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We derive a new high-order compact finite difference scheme for option pricing in
stochastic volatility models. The scheme is fourth order accurate in space and second order
accurate in time. Under some restrictions, theoretical results like unconditional stability
in the sense of von Neumann are presented. Where the analysis becomes too involved we
validate our findings by a numerical study. Numerical experiments for the European option
pricing problem are presented. We observe fourth order convergence for non-smooth
payoff.
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1. Introduction

The traditional approach to price derivative assets or options is to specify an asset price process exogenously by a
stochastic diffusion process and then price by no-arbitrage arguments. The seminal example of this approach is Black and
Scholes’ paper [1] on pricing of European-style options. This approach leads to simple, explicit pricing formulas. However,
empirical research has revealed that they are not able to explain important effects in real financial markets, e.g. the volatility
smile (or skew) in option prices.

In real financialmarkets, not only asset returns are subject to risk, but also the estimate of the riskiness is typically subject
to significant uncertainty. To incorporate such an additional source of randomness into an asset pricing model, one has to
introduce a second risk factor. This also allows to fit higher moments of the asset return distribution. The most prominent
work in this direction is the Heston model [2]. Such models are based on a two-dimensional stochastic diffusion process
with two Brownian motions with correlation ρ, i.e. dW (1)(t)dW (2)(t) = ρ dt , on a given filtered probability space for the
stock price S = S(t) and the stochastic volatility σ = σ(t)

dS(t) = µ̄S(t) dt +


σ(t)S(t) dW (1)(t),

dσ(t) = a(σ (t)) dt + b(σ (t)) dW (2)(t),

where µ̄ is the drift of the stock, a(σ ) and b(σ ) are the drift and the diffusion coefficient of the stochastic volatility.
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Application of Itô’s lemma leads to partial differential equations of the following form

Vt +
1
2
S2σVSS + ρb(σ )

√
σ SVSσ +

1
2
b2(σ )Vσσ + a(σ )Vσ + rSVS − rV = 0, (1)

where r is the (constant) riskless interest rate. Eq. (1) has to be solved for S, σ > 0, 0 ≤ t ≤ T and subject to final and
boundary conditions which depend on the specific option that is to be priced.

For some models and under additional restrictions, closed form solutions to (1) can be obtained by Fourier methods
(e.g. [2,3]). Another approach is to derive approximate analytic expressions, see e.g. [4] and the literature cited therein. In
general, however – even in the Heston model [2] when the parameters in it are non constant – Eq. (1) has to be solved
numerically. Moreover, many (so-called American) options feature an additional early exercise right. Then one has to solve
a free boundary problem which consists of (1) and an early exercise constraint for the option price. Also for this problem
one typically has to resort to numerical approximations.

In the mathematical literature, there are many papers on numerical methods for option pricing, mostly addressing the
one-dimensional case of a single risk factor and using standard, second order finite difference methods (see, e.g. [5] and the
references therein). More recently, high-order finite difference schemes (fourth order in space) were proposed that use a
compact stencil (three points in space). In the present context see, e.g. [6] for linear and [7–9] for fully nonlinear problems.

There are less works considering numerical methods for option pricing in stochastic volatility models, i.e. for two spatial
dimensions. Finite difference approaches that are used are often standard, low order methods (second order in space) and
do provide little numerical analysis or convergence results. Other approaches include finite element–finite volume [10],
multigrid [11], sparse wavelet [12], or spectral methods [13].

Let us review some of the related finite difference literature. Different efficient methods for solving the American option
pricing problem for the Heston model are compared in [14]. The article focuses on the treatment of the early exercise free
boundary and uses a second order finite difference discretisation. In [15] different, low order ADI (alternating direction
implicit) schemes are adapted to the Heston model to include the mixed spatial derivative term. While most of [6] focuses
on high-order compact scheme for the standard (one-dimensional) case, in a short remark [6, Section 5] the stochastic
volatility (two-dimensional) case is also considered. However, the final scheme there is of second order only due to the low
order approximation of the cross diffusion term.

The originality of the present work consists in proposing a new, high-order compact finite difference scheme for (two-
dimensional) option pricing models with stochastic volatility. It should be emphasised that although our presentation is
focused on the Heston model, our methodology naturally adapts to other stochastic volatility models. We derive a new
compact scheme that is fourth order accurate in space and second order accurate in time. The stability analysis of the scheme
is a difficult task due to themulti-dimensional context, variable coefficients and thenature of the boundary conditions. Under
additional assumptions (zero correlation, periodic boundary conditions), we establish theoretical results like unconditional
stability in the sense of von Neumann (for ‘frozen coefficients’). We discuss this in the numerical part.

This paper is organised as follows. In the next section, we recall the Heston model from [2] and its closed form solution
for the constant parameters case. In Section 3 we introduce new independent variables to transform the partial differential
equation to a more tractable form. In Section 4 we derive the new high-order compact scheme. We analyse its necessary
stability condition in Section 4.3. Numerical experiments that confirm the good properties of the method are presented in
Section 5. We give numerical results for the European option pricing problem with non-smooth payoff and observe fourth
order convergence. Section 6 concludes.

2. Heston model

Let us recall the Heston model from [2] on which we will focus our presentation. Consider a two-dimensional standard
Brownian motion W = (W (1),W (2)) with correlation dW (1)(t)dW (2)(t) = ρdt on a given filtered probability space.
Assuming a specific form of the drift a(σ ) and the diffusion coefficient b(σ ) of the stochastic volatility, the value of the
underlying asset in [2] is characterised by

dS(t) = µ̄S(t) dt +


σ(t)S(t) dW (1)(t),

dσ(t) = κ∗(θ∗
− σ(t)) dt + v


σ(t) dW (2)(t), (2)

for 0 < t ≤ T with S(0), σ (0) > 0 and µ̄, κ∗, v and θ∗ the drift, the mean reversion speed, the volatility of volatility and
the long-run mean of σ , respectively.

Note that ourmethod carries over to other stochastic volatilitymodelswith different choices of the drift and the diffusion
coefficient of the stochastic volatility, e.g. the GARCH diffusion model

dσ(t) = κ∗(θ∗
− σ(t)) dt + vσ(t) dW (2)(t), (3)

or the so-called 3/2-model

dσ(t) = κ∗σ(t)(θ∗
− σ(t)) dt + vσ(t)3/2 dW (2)(t), (4)

in a natural way (see also Remark 1 at the end of Section 4.1).
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In the Hestonmodel, it follows by Itô’s lemma and standard arbitrage arguments that any derivative asset V = V (S, σ , t)
solves the following partial differential equation

Vt +
1
2
S2σVSS + ρvσ SVSσ +

1
2
v2σVσσ + rSVS +


κ∗(θ∗

− σ) − λ(S, σ , t)

Vσ − rV = 0, (5)

which has to be solved for S, σ > 0, 0 ≤ t < T and subject to a suitable final condition, e.g.

V (S, σ , T ) = max(K − S, 0),

in case of a European put option (with K denoting the strike price). In (5), λ(S, σ , t) denotes the market price of volatility
risk. While in principle it could be estimated from market data, this is difficult in practice and the results are controversial.
Therefore, one typically assumes a risk premium that is proportional to σ and chooses λ(S, σ , t) = λ0σ for some constant
λ0. For streamlining the presentation we restrict ourselves to this important case, although our scheme applies to general
functional forms λ = λ(S, σ , t).

The ‘boundary’ conditions in the case of the put option read as follows

V (0, σ , t) = Ke−r(T−t), T > t ≥ 0, σ > 0, (6a)
V (S, σ , t) → 0, T > t ≥ 0, σ > 0, as S → ∞, (6b)
Vσ (S, σ , t) → 0, T > t ≥ 0, S > 0, as σ → ∞. (6c)

The remaining boundary condition at σ = 0 can be obtained by looking at the formal limit σ → 0 in (5),

Vt + rSVS + κ∗θ∗Vσ − rV = 0, T > t ≥ 0, S > 0, as σ → 0. (6d)

This boundary condition is used frequently, e.g. in [14,10]. Alternatively, one can use a homogeneous Neumann
condition [11],

Vσ (S, σ , t) → 0, T > t ≥ 0, S > 0, as σ → 0. (6e)

For constant parameters, one can employ Fourier transform techniques and obtain a system of ordinary differential
equations which can be solved analytically [2]. By inverting the transform one arrives at a closed-form solution of (5), where
the European put option price V is given by

V (S, σ , t) = Ke−r(T−t)P2 − SP1, (7)

with (k = 1, 2)

Pk =
1
2

+
1
π


∞

0
Re

e−iξ ln(K)fk(ξ)

iξ


dξ, (8)

fk(ξ) = exp

Ck(T − t, ξ) + σDk(T − t, ξ) + iξ ln S


,

Ck(τ , ξ) = rξ iτ +
κ∗θ∗

v2


(bk + dk)τ − 2 ln

1 − gedkτ

1 − g


, Dk(τ , ξ) =

bk + dk
v2

1 − edkτ

1 − gedkτ
,

g =
bk + dk
bk − dk

, dk =


ξ 2 ∓ iξ


v2 + b2k, bk = κ∗

+ λ0 − ρv(iξ + δ1k).

Here, δi,j denotes Kronecker’s delta.

3. Transformation of the equation and boundary conditions

Under the transformation of variables

x = ln
 S
K


, t̃ = T − t, u = exp(r t̃)

V
K

, (9)

(we immediately drop the tilde in the following) we arrive at

ut −
1
2
σ

uxx + 2ρvuxσ + v2uσσ


+

1
2
σ − r


ux −


κ∗θ∗

− (κ∗
+ λ0)σ


uσ = 0, (10)

which is now posed on R × R+
× (0, T ). We study the problem using the modified parameters

κ = κ∗
+ λ0, θ =

κ∗θ∗

κ∗ + λ0
,
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which is both convenient and standard practice. For similar reasons, some authors set the market price of volatility risk to
zero. Eq. (10) can then be written as

ut −
1
2
σ

uxx + 2ρvuxσ + v2uσσ


+


1
2
σ − r


ux − κ


θ − σ


uσ = 0. (11)

The problem is completed by the following initial and boundary conditions:

u(x, σ , 0) = max(1 − exp(x), 0), x ∈ R, σ > 0,
u(x, σ , t) → 1, x → −∞, σ > 0, t > 0,
u(x, σ , t) → 0, x → +∞, σ > 0, t > 0,
uσ (x, σ , t) → 0, x ∈ R, σ → ∞, t > 0,
uσ (x, σ , t) → 0, x ∈ R, σ → 0, t > 0.

4. High-order compact scheme

For the discretisation, we replace R by [−R1, R1] and R+ by [L2, R2] with R1, R2 > L2 > 0. For simplicity, we consider a
uniform grid Z = {xi ∈ [−R1, R1] : xi = ih1, i = −N, . . . ,N} × {σj ∈ [L2, R2] : σj = L2 + jh2, j = 0, . . . ,M} consisting of
(2N + 1) × (M + 1) grid points, with R1 = Nh1, R2 = L2 + Mh2 and with space steps h1, h2 and time step k. Let un

i,j denote
the approximate solution of (11) in (xi, σj) at the time tn = nk and let un

= (un
i,j).

We impose artificial boundary conditions in a classical manner rigorously studied for a class of Black–Scholes equations
in [16]. The boundary conditions on the grid are treated as follows. Due to the compactness of the scheme, the treatment
of the Dirichlet boundary conditions is minimal. It is straightforward to consider Dirichlet boundary conditions without
introduction of numerical error by imposing

un
−N,j = 1 − ertn−Nh, un

+N,j = 0, (j = 0, . . . ,M).

At the other boundarieswe impose homogeneousNeumann boundary conditions. The treatment of homogeneousNeumann
conditions requires more attention. Indeed, no values are prescribed. The values of the unknown on the boundaries must
be set by extrapolation from values in the interior. Then a numerical error is introduced, and the main consideration is
that the order of extrapolation should be high enough not to affect the overall order of accuracy. We refer to the paper of
Gustafsson [17] to discuss the influence of the order of the approximation on the global convergence rate and justify our
choice of fourth order extrapolation formulae. By the Taylor expansion, if we cancel the first derivates on the boundaries, it
is trivial to verify

un
i,0 =

18
11

un
i,1 −

9
11

un
i,2 +

2
11

un
i,3, (i = −N + 1, . . . ,N − 1),

and

un
i,M =

18
11

un
i,M−1 −

9
11

un
i,M−2 +

2
11

un
i,M−3, (i = −N + 1, . . . ,N − 1).

4.1. Derivation of the high-order scheme for the elliptic problem

First we introduce the high-order compact finite difference discretisation for the stationary, elliptic problem with
Laplacian operatorwhich appears after the variable transformation y = σ/v. Eq. (11) is then reduced to the two-dimensional
elliptic equation

−
1
2
vy(uxx + uyy) − ρvyuxy +


1
2
vy − r


ux − κ

θ − vy
v

uy = f (x, y), (12)

with the same boundary conditions.
The fourth order compact finite difference scheme uses a nine-point computational stencil using the eight nearest

neighbouring points of the reference grid point (i, j).
The idea behind the derivation of the high-order compact scheme is to operate on the differential equations as an auxiliary

relation to obtain finite difference approximations for high-order derivatives in the truncation error. Inclusion of these
expressions in a central difference method for Eq. (12) increases the order of accuracy, typically to O(h4), while retaining a
compact stencil defined by nodes surrounding a grid point.

Introducing a uniform grid withmesh spacing h = h1 = h2 in both the x- and y-direction, the standard central difference
approximation to Eq. (12) at grid point (i, j) is

−
1
2
vyj

δ2
xui,j + δ2

yui,j

− ρvyjδxδyui,j +

1
2
vyj − r


δxui,j − κ

θ − vyj
v

δyui,j − τi,j = fi,j, (13)
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where δx and δ2
x (δy and δ2

y , respectively) denote the first and second order central difference approximations with respect
to x (with respect to y). The associated truncation error is given by

τi,j =
1
24

vyh2(uxxxx + uyyyy) +
1
6
ρvyh2(uxyyy + uxxxy) +

1
12

(2 r − vy)h2uxxx +
1
6

κ(θ − vy)
v

h2uyyy + O(h4). (14)

For the sake of readability, here and in the following we omit the subindices j and (i, j) on yj and ui,j (and its derivatives),
respectively. We now seek second-order approximations to the derivatives appearing in (14). Differentiating Eq. (12) once
with respect to x and y, respectively, yields

uxxx = −uxyy − 2ρuxxy −
2r + vy

vy
uxx + 2

κ(vy − θ)

v2y
uxy −

2
vy

fx, (15)

uyyy = −uxxy − 2ρuxyy −
1
y
uxx −

2κ(θ − vy) + v2

v2y
uyy −

2ρ + 2r − vy
vy

uxy +
1
y
ux +

2κ
vy

uy −
2
vy

fy. (16)

Differentiating Eqs. (15) and (16) with respect to y and x, respectively, and adding the two expressions, we obtain

uxyyy + uxxxy =
vy + 2r
2vy2

uxx +
κ(θ + vy)

v2y2
uxy −

4κ(θ − vy) + v2

2v2y
uxyy

−
ρv + 2r − vy

vy
uxxy − 2ρuxxyy −

1
2y

uxxx +
1

vy2
fx −

2
vy

fxy. (17)

Notice that all the terms in the right hand sides of (15)–(17) have compact O(h2) approximations at node (i, j) using finite
differences based on δx, δ

2
x , δy, δ

2
y . We have, for example, uxxyi,j = δ2

x δyui,j + O(h2). By differentiating Eq. (12) twice with
respect to x and y, respectively, and adding the two expressions, we obtain

uxxxx + uyyyy = −2ρuxyyy − 2ρuxxxy − 2uxxyy + 2
(κvy − v2

− κθ)

v2y
uxxy −

(2r − vy)
vy

uxxx

+ 2
(κvy − v2

− κθ)

v2y
uyyy −

(−vy + 4ρv + 2r)
vy

uxyy + 4
κ

vy
uyy +

2
y
uxy −

2
vy

(fxx + fyy). (18)

Again, using (15)–(17), the right hand side can be approximated up to O(h2) within the nine-point compact stencil.
Substituting Eqs. (15)–(18) into Eq. (14) and simplifying yields a new expression for the error term τi,j that consists only
of terms which are either
• terms of order O(h4), or
• terms of order O(h2) multiplied by derivatives of u which can be approximated up to O(h2) within the nine-point

compact stencil.

Hence, substituting the central O(h2) approximations to the derivatives in this new expression for the error term and
inserting it into (13) yields the following O(h4) approximation to the initial partial differential equation (12)

−
1
24

h2((vyj − 2r)2 − 4ρvr − 2κ(vyj − θ) − 2v2) + 12v2y2j
vyj

δ2
xui,j

−
1
12

h2(2κ2(vyj − θ)2 − κv3yj − κθv2
− v4) + 6v4y2j

v3yj
δ2
yui,j −

1
12

h2vyj(1 + 2ρ2)δ2
x δ

2
yui,j

+
h2

6
(κ(vyj − θ) + vρ(vyj − 2r))

v
δ2
x δyui,j +

h2

12
(4κρ(vyj − θ) + v(vyj − 2r))

v
δxδ

2
yui,j

−
1
6

h2(κ(vyj − 2r)(vyj − θ) − κv2yjρ − v3ρ − v2r) + 6v3y2j ρ

v2yj
δxδyui,j

+
1
12

6v2y2j − 12vyjr − h2
[v2

+ κ(vyj − θ)]

vyj
δxui,j +

κ

6

(6v2y2j − 6vyjθ − h2
[v2

+ κ(vyj − θ)])

v2yj
δyui,j

= fi,j +
h2

6
ρ

v
δxδyfi,j −

h2

6
(v2

+ κ(vyj − θ))

v2yj
δyfi,j −

h2

12
(2ρv − 2r + vyj)

vyj
δxfi,j +

h2

12
δ2
x fi,j +

h2

12
δ2
y fi,j. (19)

The fourth order compact finite difference scheme (19) considered at the mesh point (i, j) involves the nearest eight
neighbouring mesh points. Associated to the shape of the computational stencil, we introduce indexes for each node from
zero to nine,ui−1,j+1 = u6 ui,j+1 = u2 ui+1,j+1 = u5

ui−1,j = u3 ui,j = u0 ui+1,j = u1
ui−1,j−1 = u7 ui,j−1 = u4 ui+1,j−1 = u8


. (20)
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With this indexing, the scheme (19) is defined by

8
l=0

αlul =

8
l=0

γlfl, (21)

where the coefficients αl and γl are given by

α0 =


4κ2

+ v2

12v
−

v(2ρ2
− 5)

3h2


yj −

κv2
+ 2κ2θ + v2r

3v2
+

−v4
+ κ2θ2

− v3rρ + v2r2

3v3yj
,

α1,3 =


−

v

24
+

±
1
6v ∓

1
3κρ

h
+

v(ρ2
− 1)

3h2


yj ∓

κh
24

+
κ

12
+

r
6

∓
vr − κθρ

3vh
∓

(v2
− κθ)h
24vyj

−
−2rvρ + κθ + 2r2 − v2

12vyj
,

α2,4 =


−

κ2

6v
+

±
1
3κ ∓

1
6ρv

h
+

v(ρ2
− 1)

3h2


yj ∓

κ2h
12v

+
κ(v2

+ 4κθ)

12v2

∓
rvρ − κθ

3vh
∓

κ(v2
− κθ)h

12v2yj
+

(2κθ + v2)(v2
− κθ)

12v3yj
,

α5,7 =


−

κ

24
±

(2ρ + 1)(2κ + v)

24h
−

v(ρ + 1)(2ρ + 1)
12h2


yj +

κ(ρv + 2r + θ)

24v

∓
(2ρ + 1)(κθ + vr)

12vh
+

v2r + v3ρ − 2rκθ

24v2yj
,

α6,8 =


κ

24
±

(2ρ − 1)(−2κ + v)

24h
−

v(2ρ − 1)(ρ − 1)
12h2


yj −

κ(ρv + 2r + θ)

24v

∓
(2ρ − 1)(vr − κθ)

12vh
−

v2r + v3ρ − 2rκθ

24v2yj
,

and

γ0 =
2
3
, γ5 = γ7 =

ρ

24
, γ6 = γ8 = −

ρ

24
,

γ1,3 =
1
12

∓
h
24

±
1
12

(r − ρv)h
vyj

, γ2,4 =
1
12

∓
1
12

κh
v

∓
1
12

(v2
− κθ)h
v2yj

.

When multiple indexes are used with ± and ∓ signs, the first index corresponds to the upper sign.

Remark 1. The derivation of the scheme in this section can be modified to accommodate other stochastic volatility models
as, e.g. the GARCH diffusion model (3) or the 3/2-model (4). Using these models the structure of the partial differential
equations (5), (11) and (12) remains the same, only the coefficients of the derivatives have to be modified accordingly.
Similarly, the coefficients of the derivatives in (15)–(18) have to be modified. Substituting these in the modified expression
for the truncation error one obtains equivalent O(h4) approximations as (19).

4.2. High-order scheme for the parabolic problem

The high-order compact approach presented in the previous section can be extended to the parabolic problem directly
by considering the time derivative in place of f (x, y). Any time integrator can be implemented to solve the problem as
presented in [18]. We consider the most common class of methods involving two time steps. For example, differencing at
tµ = (1 − µ)tn + µtn+1, where 0 ≤ µ ≤ 1 and the superscript n denotes the time level, yields a class of integrators that
include the forward Euler (µ = 0), Crank–Nicolson (µ = 1/2) and backward Euler (µ = 1) schemes. We use the notation
δ+

t un
=

un+1
−un
k . Then the resulting fully discrete difference scheme for node (i, j) at the time level n becomes

8
l=0

µαlun+1
l + (1 − µ)αlun

l =

8
l=0

γlδ
+

t un
l ,

that can be written in the form (after multiplying by 24v3h2yk)

8
l=0

βlun+1
l =

8
l=0

ζlun
l . (22)
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The coefficients βl, ζl are numbered according to the indexes (20) and are given by

β0 = (((2yj2 − 8)v4
+ ((−8κ − 8r)yj − 8ρr)v3

+ (8κ2yj2 + 8r2)v2
− 16κ2θvyj

+ 8κ2θ2)µk + 16v3yj)h2
+ (−16ρ2

+ 40)yj2v4µk

β1,3 = ±((κθv2
− v4

− κyjv3)µk − (yj + 2ρ)v3
+ 2v2r)h3

+ (((−yj2 + 2)v4
+ ((4r + 2κ)yj + 4ρr)v3

− (2κθ + 4r2)v2)µk + 2v3yj)h2
± (4v4yj2 + (−8yj2κρ − 8yjr)v3

+ 8yjκθρv2)µkh + (8ρ2
− 8)yj2v4µk,

β2,4 = ±((2κ2θv − 2κ2v2yj − 2v3κ)µk − 2v2yjκ + 2vκθ − 2v3)h3
+ ((2v4

+ 2κyjv3

+ (−4κ2yj2 + 2κθ)v2
+ 8κ2θvyj − 4κ2θ2)µk + 2v3yj)h2

± ((8yj2κ + 8yjρr)v3
− 4v4yj2ρ − 8v2yjκθ)µkh + (8ρ2

− 8)yj2v4µk,

β5,7 = ((v4ρ + (−y2κ + κyjρ + r)v3
+ (θ + 2r)κyjv2

− 2rκθv)µk + v3ρyj)h2
± ((2ρ + 1)yj2v4

+ ((2 + 4ρ)κyj2 + (−4ρr − 2r)yj)v3
+ (−2θ − 4θρ)κyjv2)µkh + (−2 − 4ρ2

− 6ρ)yj2v4µk,

β6,8 = ((−v4ρ + (yj2κ − κyjρ − r)v3
+ (−θ − 2r)κyjv2

+ 2rκθv)µk − v3ρyj)h2
± ((2ρ − 1)yj2v4

+ ((2 − 4ρ)κyj2 + (2r − 4ρr)yj)v3
+ (4θρ − 2θ)κyjv2)µkh + (−4ρ2

+ 6ρ − 2)yj2v4µk,

and

ζ0 = 16v3yjh2
+ (1 − µ)k(((8 − 2yj2)v4

+ ((8κ + 8r)yj + 8ρr)v3

+ (−8r2 − 8κ2yj2)v2
+ 16κ2θvyj − 8κ2θ2)h2

+ (−40 + 16ρ2)yj2v4),

ζ1,3 = ±(2r − (yj + 2ρ)v)v2h3
+ 2v3yjh2

+ (1 − µ)k(±(vκyj + v2
− κθ)v2h3

+ (v2yj2 − (4r + 2κ)vyj
+ 4r2 + 2κθ − 2v2

− 4ρvr)v2h2
± ((−4v + 8κρ)v3yj2 + (−8κθρ + 8vr)v2yj)h + (8v2

− 8v2ρ2)v2yj2),

ζ2,4 = ±(2vκθ − 2v2yjκ − 2v3)h3
+ 2v3yjh2

+ (1 − µ)k(±2(v3κ − κ2θv

+ κ2v2yj)h3
+ (4κ2v2yj2 − (2v2

+ 8κθ)κvyj + 2κθ(2κθ − v2) − 2v4)h2

± ((−8v3κ + 4v4ρ)yj2 + (8κθv2
− 8v3ρr)yj)h + (−8v4ρ2

+ 8v4)yj2),

ζ5,7 = v3ρyjh2
+ (1 − µ)k((v3yj2κ − v(vκθ + 2rκv + κv2ρ)yj − v(v2r − 2rκθ + v3ρ))h2

± (−v(2v3ρ + v3

+ 4κv2ρ + 2v2κ)yj2 + v(2vκθ + 4vκθρ + 4v2ρr + 2v2r)yj)h + v(2v3
+ 6v3ρ + 4v3ρ2)yj2),

ζ6,8 = −v3ρyjh2
+ (1 − µ)k((−v3yj2κ + v(vκθ + 2rκv

+ κv2ρ)yj + v(v2r − 2rκθ + v3ρ))h2
± (v(−2v3ρ + v3

+ 4κv2ρ − 2v2κ)yj2 + v(2vκθ − 4vκθρ + 4v2ρr − 2v2r)yj)h + v(2v3
− 6v3ρ + 4v3ρ2)yj2).

Whenmultiple indexes are used with± and∓ signs, the first index corresponds to the upper sign. Choosingµ = 1/2, i.e. in
the Crank–Nicolson case, the resulting scheme is of order two in time and of order four in space.

4.3. Stability analysis

Besides the multi-dimensionality the initial-boundary-value problem (22) features two main difficulties for its stability
analysis: the coefficients are non-constant and the boundary conditions are not periodic. In this section, we consider the von
Neumann stability analysis (see, e.g. [19]) even if the problem considered does not satisfy periodic boundary conditions. This
approach is extensively used in the literature and yields good criteria on the robustness of the scheme. Other approaches
which take into account the boundary conditions like normal mode analysis [20] are beyond the scope of the present paper
(we refer to [21] for normal mode analysis for a high-order compact scheme).

To consider the variable coefficients, the principle of ‘frozen coefficients’ (the variable coefficient problem is stable if all
the ‘frozen’ problems are stable) [20,19] is employed. It should be noted, that in the discrete case, this principle is far from
trivial. The most general statements are given in [20,22–24] and references therein for hyperbolic problems. For parabolic
problems in the discrete case we refer to [25,26]. Using the frozen coefficients approach gives a necessary stability condition
and slightly strengthened stability for frozen coefficients is sufficient to ensure overall stability [25].

We now turn to the von Neumann stability analysis. We rewrite un
i,j as

un
i,j = gneIiz1+Ijz2 , (23)

where I is the imaginary unit, gn is the amplitude at time level n, and z1 = 2πh/λ1 and z2 = 2πh/λ2 are phase angles
with wavelengths λ1 and λ2, in the range [0, 2π [, respectively. Then the scheme is stable if for all z1 and z2 the amplification
factor G = gn+1/gn satisfies the relation

|G|
2
− 1 ≤ 0. (24)

An expression for G can be found using (23) in (22).
Our aim is to prove von Neumann stability (for ‘frozen coefficients’) without restrictions on the time step size. To show

that (24) holds we would need to study the (formidable) expression for the amplification factor G (not given here) which
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consists of polynomials of order up to six in 13 variables. To reduce the high number of parameters in the following numerical
analysis, we assume here zero interest rate r = 0 and choose the parameter µ = 1/2 (Crank–Nicolson case). Even then, at
present a complete analysis for non-zero correlation seems out of reach, but we are able to show the following result.

Theorem 1. For r = ρ = 0 and µ = 1/2 (Crank–Nicolson), the scheme (22) satisfies the stability condition (24).

Proof. Let us define new variables

c1 = cos
 z1
2


, c2 = cos

 z2
2


, s1 = sin

 z1
2


, s2 = sin

 z2
2


,

W =
2 (θ − vy)

v
s2, V =

2vy
κ

s1,

which allow us to express G in terms of h, k, κ, V ,W and trigonometric functions only. This reduces the number of variables
in the amplification factor from ten to nine. The new variable V has a constant positive sign contrary toW .

In the new variables the stability criterion (24) of the scheme can be written as

−8kh2(n4h2
+ n2)

d6h6 + d4h4 + d2h2 + d0
≤ 0, (25)

with

n4 = −4 Vκ3f3 s31W
2
− V 3κ3f4 s31, n2 = −4 V 3κ3f2 f1 s1,

d6 = 4 (−2 Wc2 + Vc1)2 κ2s41,

d4 =
1
4

κ4s41

V 2

− 4 Vc1 Wc2 + 4W 22 k2 − 4 Vκ3s31

f4 V 2

+ 4 f3 W 2 k + 16 κ2V 2f 22 s
2
1,

d2 = V 2κ4s21

V 2f6 − 36 Vc1 Wc2 + 4 f5 W 2 k2 − 16 V 3κ3f2 f1 s1 k,

d0 = 4V 4κ4f 21 k
2,

where f1, f2, f3, f4, f5, and f6 have constant sign and are defined by

f1 = 2c21c
2
2 + c21 + c22 − 4 ≤ 0, f2 = c21 + c22 + 1 ≥ 0,

f3 = 2c21c
2
2 − c21 − 1 ≤ 0, f4 = 2c21c

2
2 − c22 − 1 ≤ 0,

f5 = 4c41c
2
2 − 2c21 − c22 + 8 ≥ 0, f6 = 4c21c2

4
− 2c22 − c21 + 8 ≥ 0.

We observe that we can restrict our analysis (except for d2, treated below) to the trigonometric functions s1, s2, c1, and c2 in
the reduced range [0, 1] (z1/2 and z2/2 are in [0, π[, even exponents for cosinus functions). It is straight-forward to verify
that n4, n2, d6, d4, and d0 are positive. It remains to prove d2 = d22k2 + d21k is positive as well. Indeed, d21 ≥ 0 and d22 is a
polynomial of degree two inW having a positive leading order coefficient. The minimum value of d22 is given by

m = 2V 4κ4s21f1f7/f5

with f7 = 4c42c
4
1 − 2c41c

2
2 − 2c21c

4
2 + 6c21c

2
2 + c21 + c22 − 8 ≤ 0. Hence,m is positive and then d2 is positive as well. Therefore,

the numerator in (25) is negative and the denominator in (25) is positive which completes the proof. �

For non-zero correlation the situation becomes more involved. Additional terms appear in the expression for the
amplification factor G and we face an additional degree of freedom through ρ. Since we have proven condition (24) for
ρ = 0 it seems reasonable to assume it also holds at least for values of ρ close to zero. In practical applications, however,
correlation can be strongly negative. Few theoretical results can be obtained, we recall the following lemma from [27].

Lemma 2. For any ρ, r = 0, and µ = 1/2 (Crank–Nicolson) it holds: if either c1 = ±1 or c2 = ±1 or y = 0, then the stability
condition (24) is satisfied.

Proof. See Lemma 1 in [27]. �

In [27], we have reformulated condition (24) into a constrained optimisation problem and have employed a line-search
global-optimisation algorithm to find the maxima. We have found that the stability condition (24) was always satisfied.
The maxima for each ρ ∈ [−1, 0] were always negative but very close to zero. This result is in agreement with Lemma 2
(in fact, |G|

2
− 1 = 0 for y = 0). Our conjecture from these results is that the stability condition (24) is satisfied also for

non-vanishing correlation although it will be hard to give an analytical proof.
In our numerical experiments we observe stability also for a general choice of parameters. To validate the stability

property of the scheme also for general parameters, we perform additional numerical tests in Section 5.
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Table 1
Default parameters for numerical simulations.

Parameter Value

Strike price K = 100
Time to maturity T = 0.5
Interest rate r = 0.05
Volatility of volatility v = 0.1
Mean reversion speed κ = 2
Long-run mean of σ θ = 0.1
Correlation ρ = −0.5

Fig. 1. Numerical solution for the European option price.

5. Numerical results

5.1. Numerical convergence

In this sectionwe perform a numerical study to compute the order of convergence of the scheme (22). Due to the compact
discretisation the resulting linear systems have a good sparsity pattern and can be solved very efficiently. We compute the
l2 norm error ε2 and the maximum norm error ε∞ of the numerical solution with respect to a numerical reference solution
on a fine grid. We fix the parabolic mesh ratio k/h2 to a constant value which is natural for parabolic PDEs and our scheme
which is of order O(k2) in time and O(h4) in space. Then, asymptotically, we expect these errors to converge as ε = Chm for
some m and C representing constants. This implies ln(ε) = ln(C) + m ln(h). Hence, the double-logarithmic plot ε against
h should be asymptotic to a straight line with slopem. This gives a method for experimentally determining the order of the
scheme.

Fig. 1 shows the numerical solution for the European option price at time T = 0.5 using the parameters from Table 1.
We refer to Figs. 2 and 3 for the results of the numerical convergence study using the default parameters from Table 1.

For the parameter µ, we use a Rannacher time-stepping choice [28], i.e. we start with four fully implicit quarter time steps
(µ = 1) and then continue with Crank–Nicolson (µ = 1/2). For comparison we conducted additional experiments using a
standard, second order scheme (based on the central difference discretisation (13) where we neglect the truncation error).
We observe that the numerical convergence order agrees well with the theoretical order of the schemes. It is important to
choose the mesh in such a way that the singular point of the initial condition is not a point of the mesh. The construction of
such a mesh is always possible in a simple manner. Then the non-smooth payoff can be directly considered in our scheme
and we observe fourth order numerical convergence.

Remark 2. Without constraint on themesh, i.e. when the singular point of the payoff is amesh point, the rate of convergence
is reduced to two. However, it is possible to recover the fourth order convergence with such a mesh if the initial data are
smoothed.

The numerical convergence analysis also shows the superior efficiency of the high-order scheme compared to a standard
second order discretisation. In each time step of each scheme a linear systemhas to be solved. For both schemes this requires
the same computational time for the same dimension. To achieve the same level of accuracy the new scheme requires
significantly less grid points, or in other words, the computational time to obtain a given accuracy level is greatly reduced
by using the high-order scheme.
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Fig. 2. l2-error vs. h.

Fig. 3. l∞-error vs. h.

5.2. Numerical stability analysis

In our numerical analysis in Section 4.3, we have proven the stability result Theorem 1 for r = ρ = 0. To validate this
property for general parameters, we perform additional numerical tests.We compute numerical solutions for varying values
of the parabolic mesh ratio k/h2 and the mesh width h. Plotting the associated l2 norm errors in the plane should allow us
to detect stability restrictions depending on k/h2 or oscillations that occur for high cell Reynolds number (large h). This
approach for a numerical stability study was also used in [8]. We perform numerical experiments for ρ = 0 and ρ = −0.5.
For the other parameters, we use again the default parameters from Table 1. The results are shown in Fig. 4. For both cases,
ρ = 0 andρ = −0.5, the errors showa similar behaviour, being slightly larger for non-vanishing correlation. There is almost
no dependence of the error on the parabolic mesh ratio k/h2, which confirms numerically regular solutions can be obtained
without restriction on the time step size. For larger values of h, which also result in a higher cell Reynolds number, the error
grows gradually, and no oscillation in the numerical solutions occurs. Based on these results and the findings in [27], we
conjecture that the stability condition (24) also holds for general choice of parameters.

6. Conclusion

We have presented a new high-order compact finite difference scheme for option pricing under stochastic volatility that
is fourth order accurate in space and second order accurate in time. We have conducted a von Neumann stability analysis
(for ‘frozen coefficients’ and periodic boundary data) and proved unconditional stability for vanishing correlation. In our
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Fig. 4. l2 norm error in the k/h2-h-plane for ρ = −0.5 (top) and ρ = 0 (bottom).

numerical experiments we observe a stable behaviour also for a general choice of parameters. Additional numerical tests
presented here and the results of subsequent research reported in [27] suggest that the scheme is also von Neumann stable
for non-zero correlation. In our numerical convergence study we obtain fourth order numerical convergence for the non-
smooth payoffs which are typical in option pricing.

It would be interesting to consider extensions of this scheme to non-uniform grids and to the American option pricing
problem, where early exercise of the option is possible. An approach to the first would be to introduce a transformation of
the partial differential equation from a non-uniform grid to a uniform grid [29]. Then our high order compact methodology
can be applied to this transformed partial differential equation. This is, however, not straightforward as the derivatives of the
transformation appear in the truncation error and due to the presence of the cross-derivative terms. One cannot proceed to
cancel terms in the truncation error in a similar fashion as in the current paper, and the derivation of a high-order compact
scheme becomes much more involved. For the second extension, the American option pricing problem, one has to solve a
free boundary problem. It can be written as a linear complementarity problem which can be discretised using the scheme
(22). To retain the high-order convergence one would need to combine the high-order discretisation with a high-order
resolution of the free boundary. Both extensions are beyond the scope of the present paper, and we leave them for future
research.
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