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We reported previously that various radiocontrast media

cause apoptosis in porcine proximal tubular (LLC-PK1) cells, in

which reduction in B-cell lymphoma (Bcl)-2 expression and

caspase-3 activation are implicated. In the present study,

we investigated a role for ceramide in radiocontrast

media-induced apoptosis in renal tubular cells. LLC-PK1 cells

were exposed to radiocontrast media for 30 min, followed

by incubation for 24 h in normal medium. Cell viability was

assessed by 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-

5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt

assay, while apoptosis was determined by terminal

deoxynucleotidyl transferase-mediated dUTP nick end

labeling stain. Immunofluorescent stains were performed

using antibodies against phosphorylated Akt (pAkt) and

cAMP response element binding protein (CREB) (pCREB), and

ceramide. The mRNA expression and protein content of Bcl-2

were determined by reverse transcriptase-polymerase chain

reaction and enzyme immunoassay, respectively. In vivo

model of contrast-induced renal injury was induced in mice

with unilateral renal occlusion. The cell injury induced by the

nonionic radiocontrast medium ioversol was reversed by

inhibiting de novo ceramide synthesis with fumonisin B1 (FB1)

and L-cycloserine, but not by suppressing sphingomyelin

breakdown with D609. FB1 reversed ioversol-induced

decrease in the immunoreactivities of pAkt and pCREB,

reduction in Bcl-2 expression and caspase-3 activation. Like

ioversol, C2 ceramide and the Akt inhibitor Src homology-6

induced apoptosis by reducing pAkt and pCREB-like

immunoreactivities, lowering Bcl-2 expression and enhancing

caspase-3 activity. Indeed, various radiocontrast media,

excluding iodixanol which showed the least nephrotoxicity,

enhanced ceramide-like immunoreactivity. The role for de

novo ceramide synthesis was also shown in the in vivo model

of radiocontrast nephropathy. We demonstrated here for

the first time that the enhancement of de novo ceramide

synthesis contributes to radiocontrast nephropathy.
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Acute renal failure associated with iodinated radiocontrast
media is still the major complication after radiographic
examination, since it is associated with increased morbidity
and mortality.1,2 Unfortunately, there have been few effective
medications for prevention of radiocontrast nephropathy.
Although little is known about the etiology of radiocontrast
nephropathy, the decrease in renal blood flow3 and/or direct
toxic action on renal tubular cells4 are postulated to be
implicated in the pathogenesis of radiocontrast nephropathy.
Thus, a number of agents that improve renal vascular
circulation, including endothelin antagonists, adenosine
antagonists such as theophylline, atrial natriuretic peptide,
dopamine agonists and calcium channel blockers, have been
clinically investigated for the prevention of radiocontrast
nephropathy, but most of them failed to succeed in
preventing radiocontrast nephropathy in high-risk patients
(for a review, see Cox and Tsikouris5). On the other hand, it
has recently been reported that the antioxidant compound
N-acetylcysteine6,7 has a slight and not complete protective
action against radiocontrast nephropathy, thereby suggesting
that the radiocontrast nephropathy is associated with renal
tubular injury due to the oxidative stress.

We have recently found that a variety of radiocontrast
media cause cell injury in porcine renal tubular (LLC-PK1)
cell line cells, as characterized by changes in the expression of
B-cell lymphoma (Bcl)-2 family proteins such as Bcl-2 and
Bax, activation of caspase-3 and nuclear fragmentation.8 We
also found that the radiocontrast medium inhibits the
phosphorylation of Akt.9 Since Akt is a serine/threonine
kinase involved in cell survival and cell growth, the radio-
contrast medium-induced apoptosis in renal tubular cells
may be due to the inhibition of Akt phosphorylation. Indeed,
the nonhydrolyzable cyclic AMP (cAMP) analog dibutyryl
cAMP (DBcAMP) was found to attenuate renal tubular cell
injury induced by the radiocontrast medium through
activation of Akt, followed by phosphorylation of cAMP
response element binding protein (CREB).10 However, it is
still uncertain how the radiocontrast medium inhibits
phosphorylation of Akt in renal tubular cells.
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It has been demonstrated that ceramide, a sphingolipid
metabolite, decreases the level of phosphorylated Akt
(pAkt)11,12 and leads to apoptosis in a variety of cells.13,14

Therefore, it seems likely that the contrast medium causes
acute renal failure by elevating ceramide concentration in
renal tubular cells. To ascertain this idea, we investigated the
effects of several compounds that interfere with sphingolipid
metabolism on renal tubular cell injury induced in vitro as
well as in vivo by the radiocontrast medium. The effects of
various nonionic radiocontrast media on the ceramide-like
immunoreactivity were also examined in cultured renal
tubular cells.

RESULTS
Effects of inhibitors of de novo ceramide synthesis and those
of sphingomyelin breakdown on the loss of cell viability
induced in porcine proximal tubular cells by ioversol

As shown in Figure 1, ioversol caused a significant decrease in
cell viability, which was reversed by fumonisin B1 (FB1), a
specific inhibitor of ceramide synthase,15 and L-cycloserine, an
inhibitor of serine palmitoyltransferase,16 but not by either
D609, a xanthogenate compound that inhibits acidic sphingo-
myelinase activity through the inhibition of phosphatidyl-
choline-specific phospholipase C,17 or the tricyclic antidepres-
sant imipramine that inhibits sphingomyelinase activity.18

Effect of FB1 on ioversol-induced inhibition of
phosphorylations of Akt and CREB

As shown in Figure 2a, the exposure of LLC-PK1 cells to
insulin-like growth factor-1 (IGF-1) markedly enhanced the

immunoreactivity for pAkt (Ser473), which was completely
inhibited by Src homology (SH)-6, a specific Akt inhibitor that
binds selectively to the pleckstrin homology domain of Akt to
prevent the association of Akt with plasma membrane
phosphatidylinositol-3-phosphate,19 thereby suggesting that
the immunoreactivity is derived from pAkt. Ioversol markedly
inhibited the IGF-1-stimulated phosphorylation of Akt in a
manner dependent on de novo ceramide synthesis. C2
ceramide also markedly inhibited the phosphorylation of
Akt. On the other hand, protein level of pAkt as determined by
the enzyme immunoassay was also reduced by ioversol, C2
ceramide and SH-6, in which the effect of ioversol was reversed
by FB1 (Figure 2b). Similar changes were observed for the
phosphorylation of CREB and the level of phosphorylated
CREB (pCREB).

Effect of FB1 on ioversol-induced depolarization of
mitochondrial membranes and changes in expression
of Bcl-2 family proteins

As shown in Figure 3a, fluorescent images for 5,5,6,6-tetra-
chloro-1,1,3,3-tetraethylbenzimidazolylcarbocyanine iodide
(JC-1) were changed in color from red (J-aggregates) to green
(monomers) after exposure to ioversol, suggesting that
ioversol causes depolarization of mitochondrial membranes.
FB1 abolished, while C2 ceramide and SH-6 mimicked, the
action of ioversol.

Since mitochondrial membrane potential is reported to be
regulated by Bcl-2 family proteins such as Bcl-2 and Bax,20

we investigated the changes in mRNA expression of and
protein levels of Bcl-2 and Bax after exposure to ioversol in
the absence or presence of FB1. As shown in Figure 3b and c,
ioversol inhibited mRNA expression of Bcl-2 and decreased
the level of Bcl-2 protein, while it enhanced mRNA
expression of Bax and increased the level of Bax protein.
These actions of ioversol were almost completely reversed by
FB1. Similar changes in mRNA expressions and protein
contents of these Bcl-2 family proteins were observed after
exposure to C2 ceramide and SH-6.

Effect of a caspase-3 inhibitor on apoptosis and loss of
cell viability induced by ioversol, C2 ceramide, and SH-6
in LLC-PK1 cells

As shown in Figure 4a, z-Asp(O-Me)-Glu(O-Me)-Val-Asp(O-
Me) fluoromethyl ketone a specific caspase-3 inhibitor, reversed
the appearance of terminal deoxynucleotidyl transferase-
mediated dUTP nick end labeling (TUNEL)-positive cells
induced by ioversol, C2 ceramide and SH-6. Moreover, the loss
of cell viability induced by these agents was also reversed by
z-Asp(O-Me)-Glu(O-Me)-Val-Asp(O-Me) fluoromethyl ketone
(Figure 4b).

Effects of ioversol, C2 ceramide, and SH-6 on caspase-3
activity in LLC-PK1 cells

As shown in Figure 4c, the caspase-3 activity determined by
the enzymatic degradation of caspase-3-specific substrate
peptide was markedly enhanced by ioversol, C2 ceramide,
and SH-6.
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Figure 1 | Effects of inhibitors of de novo ceramide synthesis and
those of sphingomyelin breakdown on ioversol-induced loss of
cell viability in LLC-PK1 cells. Cells were exposed to ioversol for
30 min, followed by incubation for 24 h in the absence of ioversol,
and the viability was assessed by WST-8 assay. FB1, L-cycloserine,
D609 and imipramine were added 30 min before ioversol and
included throughout the experiment. Each column represents the
mean7s.e.m. of five experiments. **Po0.01 vs control.
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Figure 2 | Involvement of ceramide in the decrease in phosphorylations of Akt and CREB (a) and basal levels of phosphorylated forms
of Akt and CREB (b) induced in LLC-PK1 cells by ioversol. (a) Cells were incubated with IGF-1 in the absence or presence of ioversol, C2
ceramide or SH-6 for 30 min. FB1 (300 nM) was included 30 min before ioversol. Cells were then fixed and immunofluorescent stained with
antibodies raised against pAkt (Ser473) or pCREB (Ser133). (b) The basal levels of pAkt and pCREB were determined by enzyme immunoassay.
Each column represents the mean7s.e.m. of four or five experiments. **Po0.01 vs control, wPo0.05 vs vehicle.

Nontreatment

Ioversol

C2 ceramide

Ioversol + FB1

SH-6

FB1a b

c

0

100

200

300

400

500

600

Ceramide

C
on

te
nt

s 
(p

g/
m

g 
pr

ot
ei

n)

Ioversol

FB1Non SH-6Cont Ceramide

Ioversol

FB1Non SH-6Cont

*
*

0

200

400

600

800

1000

1200

**

*

Bcl-2 Bax

�-Actin

Bax

Bcl-2

1 3 4 52

Figure 3 | (a) Involvement of ceramide in the depolarization of mitochondrial membranes as assessed by JC-1 stain and (b) changes in
mRNA expression and (c) protein levels of Bcl-2 and Bax induced in KKC-PK1 cells by ioversol. (a) Changes in fluorescent images were
monitored after exposure to ioversol in the absence or presence of FB1 (300 nM), C2 ceramide or SH-6. (b) The mRNA expressions for Bcl-2 and
Bax were assessed by RT-PCR. Lane 1, nontreatment; lane 2, ioversol alone; lane 3, ioversolþ FB1; lane 4, C2 ceramide; lane 5, SH-6. (c) The
protein contents of Bcl-2 and Bax were determined by the enzyme immunoassay. Each column represents the mean7s.e.m. of five
experiments. *Po0.05, **Po0.01 vs control.
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Changes in ceramide-like immunoreactivity in LLC-PK1 cells
after exposure to ioversol in the absence or presence of FB1

and D609

The exposure of LLC-PK1 cells to ioversol for 30 min
increased the ceramide-like immunoreactivity, as determined
by immunofluorescent stain with anticeramide antibody,
followed by flow-cytometric analysis (Figure 5a). The
ioversol-induced increase in ceramide-like immunoreactivity
was reversed by FB1 (300 nM), but not by D609 (1mM).

Effects of a variety of radiocontrast media on ceramide-like
immunoreactivity and cell viability

Like ioversol, several nonionic radiocontrast media, includ-
ing iohexol, iomeprol, iopamidol, and iotrolan, enhanced the
ceramide-like immunoreactivity (Figure 5b). Moreover, these
contrast media reduced the cell viability determined by 2-
(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disul-
fophenyl)-2H-tetrazolium monosodium salt (WST-8) assay,
although the reduction in cell viability was slight (decrease by
10.5%) and not significant in iomeprol-exposed cells (Figure
5c). By contrast, iodixanol had no significant influence on
ceramide-like immunoreactivity. The cell viability also did
not change (decrease by 2.4%) after exposure to iodixanol.

Effect of FB1 on renal injury and changes in cellular events
induced by intravenous injection of ioversol in mice with
unilateral renal occlusion

As we reported previously,9 a single intravenous injection of
ioversol-induced apoptosis in renal tubular cells (Figure 6a)
and significant elevation of urinary activity of N-acetyl-b-D-
glucosaminidase (NAG), a specific marker of proximal renal
tubular cell injury,21 in mice with unilateral renal occlusion
(Figure 6b). FB1 (0.075 and 0.25 mg/kg) inhibited the
apoptosis and enhancement of urinary NAG excretion induced
by ioversol in a dose-dependent manner. Ioversol also lowered
protein levels of pAkt (Figure 6c) and pCREB (Figure 6d) and
enhanced caspase-3 activity (Figure 6e) in renal tissues.
Interestingly, these cellular events induced by ioversol were
all remarkably reversed by 0.25 mg/kg FB1. However, a high
dose of FB1 (2 mg/kg) was not effective in attenuating the
ioversol-induced increase in urinary NAG excretion (NAG in
U/g Cr: 242.8710.4, mean7s.e.m., N¼ 4, for ioversol alone
vs 235.7714.5, N¼ 4 for ioversolþ FB1 at 2 mg/kg).

DISCUSSION

We have previously shown that ioversol causes concentra-
tion- and time-dependent decreases in the viability of
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Figure 4 | Effect of a caspase-3 inhibitor on (a) apoptosis, (b) loss of cell viability, and (c) enhancement of caspase-3 activity induced in
LLC-PK1 cells by ioversol, C2 ceramide and SH-6. (a) Cells were exposed ioversol (100 mg iodine/ml) for 30 min, followed by incubation for
24 h in the absence of ioversol, or incubated with C2 ceramide or SH-6 for 24 h, then apoptosis was assessed by TUNEL stain. (b) Cell viability
was measured by WST-8 assay. (c) Caspase-3 activity was determined by the enzymatic degradation of caspase-3-specific substrate peptide in
the absence or presence of zDEVD-fmk. Each column represents the mean7s.e.m. of five experiments. **Po0.01 vs zDEVD-fmk (�).
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LLC-PK1 cells, in which significant injury is observed in as
low as 25 mg iodine/ml of the contrast medium.8 Moreover,
the toxic effect of ioversol reaches maximum at 100 mg
iodine/ml and the half-maximal reduction in the cell viability
is observed at 24 h after exposure to 100 mg iodine/ml of the
contrast medium. Thus, in the present study, we examined

the effects of compounds that interfere with sphingolipid
metabolisms on the cell injury induced at 24 h by exposure to
100 mg iodine/ml of ioversol.

In the present study, the ioversol-induced injury of LLC-PK1

cells was reversed concentration-dependently by the ceramide
synthase inhibitor FB1 and the serine palmitoyltransferase
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inhibitor L-cycloserine, but not by inhibitors of sphingomye-
lin breakdown, such as D609 and imipramine. Therefore, it is
suggested that ioversol causes renal tubular cell damage by
enhancing de novo ceramide synthesis.

In our previous report, ioversol-induced injury of renal
tubular cells is characterized by nuclear fragmentation,
Annexin V-positive stain and the activation of caspase-9
and caspase-3, suggesting apoptosis.8,22 Moreover, the
apoptotic cell death is attributable to the mitochondrial
stress due to changes in Bcl-2 family proteins such as Bcl-2
and Bax.8 It has been demonstrated that the relative increase
in the expression of Bax over Bcl-2 leads to the depolarization
of mitochondrial membranes and stimulates the release of
cytochrome c, which, in turn, activates caspase-9 through the
action of the adaptor molecule apoptotic protease-activating

factor-1.23 Consistent with our previous data, in the present
study, ioversol caused the depolarization of mitochondrial
membranes as assessed by JC-1 stain, activation of caspase-3
and ultimately led to caspase-3-dependent apoptosis deter-
mined by TUNEL stain.

We also found previously that DBcAMP protects renal
tubular cells against ioversol-induced apoptosis through
phosphorylation of Akt and CREB and subsequent enhance-
ment of Bcl-2 expression.8–10,22 Interestingly, ioversol was
found to inhibit phosphorylation of Akt at Ser473 and
phosphorylation of CREB at Ser133.10

It has been demonstrated that Akt plays an important role
in the cell survival since inhibition of propidium iodide
3-kinase/Akt stimulates caspase activity and leads to
apoptosis in a variety of cells.24–26 Moreover, phosphorylation
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of Akt is reported to upregulate the expression of Bcl-2
through phosphorylation of CREB.27,28

In the present study, IGF-1 enhanced not only the pAkt-
like immunoreactivity but also the pCREB-like immuno-
reactivity in LLC-PK1 cells. In addition, IGF-1-mediated
phosphorylation of CREB was diminished by SH-6, thereby
suggesting that the phosphorylation of CREB is mediated
through the activation of Akt in these cells.

It has been demonstrated that the membrane sphingolipid
ceramide decreases the level of phosphorylated form of Akt
by facilitating the dephosphorylation of Akt at Ser473 through
the activation of protein phosphatase 2A11 and/or by
inhibiting the association of pleckstrin homology domain
of Akt with membrane proximal intraglomerular pressure 3
through the activation of protein kinase Cz.

29

In the present study, it was noteworthy that the inhibition
by ioversol of IGF-1-induced phosphorylation of Akt was
abolished by FB1. Moreover, C2 ceramide showed a marked
inhibition on IGF-1-induced phosphorylation of Akt. There-
fore, it is highly probable that the inhibition of the
phosphorylation of Akt induced by ioversol is attributable
to the enhancement of de novo ceramide synthesis.

FB1 was also effective in suppressing ioversol-induced
inhibition of IGF-1-stimulated phosphorylation of CREB,
while C2 ceramide and SH-6 markedly reduced the IGF-1-
stimulated phosphorylation of CREB. Moreover, down-
regulation of Bcl-2 and upregulation of Bax induced by
ioversol were reversed by FB1, while C2 ceramide and SH-6
caused similar changes in the expression of these Bcl-2 family
proteins to ioversol. Taken together, it is suggested that
ioversol stimulates de novo ceramide synthesis, which leads to
apoptosis by inhibiting the phosphorylation of Akt and
CREB and subsequent reduction of Bcl-2 expression and
activation of caspase-3.

It has been demonstrated that a number of apoptotic
stimuli such as reactive oxygen species30 and tumor necrosis
factor (TNF)-a31 increase the ceramide content by facilitating
sphingomyelin breakdown, but not through the activation of
the de novo synthesis pathway. In the present study, both the
enhancement of ceramide-like immunoreactivity and cell
injury induced by ioversol were not affected by inhibiting
sphingomyelin breakdown with D609 or imipramine. There-
fore, it is unlikely that sphingomyelin breakdown plays a role
in renal tubular injury induced by the radiocontrast medium.
On the other hand, a role for reactive oxygen species in the
pathogenesis of radiocontrast nephropathy has been shown
by several clinical findings indicating that the antioxidant
N-acetylcysteine is effective for the prevention of radio-
contrast nephropathy in patients with pre-existing renal
insufficiency.6,7 We do not know whether N-acetylcysteine is
effective for prevention of apoptosis of LLC-PK1 cells induced
by radiocontrast media. However, Hizoh and Haller32 have
shown in cultured Madin Darby Canine Kidney cells that
N-acetylcysteine has no protective action against the nuclear
damage induced by the ionic contrast medium amidotrizo-
ate. At present, it is uncertain whether reactive oxygen species

contribute to the increase in ceramide content or apoptosis
induced by radiocontrast media.

In the present study, like ioversol, a variety of iodinated
radiocontrast media enhanced ceramide-like immunoreac-
tivity in renal tubular cells. However, iomeprol caused only a
slight increase in the ceramide-like immunoreactivity, while
iodixanol had no effect on the immunoreactivity. It was
noteworthy that the increase in the ceramide-like immuno-
reactivity was closely associated with the loss of cell viability.

It has been demonstrated by the clinical studies that the
risk of radiocontrast nephropathy is much lower in iodixanol
than in other low osmolar media.33 It is generally considered
that high osmolality is the major causative factor of
radiocontrast nephropathy.34 However, in the present study,
another iso-osmolar contrast medium iotrolan, whose
osmolality is equivalent to that of iodixanol, produced a
marked decrease in cell viability as well as an enhancement
of ceramide-like immunoreactivity. Taken together, it is
suggested that the enhancement of de novo ceramide
synthesis is the common cellular mechanism underlying
renal tubular injury induced by a variety of iodinated radio-
contrast media.

Finally, we investigated the effect of FB1 on the in vivo
renal injury induced by ioversol in mice with unilateral renal
occlusion. Deray et al.35 reported that the radiocontrast
medium enhances urinary excretion of NAG in rats with
renal artery occlusion, but not in intact animals. Generally
consistent with their data, in the present study, ioversol
enhanced urinary NAG excretion in mice with unilateral
renal occlusion. Moreover, a number of TUNEL-positive cells
appeared in the tubular region. Therefore, the present model
of radiocontrast-induced renal injury is due, at least in part,
to renal tubular cell apoptosis. Systemic injection of FB1

(0.075 and 0.25 mg/kg) prevented the apoptosis and urinary
NAG excretion, suggesting an involvement of de novo
ceramide synthesis in vivo. Moreover, as observed in cultured
renal tubular cells, ioversol injection caused a marked
reduction in the protein levels of pAkt and pCREB and the
activation of caspase-3, all of which were remarkably reversed
by FB1 (0.25 mg/kg). However, a high dose of FB1 (2 mg/kg)
was not effective in attenuating the ioversol-induced increase
in urinary NAG excretion. This may be due to the toxic
action of FB1. It has been reported that repeated injection of
FB1 (at doses higher than 0.25 mg/kg for 5 days) induces
apoptosis in the kidney of mice.36 FB1 is also reported to
cause apoptosis in LLC-PK1 cells, in which accumulation of
sphinganine due to the inhibition of ceramide synthase
inhibition is involved.37 However, the minimal concentration
of FB1 for eliciting cell injury is reported to be 35 mM,38 a
concentration that is much higher than the IC50 value
(0.1 mM) for inhibiting ceramide synthase activity in rat liver
microsomes15 and those used in the present study. Seefelder
et al.39 have shown the lack of involvement of ceramide
synthase inhibition in FB1-induced apoptosis, since other
fumonisin analogs that inhibit ceramide synthase activity
have no toxic action on renal tubular cells. It has been
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reported that TNF-a contributes to the in vivo and in vitro
toxic actions of FB1.40,41

In conclusion, we demonstrated here for the first time that
radiocontrast media enhance de novo ceramide synthesis and
induce renal tubular cell apoptosis through the inhibition of
Akt phosphorylation, followed by CREB phosphorylation.
Moreover, the ceramide synthase inhibitor was fully effective
in attenuating renal tubular cell injury induced in vitro as
well as in vivo by the radiocontrast medium. Therefore, the
inhibition of de novo sphingolipid synthesis pathway may
become a novel and potentially useful approach to the
prophylaxis of radiocontrast nephropathy.

Moreover, our present findings may help to develop the
novel radiocontrast media devoid of nephrotoxicity by
screening the compounds that have no influence on
sphingolipid metabolism.

MATERIALS AND METHODS
Materials
The iodinated radiographic contrast media used in the present study
were as follows: iohexol (Omnipaque 300s, 300 mg iodine/ml,
Daiichi Pharmaceutical, Tokyo, Japan), iomeprol (Iomeron 400s,
400 mg iodine/ml, Eisai, Tokyo, Japan), iopamidol (Iopamiron
300s, 300 mg iodine/ml, Schering AG, Berlin, Germany), ioversol
(Optiray 350s, 350 mg iodine/ml, Ymanouchi Pharmaceutical,
Tokyo, Japan), iotorolan (Isovist 300s, 300 mg iodine/ml, Schering
AG, Berlin, Germany) and iodixanol (Visipaque 320s, 320 mg
iodine/ml, Daiichi Pharmaceutical, Tokyo, Japan). The concentra-
tion of radiographic contrast media used in the present in vitro
study was 100 mg iodine/ml, while the dose of ioversol used in vivo
study was 4 g iodine/kg. The following chemicals and reagents were
obtained from commercial sources: the Akt inhibitor D-2,3-dideoxy-
myo inositol 1-((R)-2-methoxy-3-(octadecyloxy)propyl hydrogen
phosphate) (SH-6: 1 mM) and the fluorescence-labeled peptide
substrate specific for caspase-3 Ac-DEVD-7-amino-4-methylcou-
marin (AMC) (10mM: Alexis Biochemicals, San Diego, CA), IGF-1
(100 ng/ml) and the serine palmitoyltransferase inhibitor L-cyclo-
serine (30–300 mM: Sigma, St Louis, MO, USA), the ceramide
synthase inhibitor FB1 (30–300 nM or 0.075–0.25 mg/kg), the inhibi-
tors of sphingomyelin breakdown, such as imipramine (3–30mM) and
potassium tricyclo(5.2.1.02,6)decan-8-yl dithiocarbonate (D609:
0.01–1mM) and the fluorescent indicator of mitochondrial membrane
potential JC-1 (10 ng/ml) (Wako Pure Chemical, Osaka, Japan), and
C2 ceramide (3mM) (Cayman Chemical, Ann Arbor, MI, USA).

Cell culture
LLC-PK1 cells (Lily Laboratory Culture-Porcine Kidney) were
obtained from the American Type Culture Collection (Rockville,
MD, USA), were grown in a 75-cm2 flask (Corning incorporated,
Corning, NY, USA) and maintained in Medium 199 (ICN
Biomedicals, Inc., Aurora, OH, USA) supplemented with 10% fetal
bovine serum (JRH Bioscience, Inc., Lenexa, KS, USA) and 60mg/ml
penicillin (Sigma) in an atmosphere of 5% CO2 in air at 371C. For the
experiment, cells were seeded on 24-well plates (Falcons, Becton
Dickinson Co., Ltd, Franklin Lakes, NJ, USA) at a density of
1.0� 104 cells/cm2. and cultured at 371C for 24 h.

Cell injury
The cell injury was induced by exposure (30 min) to radiocontrast
media, followed by further incubation for 24 h in normal medium,

or by incubating with C2 ceramide or SH-6 for 24 h. Then, the cell
viability was estimated from the mitochondrial activity to reduce
WST-8 to the water-soluble formazan, as described previously.8

Briefly, cells were incubated at 371C for 90 min in 210ml of serum-
free medium containing 10ml of WST-8 assay solution (Cell
Counting Kit-8, Dojindo Laboratory, Kumamoto, Japan). Aliquots
of the incubation medium were transferred to 96-well microplates,
and the absorbance was measured at 620 nm with the reference
wavelength of 450 nm using a microplate reader (Immuno Mini NJ-
2300, Inter Med, Tokyo, Japan). Apoptosis was assessed by TUNEL,
as described previously.42 Briefly, after exposure to various stimuli,
cells were washed with phosphate-buffered saline (PBS) and fixed
for 30 min at room temperature with 4% (w/v) paraformaldehyde in
PBS. Then, the cells were permeabilized with 0.1% Triton X-100 in
0.1% sodium citrate solution. TUNEL stain was carried out using a
commercial apoptosis assay kit (Cell Death Detection kit, Roche
Applied Science, Tokyo, Japan), according to the manufacturer’s
instructions. The stained cells were visualized with a fluorescence
microscope (BX51, Olympus, Tokyo, Japan) and a cooled charge-
coupled device (CCD) camera (DP70, Olympus).

Assay for caspase-3 activity
The activity of caspase-3 was determined by the degradation of the
substrate peptide conjugated with a fluorescent probe AMC, as
described previously.8 The reaction was started by incubating
enzyme extracts with the caspase substrate Ac-zDEVD-AMC
(10mM) for 10 min in the absence or presence of 10 mM zDEVD-
fmk. The concentration of AMC liberated into the supernatant was
determined fluorometrically at an excitation wavelength of 380 nm
and an emission wavelength of 460 nm.

Reverse transcription-polymerase chain reaction for Bcl-2
and Bax
The mRNAs for Bcl-2 and Bax were measured by reverse
transcriptase-polymerase chain reaction (RT-PCR), as described
previously.8 The sequences of PCR primers were as follows: 50-AG
CGTCAACGGGAGATGTC-30 (sense) and 50-GTGATGCAAGCTCC
CACCAG-30 (antisense) for Bcl-2, and 50-CAGCTCTGAGCAGATC
ATGAAGACA-30 (sense) and 50-GCCCATCTTCTTCCAGATGGTG
AGC-30 (antisense) for Bax. Amplification of cDNA provided from
murine renal tissues was carried out for 30 cycles (denaturation at
941C for 45 s, annealing at 531C for 45 s and elongation at 721C for
90 s), followed by additional polymerization at 721C for 7 min, using
Apoptosis PCR Bax/Bcl-2 Multiplex Primer Sets (Sigma), according
to the manufacturer’s instruction. The PCR products were subjected
to electrophoresis on 2% agarose gel, and visualized by ethidium
bromide stain under ultraviolet irradiation.

Measurement of Bcl-2 and Bax proteins
The protein contents of Bcl-2 and Bax were determined by the enzyme
immunoassay, as described previously,42 using the respective enzyme
immunoassay kit (Oncogene Research Products, San Diego, CA, USA).

Mitochondrial membrane potential as measured by JC-1
staining
Changes in mitochondrial membrane potentials were assessed by
using JC-1 according to the method of Reers et al.43 Briefly, cells
were seeded on eight-chamber plastic slides at 2� 104 cells/cm2 and
incubated for 24 h, then exposed to various test compounds. At 12 h
after the exposure, the culture medium was replaced by the medium
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containing JC-1 and incubated for 15 min. Fluorescence images were
observed using a fluorescence microscope and a cooled CCD camera
(Olympus) at the excitation wavelength of 490 nm.

Immunofluorescent stain for pAkt and CREB (pCREB)
Immunofluorescent stains for pAkt and pCREB were carried out
according to the method of Gupta et al.44 and Inglefield et al.,45

respectively. Briefly, cells were cultured on eight-chamber plastic
slides and incubated for 24 h. After washing with PBS, cells were
incubated with IGF-1 for 20 min in the absence or presence of test
compounds. The chamber slides were rinsed with ice-cold PBS and
fixed with 10% (w/v) ice-cold trichloroacetic acid for 30 min. The
specific rabbit antibody raised against porcine pAkt (Ser473) (Cell
Signaling Technology, Beverly, MA, USA) or rat antibody raised
against porcine pCREB (Ser133) (Affinity Bioreagents, Golden, CO,
USA) was diluted (1:50) with PBS containing 5% (w/v) non-fat
dried milk and 0.1% Triton X-100. Cells were incubated with the
diluted antibodies overnight in a humidified chamber at 41C, then
further incubated at room temperature for 2 h with fluorescein
isothiocyanate (FITC)-labeled goat anti-rabbit immunoglobulin G
(IgG) or anti-rat IgG (1:50 dilution with PBS) (The Jackson
Laboratory, Bar Harbor, ME, USA). The fluorescence images were
visualized using a fluorescent microscopy (BX51, Olympus, Tokyo,
Japan).

Determination of pAkt- and pCREB-like immunoreactivities
The basal level of pAkt- or pCREB-like immunoreactivity was
determined by the respective enzyme immunoassay (BioSource
International, Camarillo, CA, USA). Briefly, cells were seeded in a
25-cm2 flask, and incubated for 48 h, then exposed to ioversol for
30 min in the absence or presence of FB1 (300 nM), followed by further
incubation for 3 h, or otherwise cells were incubated with C2 ceramide
or SH-6 for 3 h. In the in vivo experiment, kidneys were dissected 12 h
after ioversol injection, and homogenized with 0.5 ml lysis buffer, then
subjected to the enzyme immunoassay for pAkt or pCREB.

Immunofluorescent analysis for ceramide-like
immunoreactivity
Cells were exposed to various radiocontrast media, then fixed with
3% (w/v) paraformaldehyde in PBS for 30 min at 41C, and
permeabilized with 0.1% Triton X-100. Subsequently, cells were
incubated with anti-ceramide antibody (Alexis) diluted 1:50 with
PBS containing 5% (w/v) nonfat dried milk for 1 h at room
temperature. After washing with PBS, cells were incubated for 1 h at
room temperature with FITC-labeled secondary antibody (Jackson
Laboratory) diluted (1:100) with PBS containing 5% (w/v) nonfat
dried milk. Fluorescent images were monitored by flow cytometry
(Becton Dickinson).

In vivo model of radiocontrast-induced renal injury
The experimental procedure was approved by the Institutional
Committee for the Care and Use of Laboratory Animals at the
Kyushu University Hospital. The renal injury was induced in mice
by a single intravenous injection of ioversol, as described
previously.10 Briefly, male ddY mice (Kyudo Co., Saga, Japan)
weighing 30–35 g were anesthetized with pentobarbital-Na (50 mg/
kg) and subjected to unilateral ligation of the left anterior renal
pedicle, including renal artery, renal vein and ureter, or subjected to
sham operation in which the incision of abdominal skin was made
but the kidney was not ligated. At 7 days after the surgical
procedure, mice were divided into two groups to perform two sets of

independent experiments, including the assessment of renal injury
by measuring urinary NAG activity and histological observations,
and the determination of cellular signals such as caspase-3 activity
and phosphorylations of Akt and CREB. In both experiments,
kidney-occluded mice were divided into three groups and injected
subcutaneously with saline (control group), 0.075 mg/kg FB1 or
0.25 mg/kg FB1, then injected intravenously with ioversol 15 min
later. FB1 was dissolved in saline. Sham-operated mice were injected
intravenously with saline alone via the tail vein. In the experiment
for assessing renal injury, the activity of NAG in urine was
determined at 24 h by the enzymatic degradation of the substrate
sodium cresol sulfonaphthaleinyl NAG using the commercial assay
kit. Then, the right kidney was dissected and fixed in 20% formalin,
dehydrated in graded concentrations of ethanol and embedded in
paraffin. The kidney block was cut into 2-mm sections and subjected
to TUNEL stain. In another set of experiments where the
intracellular signals were determined, the right kidney was dissected
under deep anesthesia at 12 h after ioversol injection. The protein
contents of pAkt and pCREB were determined by enzyme
immunoassay. The activity of caspase-3 in renal tissues were also
measured as described above.

Statistical analyses
Data are expressed as the mean7s.e.m. and statistically analyzed by
one-way analysis of variance, followed by Dunnett’s test for multiple
comparisons or by two-tailed Student’s t-test for comparison
between two groups, or by the Kruskal–Wallis test combined with
a Steel-type multiple comparison tests for nonparametric analysis.
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