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Abstract 

Ever since aesthetics have emerged in modern design, parametric curve like Bezier is widely used in CAD design. Various 
techniques and methodologies like curve fitting, curve manipulation, blending and merging of curves have been proposed over 
the years for better handling and enhancing Bezier curve use with every possible application in CAD domain such as image 
extraction, modelization, profile approximation, fairing and smoothing, etc. These techniques have found its applications in 
manufacturing as well. A review is done on various approaches for handling Bezier curve in Computer Aided Design for the 
purpose of manufacturing for example tool path optimization, profile design, reverse engineering, etc. 
© 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of the Organizing Committee of GCMM 2014. 
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1. Introduction 

In the early stages of manufacturing evolvement, products were designed from manufacturer’s point of view.  
The geometric shapes of the products were easily described by elementary or a combination of elementary 
geometrical entities, for example, a planar patch by its length and width, cylinder by its radius and height, cube by 
its breadths.  But with ever increasing demand for functional, comfort and aesthetics in products, have compelled the 
designers to deal with complex shapes leading to invention of new techniques to create complicated curves and 
surfaces.  Technological developments in computer hardware and software gradually made it possible to 
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automatically create these free form shapes in digital form with the help of mathematical descriptions.  Past few 
decades have witnessed formulations of many novel mathematical representations of free form curves with the need 
to make them more computers compatible [1-19].  Parameterization of a curve have availed some important 
advantages of being bounded in parameter range, independent of coordinate system over implicit representation.  
Furthermore, programming of parametric curves is easier and shorter in length.  It was no sooner realised that 
parametric form of representing curves and surfaces proved to be the most promising shape description methods of 
all[20].  

Bezier curve was named after a French mathematician and engineer, Pierre Bézier, who developed this 
method of computer drawing using Bernstein basis in the late 1960s while working for the car manufacturer 
Renault. The curve possesses a characteristic intuitiveness in expressing the desired shape through property of 
Convexity of control polygon.  Interestingly during the same time, de Casteljau too adopted Bernstein Basis for his 
work which was focused on the property of non-negativity and partition of unity of the basis function associated 
with the control points.  His algorithm was lately acknowledged as de Casteljau’s algorithm which evaluates and 
subdivides the Bezier curve as in fig 1.[21].   Subdivision of the curve is required to break the curve into number of 
small segments for various applications like curve fitting, segmentation, interpolation, and so.  Besides some key 
Bernstein Basis properties that constraints the behaviour of Bezier curve like symmetry, recursion, non-negativity, 
unity of partition, unimodality, relation to monomial basis, lower and upper bounds, variation diminishing property, 
derivatives and integrals there are some algorithms based properties like degree elevation, degree reduction and 
composition that have consistently been evaluated and analyzed over a period of decades in order to broaden its 
applications.   Based on the applications found, the paper is categorized as follows; curve fitting, curve manipulation 
and curve blending and merging will be discussed in section 2-4.  First an overview of each approach is given in 
order to understand its applications further. 

2. Curve Fitting 

2.1. Overview 

In the process of design and manufacture of a free form shaped product, some may become difficult to express in 
the CAD model.  Such problems are solved by the process called Reverse Engineering where in digitization of the 
physical part is done using coordinate measuring machines (CMMs) or various types of non-contact scanning 
techniques[22].  With the advancement in machine vision techniques, image processing is finding extensive 
applications in object recognition, facial features extraction, visual inspection of industrial parts, security 
surveillance, etc[23].  Curve fitting is an essential task in image extraction where the extracted object contours are 
identified into number of small segments which are further described using lines and curves and the extracted object 
regions are fitted using surface fitting techniques like triangular patches, least squares, multistage methods, etc.  
According to Sarbajit Pal[23], polygonal approximation have proved to improve the performance of approximation 
for smooth curves using circular arcs and higher order curves.  Such curves are best approximated by polygons 

Fig. 1 Subdivision by De Casteljau's algorithm  
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which can further be optimized to obtain smooth or fair fit.  Various algorithms used for fitting have local or global 
schemes, which follow heuristic, geometric or algebraic considerations.    

2.2. Applications 

In the early stages of CAD/CAM development, geometric models lacked precision in creating free form shapes 
due to difficulties in defining geometric expressions when Kawabe S. [24] in 1980 sculpted a solid model and 
obtained its geometric information through numerically controlled 3 co-ordinate measuring machine.  The measured 
data were processed by fitting Bezier curves and surfaces using Hosaka’s expression[24] to generate a geometric 
model of the surface in the computer and a cutter path for NC machining was generated from it.  Approximating the 
curve to digitized data generally presents some errors.  Errors could be because of improper measurement process, 
geometrical limitations, clay model flaws, human error, instrument error, etc.  Geometrical limitations can be 
specified as approximation tolerance.  New approximations to the same data were also tried by slightly modifying 
the discrete data points but as Mineur Y. [25] observed during modelization of the curve, such empirical 
manipulations not necessarily give the desired result at once and can become tedious.  Assuming a planar Bezier 
curve with smooth and monotonous curvature variation in mind, fixing degrees to be chosen in the range of 3 to 5, 
he proposed a curve fitting method with shape characterization of the curve. Shape characterization was achieved by 
applying geometrical conditions to the Bezier polygon with a constant angle to each vertex and a constant ratio 
between the lengths of each adjacent edge. By varying the tangent direction through the end points angles 
modifications to the fit can be made. This typical curve is used in styling CAD system for automotive industry.   

The challenges faced in reverse engineering techniques for reconstruction and curve and surface fitting with 
accuracy and precision can be eliminated by generating tool path directly from the discrete point clouds.  In the 
same light, Yingjie Z. [26] presented a tool path generation algorithm that uses cubic Bezier curves to fit the 
projected points obtained from initial tool path plan for guide surface.  The curve is fitted using piecewise 
geometrically continuous cubic Bezier curve and the positions on the curve are adjusted to obtain equal arc length 
spacing for smoother material removal rate and decrease the fluctuation of cutting load.  Accuracy is maintained by 
continuously measuring and evaluating error between the original and approximated data.  When error goes beyond 
predefined value, the piecewise segment is subdivided into two parts and the point with maximum error is made a 
new breakpoint. 

Towards the trend of making the CAD/CAM system more user friendly Loney G. et al [27]developed a software 
package called computer Interactive Surfaces Pre-APT (CISPA) built upon Computer Aided Sculptured Pre-APT 
(CASPA) as an enhancement.  The system would guide the user through mathematical definitions of curve and free 
form surface which can be used to generate NC codes.  Hochfeld et al [28] discussed the role of Bezier curves and 
surfaces during the investigations and installations of various computational methods into the Volkswagen car body 
design.  Software development projects were accompanied with the emerging new technologies like large 
mainframe computers, powerful scanning machines, computer aided drafting and Numerical Control (NC) milling 
machines.  

The initial ideas of curve fitting explored the Bernstein basis polynomial to its best when Rafajlowicz E.[2] 
studied the application of BB polynomial in mathematical statistics as a nonparametric estimation of the probability 
density function. He observed that the computational complexity of de Casteljau algorithm depends on the degree of 
the polynomial and in contrast proposed an algorithm which adapted Horner scheme for generating new 
probabilistic BB polynomial which was viewed in a different light.  The proposed algorithm was based on the law of 
large numbers with a view of prospective application to generate large degree BB polynomial.  The author claimed 
new potential application of BB polynomial in image processing and curve fitting with this property.   Phien H.N. et 
al, [9] proposed three algorithms in connection to de Casteljau for computing control points on the Bezier curve 
considered as more efficient. Although the algorithms become more efficient than de Casteljau’s only as the degree 
of the curve increases beyond cubic.   

A Voronoi diagram of a polygon has various applications like pocketing tool path, automated mesh generation, 
computer vision and font generation.  Kim D.S. et al [3] describes that bisectors in implicit form like line segment, 
elliptical (circular) arc, parabolic arc, hyperbolic arc are inconvenient for geometric processing and generating 
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programming code.  An ordinary quadratic rational Bezier curve can easily be converted into elliptical bisector and 
subdivided but for hyperbolic and parabolic was not an easy fit.  Hence, he considered the condition for minimum 
offset distance at the intersection of the same where when the bisector is subdivided at these points, each bisector 
can be converted into Bezier segment and each will have a monotonic offset distance. This made the entire Voronoi 
edge consisting of implicit bisectors to be converted into rational quadratic Bezier curve for unified representation.  
Author also stated that no extra effort was required to handle special cases for manipulating Voronoi edges.   

Imine M. et al [5] developed some explicit expressions to represent an original Bezier curve into a piecewise 
division of the curve and make curve modelling more precise and localized.  The technique was termed Parametric 
Piecewise Modelling (PPM) where he also presented effects of increasing the number of control points and 
generalization on PPM, order reduction, error analysis and intermediate curve construction.  The motivation behind 
developing PPM was to manipulate a portion of the curve generated directly from the model and thereby circumvent 
the need to generate a new model to redefine that particular portion of the curve where intuitive instincts cannot be 
applied.   

On the diverse side, many curve fitting algorithms has been developed for image processing.  Ideally it is 
desirable and most natural to fit a profile contour or cloud points by a single Bezier curve but it is not possible in 
most of the situations due to some inherent limitations of Bezier curve.  The global handling of the curve holds back 
its application where large curvature changes are required along the curve or number of small curvatures required 
within small intervals and points where abrupt change in tangent vectors or sudden discontinuity is desired like in 
sharp corners and turns.  Again, defining curvature of the curve for a digital curve is not possible as there is no exact 
mathematical definition available.  Therefore, the curves are more apt to fit by piecewise approximation in which 
the fitting length is broken into number of small segments and Bezier curve pieces are approximated in each 
segment connecting end to end.  Detection and exact location of break point is crucial to achieve the best fit and 
many algorithms are essentially dedicated for the selection procedure. These points are identified where tangency 
and curvature discontinuities are observed and it is based on different criteria fixed by various authors will assist in 
locating tangent discontinuities and large curvature gaps.   

Shao & Zhou’s [4] with the purpose of converting bitmapped image into its outlined representation particularly 
by cubic Bezier curves developed a curve fitting algorithm.  First the critical points were identified based on 
tangential discontinuities termed as corner points and points of big curvature change called as joints points.  To 
locate critical corners chord curve area method was applied at each point on the curve as in fig. 2-a, to compute the 
curvature values for the corresponding points on the curve.  Joint points were identified using area deviation 
algorithm.  Once the exact positions of critical points are achieved fixed chord length was chosen and the Bezier 
curves segments were fit between the adjacent pair of critical points to fit into the data points.  Pal S. et al [23] used 
chain coding technique to detect break points on the curve.  Chain coding is a boundary representation technique 
that divides the digital curve into sequence of straight line segments of specified length and direction as depicted 
from fig. 2-b.  These segments are assigned integer Ci varying from 0 to 7 according to its direction to the vector.  A  
digital curve can be expressed by a string of codes following the sequence as n chain codes and is denoted as C1 C2 

C3…. Cn.  The break point algorithm which is a rule based algorithm is implemented to obtain local maximum 
curvature to introduce dominant point.  On breakpoint detection, the cubic Bezier curves are approximated in the 
curve segments.  Since two of the four control points of cubic Bezier are anchored at end to end connections on the 

Fig. 2 (a) Chord, area and curve, (b) Chain code direction vector & (c) Curve representing 8 directional chain code 10701131000776 
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segments the fitting of curve can only be done by proper positioning of two intermediate handles.  A simple 
algebraic interpolation technique was used to interpolate the two intermediate control points to minimize the 
computational expense.  To minimize the approximation error of the control points’ refinement was done using Two 
Dimensional Logarithmic Search Algorithm (TDLSA) and Evolutionary Search Algorithm (ESA) schemes.  

In machining too there has been an inclination on fit the G01 blocks (linear interpolation) also called continuous 
short blocks (CSB) into parametric curves before real time interpolation.  Parametric form in CAD/CAM and CNC 
systems does justify its popularity by offering significant benefits like significant reduction in unsmooth motions 
due to acceleration and deceleration jerks, discontinuities in segmentation and of course the transmission load is 
reduced.  The numerous CSB are unavoidable in the digital CAD model and not desirable for machining time 
minimization.  

Yau and Wang [29] designed a Fast Bezier Interpolator (FBI) with real-time look ahead function with using PC-
based control architecture.  The need was to develop a real time algorithm which can avail the benefits of smooth 
interpolation with the parametric form along with the CSB.  To maintain the specified accuracy, a CSB criterion is 
proposed to find the critical corner angle first. This criterion includes two tests, a) the critical corner angle test and 
b) the bi-chord error test.  The angle between two connected NC blocks was defined as the ‘corner angle’ and as per 
the criterion, any corner smaller than the critical corner angle will be marked as a ‘break point’.  Bi-chord error test 
is used to obtain good accuracy and must satisfy the critical corner test.  To restrain the contour error in an 
algorithm, this test was used to examine whether cubic Bezier curves can be used for curve fitting or not.  The FBI 
interpolates 5 CSBs in fig. 3-a, -b, & -c [29]. However, this algorithm could not guarantee tangential continuity at 
the joint points. 

 
Choi Y. –K. et al [30] proposed a tool path generation algorithm using Bezier curves and surfaces.  Evaluation of 

cutter contact point was done by converting the forward step in physical domain into the parametric domain using 
Taylor’s expansion and error compensation technique.  The conversion was done for the curve and surface to be 
machined is in the parametric form. Further, side steps are calculated and algorithm is implemented.  Desired 
surface was generated in CAD software and its coordinates by MATLAB software.  This algorithm offered C1 
tangential continuity which means the discontinuities in the tool path still cause fluctuations in feed speed and 
acceleration.   To this, Pateloup et al [31]  proposed an algorithm for approximating a series of line segments and 
circular arcs using B-spline curve (a generalization of Bezier curve) to obtain C2 continuous curves adapted for high 
feed rate machining and was achieved. But again, B-spline too does not have any explicit close-form expression and 
as observed by Q.Z. Bi et al [32] optimizing the evolution of curvature under predefined constraints was not 
straightforward.  Consequently, he opted to use fair transition curves in replacement of linear and circular arcs for 
tool path smoothing in order to fulfil high speed and high accuracy machining.  Advantage of fairing curve is that it 
has only one curvature extrema.  The developed algorithm generates two cubic Bezier transition curves for every 
segment junction and has been integrated to an open NC system.  Cubic Bezier transition curve is a generalization of 
cubic Bezier with control points B10, B11 and B12 collinear as in fig.4-a.  Explicit analytical expressions have been 
provided for both the approximation error and maximum curvature.  Fig.4-b shows the comparison of linear tool 
path and smoothened tool path using transition curves.  The Bezier transition algorithm generated smoother speed 
and acceleration curves and reduces machining time.    

 

Fig. 3 (a) First and second blocks of CSB, (b) Third block of CSB, (c) Fourth and last block of CSB 
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3. Curve Manipulations 

3.1. Overview 

Having face challenges in fitting the curve on to the required data in order to achieve the desired shape or fit, 
researchers’ explored manipulation of the parametric curve based on required constraints and shapes.  This method 
will change the mathematical basis of the curve representation by changing the number of control points, knots, 
adding or removing weights and shape parameters, raising and lowering the order of curve but within the specified 
constraints such that it does not affect the characteristic properties of the curve.  Several techniques and algorithms 
have been proposed aiming to have better control over the curve and to make them more intuitive and versatile in 
applications. 

3.2. Application 

Bezier, B-spline, Nurbs are the control point-based curves whose boundary information like end positions, 
tangents and higher order derivatives of end points cannot be directly interpolated but instead needs to be 
approximated for their control polygons.  Then there is Hermite curve which can be explicitly represented by its 
boundary conditions and same for Hermite patches.  In the international standard STEP (Standard for The Exchange 
of Product model data), Nurbs has been accepted as the only form for representation of free form curves and 
surfaces.  Hence efficient geometric data conversion algorithm becomes necessary in order to exchange product data 
between CAD-systems.  Ye X. [33] , motivated by the need of conversion between different free form curves and 
surfaces, presented a method for explicitly expressing Bezier points directly from the boundary information for 
frequently used Hermite curves, coons-Hermite Cartesian sum patches and Coons-Boolean sum patches. 

Parametric quadratic and cubic curves are extensively being used in various applications because of its geometric 
and numerical properties.  These curves are not only specified by the quantities revealed in their mathematical 
definitions like control points or parametric coefficients but also via different geometric constraints as demonstrated 
by [3, 7, 8, 11, 17, 34, 35].  Curve manipulation for offsetting, fairing and blending applications has been viewed on 
a broader horizon in these literatures.    

Kim H. O. et al [34] characterized and presented the necessary and sufficient conditions for the curvature of 
quadratic rational Bezier curve as an application for offset curves to be regular and have same tangent directions 
with quadratic rational Bezier curve.  Approximate rational Bezier curve is of 3n-2 degree higher than the Bezier 
curve of degree ‘n’. This results in offset approximate by rational Bezier curve of high degree.  Ahn Y. J. [12] 
proposed a method to approximate the offset Bezier curves of high degree using circle approximation method using 
same degree Bezier curve.   In the method, circular arc has been approximated by a plane polynomial curve and 
bound for exact Hausdorf’s distance [12] between two offset curves were derived using Floater’s geometric Hermite 
interpolation method from previous work.   Approximating rational functions with polynomial is quite complicated 
besides dealing with complex form of its derivatives and integrals.  For which, Youdu H. et al [16] put forward a 
method to approximate rational Bezier curve with Bezier curves by constantly elevating the degree of rational 
Bezier curve and construct Bezier curve using the elevated control points as control points of the Bezier curve.  

Fig. 4 (a) A pair of cubic Bezier transition curve, (b) G2 continuous path with transition curve compared with linear path 
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Author proved that the derivatives of resulting Bezier curve sequence uniformly converged with the corresponding 
derivatives of original rational Bezier curve. 

There are applications in mechanical CAD where the curve has to pass near a point, line or circle border within a 
prescribed clearance for example motion planning for robot, AGV, etc.  Such curves are constrained geometrically 

by their positional or tangency constraint.  Ahn Y. J. et al [36] derived analytical expressions for quadratic Bezier 
curves with tangency constraints in terms of control point coordinates that minimize bending energy or arc length.  
By fixing first and last control points, the locus of the middle control point are analyzed for curves of fixed arc 
length and bending energy.  Then tangency locus of the middle control point is determined for line and circle. Refer 
fig.5-a.  Line tangency locus is a straight line and is a unique minimum length.  Quadratic Bezier curves are used 
very well as transition curves, can substitute biarcs (two circular arcs) owing to polynomial advantage, used to 
approximate circular arcs, its computation cost is less and It is also used to satisfy the endpoint tangent condition.  
But due to small segment and only 3 control points, it is not possible to achieve tangent continuity in all directions.  
[37] demonstrated how using only two segments of quadratic Bezier can satisfy end point tangent conditions with 
G1 continuity. Fig. 5-b shows two of the several combinations with 2 segments.  

An interesting observation about the planar parametric cubic curve is, it has 8 degrees of freedom and the shape 
of the curve can be controlled by constraining some degrees and exploring the possibilities of shape by varying the 
remaining degrees of freedom.  Juhasz I. [7] used similar idea of shape controlling except that he assumed end 
points to be unknown but known tangent vectors and signed curvatures.  He constructed a solution to this problem 
by using Bezier representation of cubic arcs.  The Bezier representation of cubic arc is derived mathematically using 
tangent vectors and curvatures and further two possible cases of tangent conditions were distinguished. A case when 
tangents vectors at end points are not parallel, one parameter family of cubic’s is obtained and another when the 
tangent vectors are assumed parallel, various cases for end curvatures are explored for which special cases were 
studied by keeping either or both of the end curvatures zero.  The free parameters in both the tangent conditions 
were used to fulfil additional conditions like arc length, area and tangent directions for first case which can be used 
for curvature based curve blending with C1,G1 continuity and length, area and curvature conditions for the later 
which can also be used for constraint-based curve blending but with G2 continuity.  Here the free parameters mean 
degrees of freedom. 

In the above case, loci of the end points are a straight line.  A related case was studied by Walton & Meek [8] 
where loci of the end points is a circle.  They demonstrated the use of cubic Bezier curve as a transition curve 
between two circles referred to as a fairing curve.  This would give “Visually pleasing blend” which is geometrically 
defined by the author as, “A blend that is curvature continuous without extraneous curvature extrema” and it is 
natural to give a G2 continuity.  Similar problems were handled using two Clothoid or Cornu spiral segments which 
do preserve a fairing property and is majorly used in highways and railways design.  But clothoid being a non 
polynomial came out as its limitation.  Therefore, author approached the problem taking the angle condition from a 
reference work, using two cubic and PH quintic spiral segments as, “The magnitude of the angle formed by the first 
and last leg of the control polygon of one spiral segment was set equal to the magnitude of the angle formed by the 
first and last legs of the control polygon of the other spiral segment”.  The solution resulted in finding S-shaped and 

Fig. 5 (a) Quadratic Bezier control points and tangency to line T, (b) Two segments of G1 quadratic Bezier curves, a)-C-shape & b)- S-shape 
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C-shaped transition curves from two non-enclosing circles Ω1 and Ω0 seen in fig. 6, a & b respectively.   
 [11] On emphasizing fairing curves further, generalized cubic Bezier spiral from cubic Bezier by imposing 
restrictions on θ= 0, g=h, k= 6/5 h cosφ and 0< φ < 1/2π shown in fig. 6-c in order to let the designer specify a point 
on the circle where transition curve can meet. Such construction worked as a tool to control the curvature and allows 
G2 transition (or blending) between curve and circle.  

A lot research has been done on Clothoid spirals so far pertaining to its behaviour suitable for fairing.  The pro of 
clothoid is it does not have curvature extrema from aesthetics and CAD point of view, and from design of road and 
mobile trajectory’s view point; it guarantees a constant jerk which minimizes wheel slip which is again a desirable 
property.  But the con side of clothoid is, it is represented by Fresnel Integrals which is a non polynomial and cannot 
be solved analytically.  Montes N. [14] in the search of continuous curve approximation of clothoid with lowest 
possible degree without the loss of clothoid behavior approximated the Fresnel integral to obtain rational Bezier 
curves (RBC).  The online approach for mobile robot path design guaranteed original clothoidal behaviour when the 
RBC was used.  

There is a limitation to modifying quadratic and cubic Beziers beyond fairing, blending, representing analytical 
curve segments in parametric form or satisfying end conditions, etc when applications require large profiles or 
surfaces.  Use of higher order Bezier is suggested as its modification through polygon vertices can be achieved.  
Also blending end points up to curvature continuity can be achieved and not affecting global property of Bezier 
significantly.  Ntoko N.-M. [1] suggested the use of quintic Bezier curves for such applications with alternative 
blending functions with shape parameters.  This would also circumvent the use of number of curve segments or 
surface patches. 

It is better known that Bezier curves are apt to be approximated by their control polygon and subdivision of the 
curve makes approximation better.  On recursive subdivision, the error bound between length of control polygon and 
length of chord converges and approximation in terms of arc-length is enhanced.  If Lc denotes the chord-length and 
Lp polygon-length then arc-length of the Bezier curve is in the interval [Lc , Lp] but L Grevsen J. [38] calculated arc-
length at the midpoint [Lc + Lp/2] and discovered that this quantity converges much faster under subdivision.  He 
proposed this very good method of approximation through arc-length along with error estimates and tolerance 
distributions.  

All available methods for improved shape approximation like degree elevation, composite Bezier curve or 
refinement and subdivision ultimately aim at reducing the gap between the curve and its control polygon.  But by 
degree elevation; the number of control point increases, in composite Bezier curve; number of segments increases as 
the shape gets complex and subdivision increases the number of segments and control points as well.  With the same 
motivation Sohel F. A. et al [15] introduced quasi-Bezier curve as a novel contribution to the Bezier curve theory 
which would consider local information within the classical Bezier framework, without increasing the number of 
control points or computational complexity.  The gap between the curve and its control polygon is reduced and local 

Fig. 6 (a) S-shaped cubic Bezier transition curve, (b) C-shaped cubic Bezier transition curve, (c) a, Cubic Bezier and b, 
Cubic Bezier spiral 
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control is attained while retaining the core properties of the classical Bezier curve. Refer fig.7 (a,b). 
Han X. –A. [13]achieved similar results through extension of classical Bernstein basis function inheriting most 

properties of Bezier curve.  The basis function was introduced with ‘n’ adjustable shape parameters λ to control the 
shape of the curve without changing the control polygon as in fig.7 c.   

From the view point of Basis function, Bezier curves have also been investigated using trigonometric 
polynomials.   Parametric representation through trigonometric polynomial has been emphasized owing to its benefit 
in offering local control over the shape through shape parameters and its continuity conditions are being examined 
consistently under various degrees like Quadratic Trigonometric Bezier curve in [18], Quartic trigonometric Bezier 
curve in [19], quasi-quintic trigonometric Bezier curves [17].  In [39] Wu X. analyses the effects of shape 
parameters on the shape feature of the quadratic trigonometric Bezier curve using on theory of envelop and 

topological mapping. 
 

4. Curve Blending & Merging 

4.1. Overview 

Designers apply blending in order to avoid sharp edges and vertices to make them visually smooth and 
aesthetically pleasant.  This can be understood as using chamfers and fillets in machining but in CAGD, blends are 
often used to acquire intricate shapes which otherwise are not possible to obtain by ordinary parametric entities, 
like a vertex can be substituted with a curve arc.  Also it has found application in approximating a given curve.  
Certain order of continuity needs to be provided at the end points of the blendes to ensure the smoothness.  First 
order continuity is necessary for minimum desirable smoothness.  Higher the order of continuity more pleasant is 
the blend.  Merging is the term used to join or merge or stitch two adjacent curve segments with either point 
continuity C0 or tangential continuityC1 or curvature continuity C2.  Although merging in CAGD is also referred to 
as blending in many cases and there is no proof documented on differentiating them.   

4.2. Application 

Mesh models used in computer graphics and CAD may sometimes have holes, gaps or vacant areas.  This could 
be because of many reasons like local cloud data loss, some broken part in the model or could be a scanning 
equipment fault.  Such mesh models are completed with hole filling or repair work algorithms.  Li Z. et al [40] 
presented one such algorithm to fill the mesh hole using polynomial blending. The algorithm first searches features 
from the neighbouring area points to define the feature of the missing part in the hole.  Based on the features two 
blending curves are constructed to complete the missing parts of the hole.  These feature curves divides original hole 

Fig. 7 (a) Quadratic Bezier curve illustrating the gap, (b) QBC-n, QBC and BC comparison; degree elevation, (c) Effect of shape on 
cubic Quassi Bezier by λ1 , λ2 , λ3 
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into small sub holes and Bezier-Lagrange hybrid patch is used to fill each sub hole. 
Developable surfaces are more appealing in CAGD because of its ease in product surface development as well as 

ease in fabrication.  Geodesic is referred to as the shortest line or curve segment between two points on a specific 
surface. It plays an important role in designing developable surface based product like shoemaking.   Li C.-Y et al 
[41] studied Bezier curves as geodesics abutting G1 connection required in joining two developable surfaces by 
constraining positions of control points and polynomials associated with each surface. 

Integration of CAD & CAM system calls for fast communication modes in data sharing, data conversion, 
transferring geometric data from one system to another without the loss of accuracy and information in approximate 
conversion. With a common aim to minimize the loss of information and high degree of accuracy preservation 
during data transfer, Hui S. M. [10] considered a problem of merging two adjacent Bezier curves into a single Bezier 
curve.  To satisfy more needs of approximate conversion, Cheng M. et al [42] developed a merging technique to 
merge multiple Bezier curves of different degrees.   

5. Conclusion 

The curve fitting approaches are found to be used in CNC tool path planning as seen in [24, 26-32, 43].  These 
adaptations have lead to saving machining time, reducing number of CNC blocks and reducing acceleration and 
deceleration jerks.  Curve manipulation techniques have helped in making Bezier curve more users friendly and 
adaptive to versatile complex design solutions.  Techniques pertaining to quadratic and cubic Bezier curves have 
been studied more by the researchers for the benefits discussed earlier.  Manipulating of the curve has helped 
generate offsets easy. Also applications of using higher degree curves too are found to satisfy intricate shapes and 
their offsets which is another use in machining pockets on milling machines.  Curve Blending have made it possible 
to obtain shapes which are difficult to produce directly from a single curve where as curve merging have facilitated 
in compacting the communication data size during data transfer and data conversion. 
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