We will need the following general criteria which guarantees that many surfaces are not hyperbolic.

Theorem 3.14. Let us consider any complete Riemannian surface S (with or without boundary) with pinched curvature −k2
2 � K �

−k2
1 < 0; if S has boundary, we also require that ∂ S is the union of simple closed geodesics. If S has narrow genus then it is not

hyperbolic.

Proof. We perform the proof in three steps. We first show that there is always a complete Riemannian surface, R , without
boundary and with pinched curvature, containing S . Then, in order to prove the theorem, it suffices to consider only com-
plete Riemannian surfaces without boundary and with pinched curvature. Finally, the result follows then by Theorem 2.14.

Step 1. Let us assume that S has boundary, the hypothesis implies that ∂ S is the union of pairwise disjoint simple closed
geodesics. In this case, we can construct a complete Riemannian surface R without boundary and with −k2

2 � K � −k2
1 < 0

by pasting to S a cylinder along each simple closed geodesic as follows: If γ0 ⊆ ∂ S is a closed geodesic with length l,
we can consider the Fermi coordinates based on γ0. The Riemannian metric can be expressed in Fermi coordinates as
ds2 = dr2 + G(θ, r)2 dθ2, with G(θ, r) satisfying (3.4), with G(θ, r) an l-periodic function in θ defined in R × [−r0,0], for
some r0 > 0. We have G(θ,0) = 1 and ∂G/∂r(θ,0) = 0 for every θ ∈ R. If we define G(θ, r) := cosh k1r in R× (0,∞), then it
is C1 (and even piecewise C∞) in R×[−r0,∞), and l-periodic in θ ; furthermore, we have that K (θ, r) = −k2

1 in R× (0,∞).
These coordinates (θ, r) ∈ R × [−r0,∞), with the Riemannian metric ds2 = dr2 + G(θ, r)2 dθ2, attach a funnel to γ0.

This allows to attach a funnel to S along each simple closed geodesic γ0 ⊆ ∂ S and to get a complete Riemannian surface
R containing S and with pinched curvature.

Step 2. Since S is geodesically convex in R (every geodesic connecting two points of S is contained in S), then dR(z, w) =
dS (z, w) for every z, w ∈ S , and any simple closed geodesic in R is contained in S . Therefore, it is sufficient to prove the
theorem for surfaces without boundary.

Step 3. Let S be a complete Riemannian surface without boundary, with −k2
2 � K � −k2

1 < 0 and narrow genus. Hence, there
exists a sequence of simple closed geodesics {γn}n in S with S \ γn connected such that limn→∞ L S(γn) = 0.

The point is to apply Theorem 2.14. By Theorem 3.10, since −k2
2 � K � −k2

1 < 0, it is known that there exists a collar
centered on γn of width

dn = 1

k2
ar cosh

(
coth

(
k2LS(γn)

2

))
.

We will divide the surface S into bordered surfaces in the following way. Let us define the bordered Riemannian surfaces
Sn

1 as the cylinder centered on γn of width dn , and Sn
2 := S \ Sn

1, which is connected since S \ γn is connected. We have that
∂ Sn

1 = ∂ Sn
2 = Sn

1 ∩ Sn
2 = ηn

1 ∪ ηn
2 and dS(η

n
1, ηn

2) = dSn
1
(ηn

1, ηn
2) = 2dn . Since diamS (η

n
i ) � L S(η

n
i ), by Theorem 2.14, (3.11) and

(3.12), if S is δ-hyperbolic, then

δ � dn − LS
(
ηn

i

)
� 1

k2
ar cosh

(
coth

(
k2LS(γn)

2

))
− LS(γn) coth

(
k2LS(γn)

2

)
.

Since limn→∞ L S(γn) = 0, we deduce that δ = ∞ and, therefore, S is not hyperbolic. �
3.3. Technical results

In the next section, hexagons will be quite useful; therefore it is crucial the following result of P. Buser, which shows
that hexagons satisfy hyperbolic trigonometric inequalities on surfaces of variable negative curvature.

Theorem 3.15. (See [8, Theorem 2.5.11].) Let S be a complete simply connected Riemannian surface of negative curvature −k2
2 � K �

−k2
1 . For any right-angled convex geodesic hexagon in S with consecutive sides of lengths a, γ , b, α, c, β , the following inequalities

hold

sinh k1a sinh k1b cosh k1γ � cosh k1c + cosh k1a cosh k1b,

sinh k2a sinh k2b cosh k2γ � cosh k2c + cosh k2a cosh k2b.
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These inequalities also hold if some sides of the hexagon have length zero, i.e., if we have an ideal right-angled hexagon.
A closely related result concerning to the estimation of the lengths of the sides in a right-angled hexagon has been

obtained recently in [29].

Proposition 3.16. (See [29, Proposition 4.8].)

(1) For every x, y, t � 0 it holds

f (x, y, t) := ar cosh
cosh t + cosh x cosh y

sinh x sinh y
� e−x + e−y + e− 1

2 (x+y−t)+ + (t − x − y)+.

(2) Given l0 > 0, for every x, y � l0 and t � 0 it holds

ar cosh
cosh t + cosh x cosh y

sinh x sinh y
� e−x + e−y + e− 1

2 (x+y−t)+ + (t − x − y)+.

Remark 3.17. Note that if H is a right-angled hexagon in the unit disk for which three pairwise non-adjacent sides X , Y , T
are given (with respective lengths x, y, t), then the opposite side of T in H has length f (x, y, t) (see e.g. [11, p. 86]), and if
in addition x, y � l0, then

f (x, y, t) ≈ e−x + e−y + e− 1
2 (x+y−t)+ + (t − x − y)+.

Furthermore, the two following technical lemmas show that, under a few metric restrictions, every point in either a
geodesic hexagon or a geodesic quadrilateral is near a side.

Lemma 3.18. Let S be a complete Riemannian surface with K � −k2 < 0, and let H be a simply connected right-angled geodesic
hexagon in S with three alternate sides, Ai , such that L S(Ai) � L for i = 1,2 and L S (A3) > 8δ1 . Denoting by η the side which joins
A1 , A2 , then dS (z, η) � 12δ1 + L for every z ∈ ∂ H, with δ1 := 1

k log(1 + √
2 ).

Proof. Let us denote by η1, η2 the geodesic sides joining the geodesic A3 and the geodesics A1, A2, respectively. Without
loss of generality we can assume that S is simply connected, since otherwise we can lift H to the universal covering of S
(recall that H is simply connected and that the distances in the universal cover are greater than in the surface). Since S is
a simply connected complete Riemannian surface with K � −k2 < 0, it is δ1-hyperbolic (see [3, p. 130] and [15, p. 52]) and
hence H is 4δ1-thin.

We can consider A3 as an oriented curve from η1 to η2; since L S(A3) > 8δ1, we can assert that there exist two points
α and β in the oriented geodesic A3 defined as α := max{z ∈ A3: dS (z, η1) � 4δ1} and β := min{z ∈ A3: dS (z, η2) � 4δ1}.
If z ∈ (α,β) it holds dS (z, A1 ∪ η ∪ A2) � 4δ1, since H is 4δ1-thin. If z /∈ (α,β) then dS (z, [α,β]) � 4δ1 and dS (z, A1 ∪
η ∪ A2) � 8δ1. Taking into account that L S(Ai) � L for i = 1,2, it holds dS (z, η) � 8δ1 + L for every z ∈ ⋃3

i=1 Ai . Since
dS(η1, η2) = L S(A3) > 8δ1, if z ∈ η1, then dS (z, ∂ H \ η1) = dS (z, ∂ H \ {η1, η2}) � 4δ1 and dS (z, η) � 12δ1 + L. Similarly, if
z ∈ η2, then dS (z, η) � 12δ1 + L. �
Lemma 3.19. Let S be a complete Riemannian surface with K � −k2 < 0, and let Q be a simply connected geodesic quadrilateral in
S with consecutive sides, A, B, C and η such that L S(A) � L and B hits orthogonally the sides A and C. Then dS (z, η) � 4δ1 + L for
every z ∈ ∂ Q , with δ1 := 1

k log(1 + √
2 ).

Proof. Without loss of generality we can assume that S is simply connected, since otherwise we can lift Q to the universal
covering of S (recall that Q is simply connected and that the distances in the universal cover are greater than in the
surface). Since S is a simply connected complete Riemannian surface with K � −k2 < 0, it is δ1-hyperbolic (see [3, p. 130]
and [15, p. 52]) and hence Q is 2δ1-thin.

If z ∈ A, then dS (z, η) � L. If z ∈ C there are two possibilities. If L S(C) � 2δ1 then dS (z, η) � 2δ1. If L S(C) > 2δ1, let
us consider the geodesic C as an oriented curve from B to η; therefore, we can assert that there exists a point α in the
oriented geodesic C defined as α := max{z ∈ C : dS (z, B) � 2δ1}. If z > α it holds dS(z, B) > 2δ1 and, since Q is 2δ1-thin,
therefore dS (z, A ∪ η ∪ B) = dS (z, A ∪ η) � 2δ1; consequently, for every z � α we have that dS (z, η) � 2δ1 + L. If z < α, then
dS(z,α) � 2δ1 and, therefore, dS (z, η) � 4δ1 + L.

Finally, if z ∈ B we repeat the previous argument; if L S(B) � 2δ1, then dS(z, η) � dS (z, A) + L � 2δ1 + L. If L S(B) > 2δ1,
let us consider the geodesic B as an oriented curve from A to C ; therefore, we can assert that there exists a point β in
the oriented geodesic B defined as β := min{z ∈ B: dS (z, C) � 2δ1}. If z < β , then dS (z, C) > 2δ1 and, since Q is 2δ1-thin,
therefore dS (z, A ∪ η ∪ C) = dS (z, A ∪ η) � 2δ1; consequently, for every z � β we have that dS (z, η) � 2δ1 + L. If z > β , then
d(z, β) � 2δ1 and, therefore, dS (z, η) � 4δ1 + L. �
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4. Generating graphs in Riemannian surfaces: skeletons

In this section we obtain the equivalence of the hyperbolicity of an extensive class of Riemannian surfaces and some
simple graphs (see Theorems 4.17 and 4.22). The kind of surfaces which we are going to study is the set of complete Rie-
mannian surfaces S (with or without boundary), which can be decomposed in a union of funnels and generalized Y -pieces;
this is a large class of surfaces (see [2], [12, Theorem 4.1] and [30]).

Since the proofs of Theorems 4.17 and 4.22 are long, we have decided to split them into several steps (the results
appearing in the two following subsections are, in fact, tools for the proof of these theorems; nevertheless, some of these
results, as Theorems 4.3 and 4.7, have their own interest).

We start by constructing a particular kind of trees, T := (V , E ), associated to a generalized Y -piece, with V := V (T ) the
set of vertices and E := E (T ) the set of edges.

4.1. Definitions and metric estimations in Y -pieces

In order to construct these trees associated to the generalized Y -pieces let us introduce some definitions.

Definition 4.1. Let us consider any generalized Y -piece, Y , with simple closed geodesics (or punctures) γ1, γ2, γ3 ∈ ∂Y ; if
{i, j,k} is any permutation of {1,2,3}, we shall call seams of Y to the geodesics Γi in Y joining γ j and γk (and orthogonal
to both of them) such that LY (Γi) = dY (γ j, γk).

We shall call related hexagons to Y to the two ideal right-angled geodesic hexagons, H and H ′ , obtained by splitting Y
along its seams, such that Y = H ∪ H ′ and ∂ H ∩ ∂ H ′ = ⋃3

i=1 Γi .
The geodesics ηi := γi ∩ H and η′

i := γi ∩ H ′ will be called geodesics related to the geodesic γi in H and H ′ , respectively;
therefore, γi = ηi ∪ η′

i for i = 1,2,3.
We shall call related triangles to Y to the two ideal geodesic triangles, T and T ′ , contained in the related hexagons, H and

H ′ respectively, constructed in the following way. If we denote by wi the middle point in the related geodesic ηi and by
w ′

i the middle point in the related geodesic η′
i , for i = 1,2,3; we define T = {w1, w2, w3} ⊂ H and T ′ = {w ′

1, w ′
2, w ′

3} ⊂ H ′
(see Fig. 2).

If LY (γi) = 0 (i.e., if γi is a puncture) for some i, both related triangles have, at least, two sides with infinity length.

Remark 4.2. The generalized Y -piece, Y , has been splitting into the union of two right-angled geodesic hexagons H and H ′ ,
which are, as well, the union of four simply connected sets bounded by three geodesics quadrilaterals and its related
triangles, respectively.

Notice that, due to the variable curvature, H and H ′ can be non-isometric; therefore, in general, it is possible to have
LH (ηi) �= LH ′ (η′

i) for every i = 1,2,3. This fact makes more complicated our work.

The following theorem shows that given any generalized Y -piece with pinched negative curvature, the lengths of its
seams are bounded in terms of the bounds of the lengths of its boundary geodesics; furthermore, we have got explicit
expressions for these bounds. Next Theorem 4.3 is interesting by itself, since it generalizes the result proved in [35] with
constant negative curvature to pinched negative curvature, and we will use it in the following results of this section.

Theorem 4.3. Let us consider a generalized Y -piece, Y , with −k2
2 � K � −k2

1 < 0 and l � LY (γi) � L for every closed geodesic
γi ⊆ ∂Y , for i = 1,2,3. There exist constants c0 , m and M, which just depend on l, L, k1 and k2 , with the following properties.

(1) The seams verify

m � LY (Γi) � M for every i = 1,2,3.

(2) There exists a hexagon related to Y , H, whose sides are the seams Γi and the related geodesics ηi for every i = 1,2,3, such that

c0 � LY (ηi) � L for every i = 1,2,3.

Furthermore, we have explicit formulas for the constants:

m := 1

k2
ar cosh

(
coth(Lk2/2)

)
, C := 1

k1
ar cosh

cosh Lk1(1 + cosh Lk1)

sinh2(lk1/2)
,

c0 := min

{
l

2
,

1

k2
ar coth

(
cosh

(
k2

k1
max

{
ar cosh

(
sinh(Ck1/2)

sinh(lk1/8)

)
,ar sinh

(
4π

lk1

)}))}
,

M := 1

k1
ar cosh

cosh Lk1(1 + cosh Lk1)

sinh2(c0k1)
.
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Proof. We perform the proof in three steps. First, we prove that there exists a positive constant m such that m � LY (Γi)

for every i = 1,2,3. Then, we prove that there exist two positive constants C and c0 such that C is an upper bound for the
length of at least one of the seams, and c0 � LY (ηi) for every i = 1,2,3. This second step implies that there exists a positive
constant M such that LY (Γi) � M for every i = 1,2,3.

Step 1. The lower bound for the length of the seams is easily obtained from Theorem 3.10: since −k2
2 � K � 0, for any

permutation {i, j,k} of {1,2,3} there exist two collars, each of them centered on γ j and γk , of widths d j , dk respectively,
verifying (3.11). Therefore,

LY (Γi) � d j + dk � max{d j,dk} � 1

k2

(
ar cosh

(
coth

(
k2 min{LS(γ j), LS(γk)}

2

)))
� m.

Step 2. It is easily seen that at least two related geodesics in either H or H ′ have lengths greater or equal than l/2; without
loss of generality we can assume that this happens in H (if this happens in H ′ we shall rename it as H). Hence, we have
LY (η1), LY (η2) � l/2 and, applying Theorem 3.15, we deduce the inequality LY (Γ3) � C . If LY (η3) � l/2, then we obtain the
same inequality for LY (Γ1) and LY (Γ2), and we finish the proof with M := C and c0 := l/2.

Therefore, let us deal with the case LY (η3) < l/2. We shall prove that LY (η1), LY (η2) � l/2 implies LY (η3) � c0. Let us
consider a hexagon H∗ isometric to H ; pasting the seams of H and H∗ we obtain a new Y -piece, Y ∗ . Since −k2

2 � K < 0,
by Theorem 3.10, there exists a collar in Y ∗ , centered on η3 (and its symmetric geodesic in H∗), with width d satisfying

d � 1

k2
ar cosh

(
coth LY (η3)k2

)
. (4.4)

Then we deduce LY (Γ1), LY (Γ2) � d.
If we prove that d has an upper bound, then we will have a lower bound for LY (η3). In order to find an upper bound

for d we shall construct quadrilaterals completely contained in H ′ in the following way. Let us define the set Q as the
intersection of H ′ with the neighborhood of γ3 of radius d. Let us consider the following geodesics contained in ∂ Q : η′

3,
with length LY (η′

3) � l − LY (η3) > l/2, and the oriented geodesics α ⊂ Γ1 and β ⊂ Γ2, emanating from η′
3 and with length

exactly d. We denote by σ the set of points in ∂ Q at distance d from η′
3 ⊂ γ3.

We are going to estimate the area of Q . Notice that d is the width for the simple closed geodesic η3 ∪ η∗
3 ⊂ ∂Y ∗ , not for

γ3 = η3 ∪η′
3 ⊂ ∂Y ; therefore it is possible that Γ3 enters in the neighborhood of η′

3 of radius d; in this case there are points
in the geodesic side Γ3 at distance less than d from η′

3 (otherwise the argument is simpler); note that in this case σ has
two connected components. Hence, Γ3 hits σ in two points, x and y; we shall call x′ and y′ to their respective projections
into η′

3.
Let Q̃ ⊂ Q be the geodesic quadrilateral with sides [x, x′], [y, y′], [x′, y′] ⊆ η′

3 and [x, y] ⊂ Γ3. Notice that LY ([x, x′]) =
LY ([y, y′]) = d and we shall write s := LY ([x′, y′]).

Therefore Q \ Q̃ ⊂ H ′ contains two disjoint quadrilaterals Q 1, Q 2, both of them with height d and the sum of the lengths
of their bases is LY (η′

3) − LY ([x′, y′]) > l/2 − s.
Since K � −k2

1, by Lemma 3.7, we have

l/2 − s

k1
sinh dk1 � AK (Q 1) + AK (Q 2) � AK

(
H ′).

By Gauss–Bonnet formula, − ∫∫
H ′ K dA = π , and taking into account that K � −k2

1, it holds

k2
1 AK

(
H ′) � −

∫ ∫
H ′

K dA = π.

Joining both inequalities, we get

(l/2 − s) sinh dk1 � π

k1
. (4.5)

Next, let us estimate the length s using hyperbolic trigonometry. In order to do it, we shall consider the geodesic
quadrilateral Q̃ . The geodesic [x, y] is contained in Γ3 and, using LY (Γ3) � C , we deduce t := LY ([x, y]) � LY (Γ3) � C .
Notice that standard hyperbolic trigonometry and Lemma 3.6 give sinh(tk1/2) � sinh(sk1/2) cosh dk1. Hence, sinh(Ck1/2) �
sinh(tk1/2) � sinh(sk1/2) cosh dk1. Therefore,

s � 2

k1
ar sinh

(
sinh(Ck1/2)

cosh dk1

)
.

Using this above inequality in (4.5) we get[
l − 2

ar sinh

(
sinh(Ck1/2)

)]
sinh dk1 � π

. (4.6)

2 k1 cosh dk1 k1
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If

2

k1
ar sinh

(
sinh(Ck1/2)

cosh dk1

)
� l

4
⇒ d � 1

k1
ar cosh

(
sinh(Ck1/2)

sinh(lk1/8)

)
.

From this last inequality and (4.4), we deduce

LY (η3) � ε0 := 1

k2
ar cosh

(
cosh

(
k2

k1
ar cosh

(
sinh(Ck1/2)

sinh(lk1/8)

)))
.

In other case, if

2

k1
ar sinh

(
sinh(Ck1/2)

cosh dk1

)
<

l

4
,

from (4.6) we get

l

4
sinh dk1 � π

k1
⇒ d � 1

k1
ar sinh

(
4π

lk1

)
.

From this last inequality and (4.4) we deduce

LY (η3) � ε1 := 1

k2
ar cosh

(
cosh

(
k2

k1
ar sinh

(
4π

lk1

)))
.

Therefore, LY (η3) � min{ε0, ε1} and we can conclude that LY (ηi) � c0 for i = 1,2,3, since c0 = min{l/2, ε0, ε1}.

Step 3. In order to obtain the upper bound of the length of the other two seams, Γ1, Γ2, we shall repeat the previous
argument in the first part of the second step for Γ3, since LY (ηi) � c0 for i = 1,2,3, we have LY (Γi) � M for i = 1,2. Notice
that this inequality also holds for i = 3, since c0 � l/2. �

Next, let us give an alternative proof of Theorem 4.3 without explicit constants. However, taking into account the im-
portant role of the Y -pieces in the study of surfaces (see e.g. [2,30]), we consider useful to provide of explicit constants
appearing in Theorem 4.3.

In the proof of Theorem 4.3, in order to get upper bounds for the lengths of the seams, we have used strongly that the
lengths of the three simple closed geodesics in the boundary have a positive lower bound. In fact, the length of a given
seam which joins two simple closed geodesics in the boundary, whose lengths do have a lower bound, has an upper bound,
with no restriction about the lower bound of the length of the third simple closed geodesic.

Theorem 4.7. Let us consider a generalized Y -piece, Y , with −k2
2 � K � −k2

1 < 0, and the simple closed geodesics γi ⊆ ∂Y for
i = 1,2,3, such that LY (γi) � L for every i = 1,2,3 and LY (γi) � l for i = 1,2. There exist constants m and M, which just depend on
l, L, k1 and k2 , such that the seam Γ3 , joining γ1 and γ2 , verifies

m � LY (Γ3) � M.

In fact, m is the constant in Theorem 4.3.

Proof. The lower bound for the length of the seam is easily obtained from Theorem 3.10, since −k2
2 � K � 0 and LY (γi) � L

for i = 1,2, it is known that there exist two collars, each of them centered on γ1 and γ2, of width d1, d2 respectively,
verifying (3.11). Therefore

LY (Γ3) � d1 + d2 � max{d1,d2} � 1

k2

(
ar cosh

(
coth

(
k2 min{LS(γ1), LS(γ2)}

2

)))
� m.

Next, let us get an upper bound for the length of the seam. Let us assume that 0 < LY (γ3) � L, since if LY (γ3) = 0, i.e.,
if γ3 is a puncture, we obtain the same result by a limit process (see [8, Chapter 4.4]). Taking into account that l � LY (γi)

for i = 1,2, then either l/2 � LY (ηi) or l/2 � LY (η′
i) for some i = 1,2.

Without loss of generality, we can assume that l/2 � LY (η1) in the hexagon H . If it holds l/2 � LY (η2) as well, applying
Theorem 3.15 in H we have

LY (Γ3) � C := 1

k1
ar cosh

cosh Lk1(1 + cosh Lk1)

sinh2(lk1/2)
,

and we have finished the proof with M := C .
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If it holds LY (η2) < l/2, then l/2 � LY (η′
2) and we shall apply Theorem 3.15 in H and H ′ in the following way:

l/2 � LY (η1) � 1

k1
ar cosh

cosh(k1LY (Γ1)) + cosh(k1LY (Γ3)) cosh(k1LY (Γ2))

sinh(k1LY (Γ3)) sinh(k1LY (Γ2))
,

l/2 � LY
(
η′

2

)
� 1

k1
ar cosh

cosh(k1LY (Γ2)) + cosh(k1LY (Γ3)) cosh(k1LY (Γ1))

sinh(k1LY (Γ3)) sinh(k1LY (Γ1))
.

Since LY (Γi) � 1
k2

ar cosh(coth(Lk2/2)) for every i = 1,2,3, by Proposition 3.16 it holds

l/2 � e−k1 LY (Γ3) + e−k1 LY (Γ2) + e− k1
2 (LY (Γ3)+LY (Γ2)−LY (Γ1))+ + k1

(
LY (Γ1) − LY (Γ2) − LY (Γ3)

)
+,

l/2 � e−k1 LY (Γ3) + e−k1 LY (Γ1) + e− k1
2 (LY (Γ3)+LY (Γ1)−LY (Γ2))+ + k1

(
LY (Γ2) − LY (Γ1) − LY (Γ3)

)
+.

Combining all cases, just one of the following possibilities holds:

(1) LY (Γ1) − LY (Γ2) − LY (Γ3), LY (Γ2) − LY (Γ1) − LY (Γ3) � 0; then LY (Γ3) � 0, which is a contradiction.
(2) LY (Γ1) − LY (Γ2) − LY (Γ3) � 0 and LY (Γ2) − LY (Γ1) − LY (Γ3) < 0; then LY (Γ2) + LY (Γ3) � LY (Γ1).
(3) LY (Γ1) − LY (Γ2) − LY (Γ3) < 0 and LY (Γ2) − LY (Γ1) − LY (Γ3) � 0; then LY (Γ1) + LY (Γ3) � LY (Γ2).
(4) LY (Γ1) − LY (Γ2) − LY (Γ3), LY (Γ2) − LY (Γ1) − LY (Γ3) < 0.

From (2) we obtain that

l/2 � e−k1 LY (Γ3) + e−k1 LY (Γ1) + e− k1
2 (LY (Γ3)+LY (Γ1)−LY (Γ2)),

which implies that LY (Γ3), LY (Γ1) and LY (Γ3) + LY (Γ1) − LY (Γ2) cannot be large simultaneously; hence, there exists a
constant M1, which just depends on l, k1 and k2, such that LY (Γ3) � M1 or LY (Γ1) � M1 or LY (Γ3) + LY (Γ1) − LY (Γ2) �
2M1. Consequently, if LY (Γ3) � M1 we have finished. If LY (Γ1) � M1, then LY (Γ3) � LY (Γ2) + LY (Γ3) � LY (Γ1) � M1. If
LY (Γ3) + LY (Γ1) − LY (Γ2) � 2M1 we can use that LY (Γ1) − LY (Γ2) − LY (Γ3) � 0 and then LY (Γ3) � M1. Therefore, in
case (2) we always have LY (Γ3) � M1.

By symmetry, from (3) we obtain that LY (Γ3) � M1 for the previous constant M1.
Finally, from (4) we obtain that

l/2 � e−k1 LY (Γ3) + e−k1 LY (Γ2) + e− k1
2 (LY (Γ3)+LY (Γ2)−LY (Γ1)),

l/2 � e−k1 LY (Γ3) + e−k1 LY (Γ1) + e− k1
2 (LY (Γ3)+LY (Γ1)−LY (Γ2)).

Therefore, following a similar argument, we deduce, from the first inequality, that it holds LY (Γ3) � M1 or LY (Γ2) � M1 or
LY (Γ3) + LY (Γ2) − LY (Γ1) � 2M1 and, from the second, that it holds LY (Γ3) � M1 or LY (Γ1) � M1 or LY (Γ3) + LY (Γ1) −
LY (Γ2) � 2M1. There are the following possibilities.

(4.1) If LY (Γ3) � M1, then we have finished.
(4.2) If LY (Γ1), LY (Γ2) � M1, then triangle inequality in H implies LY (Γ3) �

∑3
i=1 LY (ηi) + ∑2

i=1 LY (Γi) � 3L + 2M1.
(4.3) If LY (Γi) � M1 and LY (Γ3) + LY (Γ j) − LY (Γi) � 2M1 for some permutation {i, j} of {1,2}, then LY (Γ3) � LY (Γ3) +

LY (Γ j) � 3M1.
(4.4) Finally, if LY (Γ3) + LY (Γ1) − LY (Γ2) � 2M1 and LY (Γ3) + LY (Γ2) − LY (Γ1) � 2M1, then we can deduce LY (Γ3) � 2M1.

Writing M := max{C,3L + 2M1,3M1} we have the result. �
4.2. Skeletons of Y -pieces

We can already construct the trees associated to those generalized Y -pieces which appear into the decomposition of the
surface (see Definition 4.12).

Definition 4.8. Given a positive constant L, let us consider:

• a generalized Y -piece, Y , with LY (γi) � L for at least two simple closed geodesics γi ⊆ ∂Y ,
• its related triangles, T = {w1, w2, w3} and T ′ = {w ′

1, w ′
2, w ′

3},
• their respective internal points ui ∈ [w j, wk] and u′

i ∈ [w ′
j, w ′

k] (see Definitions 2.6 and 2.10) for every permutation
{i, j,k} of {1,2,3}.

We shall say that a tree T := (V , E ) is a skeleton of Y (see Fig. 2) if it has tripod structure (see Definition 2.5) with vertices
V = {v, v1, v2, v3} and edges E := ⋃3

i=1[v, vi] satisfying one of the following properties:
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Fig. 2.

(1) LT [v, vi] = dH (u j, wi) = dH (uk, wi) for any permutation {i, j,k} of {1,2,3}.
(2) LT [v, vi] = dH ′ (u′

j, w ′
i) = dH ′ (u′

k, w ′
i) for any permutation {i, j,k} of {1,2,3}.

Remark 4.9. There exist two skeletons of Y , associated to both related triangles. Furthermore, one of the following properties
holds:

(1) LT [vi, v j] = dH (wi, w j) for every i, j ∈ {1,2,3}.
(2) LT [vi, v j] = dH ′ (w ′

i, w ′
j) for every i, j ∈ {1,2,3}.

Lemma 4.10. Given any generalized Y -piece, Y , with K � −k2 < 0, LY (γ ) � L for at least two simple closed geodesics γ ⊆ ∂Y , and
T a related triangle to Y , then dY (z, T ) � 2(9δ1 + L) for every z ∈ Y , with δ1 := 1

k log(1 + √
2 ).

Proof. Let us denote by γ1, γ2, γ3, the simple closed geodesics in ∂Y . Without loss of generality we can assume that
LY (γ1), LY (γ2) � L, and there is no restriction about the upper bound for LY (γ3).

We denote by H the related hexagon to Y with T ⊂ H ; notice that the related triangles splits their related hexagons
associated into four simply connected ideal geodesic polygons: the related triangle and three geodesic quadrilaterals. All of
them are isometrics to subsets in the universal covering of S , which is δ1-hyperbolic since K � −k2 (see [3, p. 130] and
[15, p. 52]).

Now, we shall show that every point in H is near to the related triangle T . The triangle T is the boundary of a simply
connected set, E; therefore, by Theorem 2.11, it is 4δ1-fine and for every z ∈ E it holds dY (z, T ) � 4δ1.

In order to obtain a bound for z in the quadrilaterals in H , since these polygons are simply connected, it will be sufficient
to check that every point z ∈ ∂ H is near to T . Since these three quadrilaterals satisfy the conditions in Lemma 3.19, we have
dH (z, T ) � 4δ1 + L for every z ∈ ∂ H . Consequently, dY (z, T ) � 4δ1 + L for every z ∈ H .

Next, let us prove that dY (z, T ) � 2(9δ1 + L) for every z ∈ H ′ . In order to do it, let us distinguish two cases.
If LY (η′

3) > max{L,8δ1} � 8δ1, since LY (η′
i) � LY (γi) � L for i = 1,2, the hexagon H ′ satisfies conditions in Lemma 3.18;

then dH ′ (z,Γ3) � 12δ1 + L holds for every z ∈ ∂ H ′ . By the previous argument, we have that dY (z, T ) � dH ′ (z,Γ3)+ 4δ1 + L �
16δ1 + 2L for every z ∈ H ′ .

If LY (η′
3) � max{L,8δ1}, then we shall consider the related triangle T ′ ⊂ H ′ , which is the boundary of a simply connected

set E ′ . By Theorem 2.11, T ′ is 4δ1-fine; therefore, for every z ∈ E ′ it holds dH ′ (z, T ′) � 4δ1. As geodesic quadrilaterals are
2δ1-thin, for every z ∈ T ′ it holds dH ′ (z, ∂ H ′) � 2δ1. Then dH ′ (z, ∂ H ′) � 6δ1 for every z ∈ H ′ . If dH ′ (z, ∂ H ′) = dH ′ (z,

⋃3
i=1 Γi),

since Γi ⊂ ∂ H for every i = 1,2,3, by the previous argument, then dY (z, T ) � dH ′ (z,
⋃3

i=1 Γi) + 4δ1 + L � 10δ1 + L for every
z ∈ H ′ . If dH ′ (z, ∂ H ′) = dH ′ (z,

⋃3
i=1 η′

i), since LY (η′
i) � LY (γi) � max{L,8δ1} for i = 1,2,3, then dY (z, T ) � dY (z,

⋃3
i=1 ηi) +

4δ1 + L + max{L,8δ1} � 10δ1 + L + max{L,8δ1} for every z ∈ H ′ .
Consequently, dY (z, T ) � max{4δ1 + L,16δ1 + 2L,10δ1 + L + max{L,8δ1}} � 2(9δ1 + L) for every z ∈ Y . �

Proposition 4.11. Given any generalized Y -piece, Y , with K � −k2 < 0 and LY (γ ) � L for at least two simple closed geodesics
γ ⊆ ∂Y , there exists a (1,4(11δ1 + L))-quasi-isometry of Y onto its skeleton T , with δ1 := 1

k log(1 + √
2 ).

Proof. Let us denote by γ1, γ2, γ3, the simple closed geodesics in ∂Y . Consider a related triangle T = {w1, w2, w3} ⊂ H ,
its internal points u1, u2, u3, and the skeleton of Y corresponding to T , T := (V , E ) given by Definition 4.8, with vertices
V := {v, v1, v2, v3} and edges E := ⋃3

i=1[v, vi].
We shall construct now the required quasi-isometry of Y onto its skeleton T . Let f : Y → T be a map verifying f (ui) = v

and f (wi) = vi for i = 1,2,3, f is an isometry from the geodesics [ui, w j], [uk, w j] in H onto the edge [v, v j] of T for
every permutation {i, j,k} of {1,2,3}, f (γi) = vi for every γi ⊆ ∂Y such that LY (γi) � L and, for every point x ∈ Y which is
not in T or in those geodesics with LY (γi) � L, then f (x) is the image by f of the nearest point to x in the triangle T .
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The related triangle T is the boundary of a simply connected set; therefore, according to Theorem 2.11, it is 4δ1-fine (see
Definitions 2.6 and 2.10). Then for every x, y ∈ T it holds dT ( f (x), f (y)) � dY (x, y) � dT ( f (x), f (y)) + 8δ1.

According to Lemma 4.10, it holds dY (z, T ) � 2(9δ1 + L) for every z ∈ Y ; consequently, given any two points x, y ∈ Y and
their respective projections, x′ , y′ , into T , it holds

dY (x, y) � dY
(
x′, y′) + 4(9δ1 + L) � dT

(
f
(
x′), f

(
y′)) + 4(9δ1 + L) + 8δ1 = dT

(
f (x), f (y)

) + 4(11δ1 + L).

The other inequality follows in a similar way. �
4.3. Skeletons of surfaces

Many complete Riemannian surfaces can be decomposed in a union of funnels and generalized Y -pieces (see [2],
[12, Theorem 4.1] and [30]). This is the kind of surfaces which we are going to study. The following results use this de-
composition in order to obtain the associated skeletons G .

Definition 4.12. Let us consider a positive constant L and a complete Riemannian surface S (with or without boundary)
with −k2

2 � K � −k2
1 < 0; if S has boundary, we also require that ∂ S is the union of simple closed geodesics. We say that

S is L-decomposable if there exists a decomposition of S as a union of funnels {Fm}m∈M and generalized Y -pieces {Yn}n∈N ,
such that L S(γ ) � L for at least two simple closed geodesics γ ⊂ ∂Yn for each n and, if L S (γ ) > L for some simple closed
geodesic γ ⊂ ⋃

∂Yn , then γ is in the boundary of just one generalized Y -piece, i.e., γ ⊂ ⋃
m ∂ Fm ∪ ∂ S .

Remark 4.13. Notice that if S is L-decomposable, then its Y -pieces Yn are connected each other through simple closed
geodesics γ ⊂ ∂Yn verifying L S(γ ) � L.

Definition 4.14. Let us consider an L-decomposable complete Riemannian surface S (with or without boundary). We say
that a graph G is a skeleton of S if it is the union of {Tn}n∈N with the following properties:

(1) Tn is a skeleton of Yn for each n ∈ N .
(2) If Yn ∩ Ym = ⋃

i∈Inm
γ i

nm (with γ i
nm = γ i

mn), then Tn ∩ Tm = ⋃
i∈Inm

vi
nm , where vi

nm is the vertex associated to γ i
nm , and

we identify vi
nm with vi

mn in order to obtain G .

A 1-skeleton G of S is a graph isomorphic to a skeleton of the surface, such that every edge has length 1.

Remark 4.15. Notice that card Inm � 3, and Tn ∩ Tm = ∅ if and only if Yn ∩ Ym = ∅.

As the following result shows, in order to study Gromov hyperbolicity of a Riemannian surface with variable negative
curvature, one can “forget” the funnels, i.e., funnels do not influence Gromov hyperbolicity of Riemannian surfaces with
K � −k2 < 0.

Theorem 4.16. (See [32, Theorem 5.5].) Let us consider a complete Riemannian surface S (with or without boundary) with K �
−k2 < 0; if S has boundary, we also require that ∂ S is the union of simple closed geodesics. Let us denote by F the union of the funnels
of S. If S0 is the bordered complete Riemannian surface obtained by deleting from S the interior of F , then S is hyperbolic if and only if
S0 is hyperbolic, quantitatively.

Theorem 4.17 below lets us move the study of the hyperbolicity of a complete Riemannian surface S to its skeleton G ,
with much simpler structure.

Theorem 4.17. Let us consider an L-decomposable complete Riemannian surface S (with or without boundary) with −k2
2 � K �

−k2
1 < 0, and let G be a skeleton of S. Then S is hyperbolic if and only if G is hyperbolic, quantitatively.

Proof. Firstly, in order to study the hyperbolicity of S , by Theorem 4.16, we can assume that S does not have funnels.
Therefore S is the union of generalized Y -pieces {Yn}, such that if L S (γ ) > L for some simple closed geodesic γ ⊂ ⋃

∂Yn ,
then γ ⊂ ∂ S . Furthermore, according to Definition 4.14, removing funnel does not impact the skeleton.

By Theorem 2.13, it suffices to show that there exists an (a,b)-quasi-isometry of S onto a skeleton G of the surface, with
a, b constants depending just on k1, k2 and L.

Proposition 4.11 gives that, for each n ∈ N , there exists a surjective (1,4(11δ1 + L))-quasi-isometry fn : Yn → Tn with
δ1 := 1

k1
log(1 + √

2 ).
Let us define f : S → G such that f |Yn := fn; we will show now that this map f is a surjective (1 + κ,8(11δ1 + L))-

quasi-isometry, with κ := 4k2(11δ1 + L)/ar cosh(coth(Lk2/2)).
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First, let us consider two points x, y ∈ S which are not in the same Yn , and an oriented geodesic σ from x to y in S .
Notice that σ meets at most a finite number of Yn ’s, since it is a compact curve crossing simple closed geodesics γ ⊂ ⋃

∂Yn

with L S (γ ) � L and, by (3.11), these geodesics are far away each other, hence there cannot be an infinitely many Y -pieces
involved. In order to simplify the notation, we shall denote them by Y1, Y2, . . . , Yr , where x ∈ Y1, y ∈ Yr and the geodesic σ
meets Yk+1 after Yk . We shall denote by T1, T2, . . . , Tr the skeletons associated to the these Y -pieces; therefore, f (x) ∈ T1
and f (y) ∈ Tr .

For every generalized Y -piece Yk let us define the points σk := σ ∩ ∂Yk ∩ ∂Yk+1 for every k = 1, . . . , r − 1; notice that
the vertices vk = f (σk) belong to the skeletons associated to each Yk . Since σ := [x, σ1] ∪ [σ1, σ2] ∪ · · · ∪ [σr−1, y], it holds

dS(x, y) = LS(σ ) = dY1(x,σ1) +
r−2∑
k=1

dYk (σk,σk+1) + dYr (σr−1, y).

According to (3.11), it holds dYk (σk, σk+1) � 1
k2

ar cosh(coth(Lk2/2)). Now, by Proposition 4.11, for every k = 1, . . . , r − 1 we
have

dTk (vk, vk+1) � dYk (σk,σk+1) + 4(11δ1 + L)

= dYk (σk,σk+1) + κ
1

k2
ar cosh

(
coth(Lk2/2)

)
� (1 + κ)dYk (σk,σk+1).

Taking into account the above inequalities, it holds

dG
(

f (x), f (y)
)
� dT1

(
f (x), v1

) +
r−2∑
k=1

dTk (vk, vk+1) + dTr

(
vr−1, f (y)

)

� dY1(x,σ1) + 4(11δ1 + L) + (1 + κ)

r−2∑
k=1

dYk (σk,σk+1) + dYk (σr−1, y) + 4(11δ1 + L)

� (1 + κ)

(
dY1(x,σ1) +

r−2∑
k=1

dYk (σk,σk+1) + dYk (σr−1, y)

)
+ 8(11δ1 + L)

= (1 + κ)dS(x, y) + 8(11δ1 + L).

If x and y are in the same Yn , we have two cases. If the geodesic which joins x and y in S is contained in Yn , then
dS (x, y) = dYn (x, y) and we can apply Proposition 4.11. In other case, we can apply the previous argument.

In order to get the other inequality let us follow a similar argument. Let g be the oriented geodesic in T from f (x) ∈ T1
to f (y) ∈ Ts; g meets T1, T2, . . . , Ts , and meets Tk+1 after Tk . Let us denote by vk the vertex of g in Tk ∩ Tk+1. Let
Y1, Y2, . . . , Ys be the Y -pieces associated to these skeletons (therefore x ∈ Y1 and y ∈ Ys) and T1, T2, . . . , Ts be the related
triangles to them. Let us denote by wi

k for i = 1,2 the vertices belonging to the related triangle Tk which satisfy w1
k ∈

∂Yk−1 ∩ ∂Yk , vk−1 = f (w1
k ) for every k = 2, . . . , s, w2

k ∈ ∂Yk ∩ ∂Yk+1 and vk = f (w2
k ) for every k = 1, . . . , s − 1.

Next, according to Definition 4.8, dTk (vk−1, vk) = dYk (w1
k , w2

k ) for k = 2, . . . , s − 1, and applying Proposition 4.11 in Y1
and Ys , it holds

dS(x, y) � dY1

(
x, w1

2

) +
s−1∑
k=2

dYk

(
w1

k , w2
k

) +
s−2∑
k=2

dYk

(
w2

k , w1
k+1

) + dYs

(
w2

s−1, y
)
.

Since dYk (w2
k , w1

k+1) � L � Lk2
2 ar cosh(coth(Lk2/2))

dYk (w1
k , w2

k ) � κdYk (w1
k , w2

k ) = κdTk (vk−1, vk), we obtain

dS(x, y) � (1 + κ)

(
dT1

(
f (x), v1

) +
s−1∑
k=2

dTk (vk−1, vk) + dTs

(
vs−1, f (y)

)) + 8(11δ1 + L)

= (1 + κ)dG
(

f (x), f (y)
) + 8(11δ1 + L).

Therefore, f is a (1 + κ,8(11δ1 + L))-quasi-isometry of S onto G , and Theorem 2.13 finishes the proof. �
4.4. The main result

In order to state the main result in this paper, Theorem 4.22, we need previously a definition and two lemmas.
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Definition 4.18. An edge e in a graph G is a tree-edge if one of the following properties holds:

(1) The graph obtained from G by removing e is not connected.
(2) The edge e is isometric to the half-line [0,∞).

Remark 4.19. Notice that (1) covers the case of edges with a vertex of degree 1, since a vertex with degree 1 will have
degree 0 after the edge is removed and so be disconnected from the rest.

It is easy to check that the following lemmas hold.

Lemma 4.20. Let us consider two graphs G1 , G2 , and a graph isomorphism f : G1 → G2 , such that LG1(e) = LG2 ( f (e)) for every
non-tree-edge e ∈ G1 . Then G1 is δ-hyperbolic if and only if G2 is δ-hyperbolic.

Lemma 4.21. Let {Tn} be a family of tripods and G any graph obtained by pasting the tripods by identifying pairwise disjoint couples
of vertices of {v ∈ V (Tn): deg(v) = 1}. Let G0 be the graph with every edge of length 1 which is isomorphic to G. If every Tn has edges
with lengths xn, yn, zn verifying c1 � xn + yn, xn + zn, yn + zn � c2 for every n, then there exists an (a,b)-quasi-isometry of G onto
G0 , where a, b depend just on c1 and c2 .

We can already state the main result in this paper.

Theorem 4.22. Let us consider an L-decomposable complete Riemannian surface S with −k2
2 � K � −k2

1 < 0, and let G be its
1-skeleton. If we define

α := inf

{
LS(γ ): γ ⊆

(⋃
n

∂Yn

)
\

(⋃
m

∂ Fm ∪ ∂ S

)
and S \ γ is connected

}
,

β := sup

{
LS(γ ): γ ⊆

⋃
m

∂ Fm ∪ ∂ S, γ ⊆ ∂Yn for some n, and S \
(⋃

m

∂ Fm ∪ Yn

)
is connected

}
,

the following hold:

(1) If α = 0 or β = ∞, then S is not hyperbolic.
(2) If α > 0 and β < ∞, then S is hyperbolic if and only if G is hyperbolic, quantitatively.

Proof. Firstly, by Theorem 4.16, in order to study the hyperbolicity of S , we can assume that S does not have funnels.
If α = 0, then S has narrow genus and Theorem 3.14 gives that S is not hyperbolic. If β = ∞, then there exist generalized

Y -pieces Yn (which do not disconnect S; recall that S does not have funnels), with γ 1
n , γ 2

n ⊂ ∂Yn , L S (γ
1

n ), L S (γ
2

n ) � L and
dYn (γ

1
n , γ 2

n ) → ∞; then Theorem 2.14 gives that S is not hyperbolic.
We deal now with the case α > 0 and β < ∞. Let G1 be a skeleton of S; by Theorem 4.17, S is hyperbolic if and only

if G1 is hyperbolic, quantitatively. Let us write G1 = ⋃
n T 1

n . Note that if there exists a simple closed geodesic γ ⊂ ∂Yn with
L S(γ ) > max{L, β}, then T 1

n has three tree-edges. Let us define

Y := {
Yn: T 1

n has some non-tree-edge
}
,

Y1 := {
Yn ∈ Y : T 1

n has three non-tree-edges
}
,

Y2 := {
Yn ∈ Y : T 1

n has two non-tree-edge
}
.

Note that Y = Y1 ∪ Y2. Then, if Yn ∈ Y , then L S(γ ) � max{L, β} for every simple closed geodesic γ ⊂ ∂Yn . If Yn ∈ Y1, then
L S(γ ) � α for every simple closed geodesic γ ⊂ ∂Yn . If Yn ∈ Y2, then L S (γ ) � α for two simple closed geodesics γ ⊂ ∂Yn .
Denote by x1

n , y1
n , z1

n the lengths of the edges of T 1
n . Notice that, since α > 0 and β < ∞, if G1 = ⋃

n T 1
n , according to

Theorems 4.3 and 4.7 there exist constants m and M which only depend on k1, k2, L, α and β , verifying m � x1
n + y1

n, x1
n +

z1
n, y1

n + z1
n � M + 2L for every Yn ∈ Y1, and m � x1

n + y1
n � M + 2L and the edge with length z1

n is a tree-edge for every
Yn ∈ Y2.

Next, let us consider the graph G2 obtained from G1 by replacing the tree-edges in G1 by tree-edges with length
exactly 1. Hence, there exists a graph isomorphism f1 : G1 → G2 such that for every non-tree-edges e ∈ G1 it holds
LG1(e) = LG2 ( f1(e)). By Lemma 4.20, we have that G1 is δ-hyperbolic if and only if G2 is δ-hyperbolic. Notice now that,
if G2 = ⋃

n T 2
n and every T 2

n has edges with lengths x2
n , y2

n , z2
n , then min{m,1} � x2

n + y2
n, x2

n + z2
n, y2

n + z2
n � M + 2L + 2 for

every n.
Finally, the 1-skeleton G is obtained from G2 by replacing the non-tree-edges in G2 by non-tree-edges with length

exactly 1; hence, by Lemma 4.21, there exists a surjective (a,b)-quasi-isometry f2 : G2 → G , where a, b depend just on k1,
k2, L, α and β; then Theorem 2.13 finishes the proof. �



E. Tourís / J. Math. Anal. Appl. 380 (2011) 865–881 881
As a consequence of Theorem 4.22, we obtain that hyperbolicity is a property stable under significant metric changes
(even with non-quasi-isometric deformations), as long as the topology is preserved, for Riemannian surfaces with skeletons.
The result is not true without this hypothesis (even with curvature K = −1) as Matsuzaki and Rodríguez have proved
in [24].

Next we prove that the hyperbolicity is stable under twist.

Theorem 4.23. Let S be any L-decomposable complete Riemannian surface with −k2
2 � K � −k2

1 < 0 and let S ′ be any surface
obtained from S with any amount of twist around the geodesics in

⋃
n ∂Yn. Then S is hyperbolic if and only if S ′ is hyperbolic, quanti-

tatively.

Proof. Note that S and S ′ have isomorphic 1-skeletons, α(S) = α(S ′) and β(S) = β(S ′). Then, Theorem 4.22 gives the
result. �
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