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a b s t r a c t 

Mars Reconnaissance Orbiter Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) hyper- 

spectral image data have been acquired in an along-track oversampled (ATO) mode with the intent of 

processing the data to better than the nominal ∼18 m/pixel ground resolution. We have implemented an 

iterative maximum log-likelihood method (MLM) that utilizes the instrument spectral and spatial transfer 

functions and includes a penalty function to regularize the data. Products are produced both in sensor 

space and as projected hyperspectral image cubes at 12 m/pixel. Preprocessing steps include retrieval of 

surface single scattering albedos (SSA) using the Hapke Function and DISORT-based radiative modeling 

of atmospheric gases and aerosols. Resultant SSA cubes are despiked to remove extrema and tested to 

ensure that the remaining data are Poisson-distributed, an underlying assumption for the MLM algorithm 

implementation. Two examples of processed ATO data sets are presented. ATO0 0 02EC79 covers the route 

taken by the Curiosity rover during its initial ascent of Mount Sharp in Gale Crater. SSA data are used 

to model mineral abundances and grain sizes predicted to be present in the Namib barchan sand dune 

sampled and analyzed by Curiosity. CRISM based results compare favorably to in situ results derived from 

Curiosity’s measurement campaign. ATO0 0 02DDF9 covers Marathon Valley on the Cape Tribulation rim 

segment of Endeavour Crater. SSA spectra indicate the presence of a minor component of Fe 3 + and Mg 2 + 

smectites on the valley floor and walls. Localization to 12 m/pixel provided the detailed spatial informa- 

tion needed for the Opportunity rover to traverse to and characterize those outcrops that have the deep- 

est absorptions. The combination of orbital and rover-based data show that the smectite-bearing outcrops 

in Marathon Valley are impact breccias that are basaltic in composition and that have been isochemically 

altered in a low water to rock environment. 

© 2016 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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1. Introduction 

Visible to infrared spectroscopic observations of Mars from tele-

scopic, orbital, and landed observatories have been critically im-

portant for establishing the predominantly basaltic composition

of the surface (e.g., McCord et al., 1982; Bandfield et al., 20 0 0;

Bell et al. 2004a , b; Bibring et al., 2005; Mustard et al., 2005;

Poulet et al., 2009 ) and discovering and mapping evidence for
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ineral phases formed in the presence of water (e.g., Christensen

nd Ruff, 2004; Gendrin et al., 2005; Bibring et al. 2006; Bishop

t al., 2008; Poulet et al., 2008; Murchie et al., 2009; Ehlmann

nd Edwards, 2014 ). The Compact Reconnaissance Imaging Spec-

rometer for Mars (CRISM) on the Mars Reconnaissance Orbiter

MRO) began operations in 2006 ( Murchie et al., 2007 ). CRISM is

 push-broom hyperspectral imaging spectrometer operating from

.392 to 3.91 μm with a 6.5 nm spectral band spacing and a small-

st pixel size projected onto the surface of 18 to 20 m. Images

re acquired using an optical sensor unit that can be gimbaled

n the along-track direction, thereby tracking a target to produce

ontiguous pixels from line to line as MRO moves forward in its
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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Fig. 1. False color map-projected single scattering albedo (SSA) image of CRISM L data for ATO0 0 02EC79 is shown covering a portion of Gale Crater. The image is overlain on 

a HiRISE-based mosaic. The CRISM image has been regularized to 12 m/pixel. Traverses for the Curiosity rover are also plotted through sol 1281 and include paths into the 

barchan dunes in the Bagnold Dune field. Curiosity is on the lower slopes of Mount Sharp which rises ∼5 km to the southeast of the area shown in the figure. The Namib 

Dune is where the rover was commanded to conduct a detailed remote sensing and measurement campaign to characterize the bedforms, composition, and mineralogy of 

the dune sands. The hematite-dominated ridge ( Fraeman et al., 2013 ) is a prime target for Curiosity, to be followed by continued ascent of Mount Sharp. RGB assigned to 

CRISM bands located at 2.5288, 1.5059, and 1.0793 μm wavelengths. L data are shown using these wavelengths for subsequent figures. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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rbital path. Since 2010 a new gimbaled motion has been used

hat employs significant pixel overlap in the along-track direction.

his paper presents an algorithm for regularizing these along-track

versampled (ATO) observations using an iterative maximum log-

ikelihood method (MLM) to retrieve the best estimate of scene in-

ormation in the presence of noise, with an image pixel size pro-

ected onto the surface of 12 m/pixel. The paper also discusses pre-

rocessing the spectral radiance image cubes to surface single scat-

ering albedos and presents as examples reduction and analysis of

TO data over the Curiosity and Opportunity rover locations for di-

ect comparisons to rover-derived data ( Figs. 1–4 ). 

. Processing methodology 

.1. Retrieval of single scattering albedos 

The primary derived CRISM hyperspectral image cube archived

t NASA’s Planetary Data System (PDS) has units of spectral ra-

iance (W m 

−2 sr −1 μm 

−1 ) that are based on preflightcalibrations

hat are updated using an on-board integrating sphere and lamps

 Murchie et al., 2007 ; see also the CRISM Data Products Software

nterface Specification document (DPSIS), available online at http://

ds-geosciences.wustl.edu/missions/mro/crism.htm ). A second PDS 

roduct has units of I/F (spectral radiance divided by the solar

pectral radiance at the time of observation) and has been highly

rocessed to suppress detector noise (see online the DPSIS). For

ur purposes we use spectral radiance cubes because the algorithm

escribed in this paper is based on retrieving the optimum esti-

ate of surface single scattering albedos in the presence of noise

hat has a Poisson statistical distribution. Because the I/F data in
he PDS have been highly processed we cannot use these files be-

ause the inherent noise patterns have been distorted by the pro-

essing. The spectral radiance data are first converted to I/F units

y dividing by the solar spectral radiance at Mars at the time

f the observation, resampled through the CRISM spectral band

asses. Discrete Ordinates Radiative Transfer (DISORT)-based pro-

essing ( Stamnes et al., 1988 ) and the Hapke function for surface

cattering ( Hapke, 2012 ) are then used to retrieve surface single

cattering albedos (SSAs), i.e., the ratio of scattering efficiency to

cattering plus absorption efficiencies of a single particle. The pro-

edure was described in Arvidson et al. (2014) but we will provide

dditional relevant details in this section of the paper. The overall

rocessing flow is outlined in Fig. 5. 

The DISORT code models radiative transfer streams associated

ith dust and ice aerosols, CO 2 , H 2 O, and CO gases, and a sur-

ace boundary layer simulated in our case using the Hapke func-

ion ( Fig. 5 ). Parameters used in the Hapke function are presented

n Table 1 and were derived from consideration of scattering from

ypical surfaces based on Pancam data from Spirit and Opportu-

ity ( Johnson et al., 2006a ,b ). The free parameter in the function

s the SSA value for each CRISM band and spatial location. Use of

ISORT is iterative, beginning with dust and ice aerosols based on

nferences from Opportunity and Curiosity observations for CRISM

cenes acquired over the rover sites, together with data from other

RO instruments ( Wolff et al.,2009 ). The CO 2 pressure for the

cene center is based on a DISORT-computed retrieval using the

epths of the 2 μm CO 2 absorption band triplet ( Smith et al., 2009 ).

nput CO and H 2 O abundances are based on retrieval from CRISM

ata ( Smith et al., 2009 ). A range of CO 2 pressures is then calcu-

ated using DISORT, centered about the estimated pressure for the

http://pds-geosciences.wustl.edu/missions/mro/crism.htm
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Table 1 

Parameters used in Hapke Photometric Function. Detailed explanation of parameters found in Hapke (2012) . 

Single Scattering Albedo Two Term Henyey Greenstein Single Scattering Albedo Opposition Effect Macroscopic Roughness Parameter 

Asymmetry Factor Forward Fraction h width B o height 

Derived from data 0 .26 0 .30 1 .0 0 .06 15 °

Fig. 2. Sensor space false color composites of I/F L data for ATO0 0 02EC79 generated from spectral radiance data without any further processing (top) and as SSA data after 

removing extrema and regularization using the maximum log-likelihood algorithm (bottom). The MLM SSA data show less noise elements, especially column-dependent 

noise. Vertical white lines show the column for which row to row pixel spacing is plotted in Fig. 8 . The presence of column-dependent artifacts in the unprocessed data 

made it difficult to generate a composite with color patterns identical to the processed data. North is roughly in the downward direction because CRISM acquires data during 

its ascending orbits. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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scene center, and varied as a function of elevation using Mars Or-

biter Laser Altimeter (MOLA) data and a nominal pressure scale

height. The output is a table of I/F values as a function of SSA

values, CO 2 pressures, and incidence, emergence, and phase an-

gle ranges (from Derived Data Records (DDRs), see also the online

DPSIS) for the scene of interest. The output is computed at 1 nm

spacing and convolved with the CRISM band passes using center

wavelengths and a Gaussian assumption for the band pass shapes.

Center wavelengths shift with the temperature of the window cov-

ering the instrument. These offsets are included in the processing

and are based on shifts of the CO 2 bands in the data relative to

predictions from DISORT models. Initial SSA cubes are examined

for residual 2 μm CO 2 bands. The central pressure is adjusted and

the model is run iteratively until residual CO 2 bands are minimized

across the scene. 

2.2. Statistical tests and extrema removal 

CRISM data products have multiple sources of noise, including

Poisson detector counting statistics for the S and L detectors, and

thermal noise for the L detectors. In particular, for recent scenes

thermal noise is relatively large because the detectors are operat-

ing ∼15 K hotter than at the beginning of the mission due to cryo-

genic cooler degradation ( Murchie et al., 2007 ). There is also obser-

vation and column dependent noise associated with one (or more)

detector at a given wavelength (or set of wavelengths) due to cal-

ibration errors that leads to vertical striping in the sensor space

data ( Figs. 2 and 4 ). Additional stochastic noise is evident as spikes

in the spectral domain ( Fig. 6 ). These spikes are not characteristic
f absorption features and can be singular or span a few spectral

ands due to a temporary coupling of detectors. The spikes are of-

en associated with crossing a sharp surface brightness boundary,

here a given detector or set of detectors is biased from the pre-

ious acquisition. 

The SSA data were found to follow a Poisson distribution if

he extrema (i.e., spikes) were first removed. A detailed analysis is

resented in Appendix A . Spikes were removed using a rendition

f the bit error filter designed by Eliason and McEwen (1990) in

hich the local standard deviation in the spectral domain is calcu-

ated for a given filter width and band center. If the center value

xceeds a predetermined number of standard deviations above the

ocal standard deviation, together with an absolute tolerance value,

t is replaced by the median value within the local filter domain.

terative runs with tighter tolerances successfully removed the ex-

reme spectral values, as shown in Fig. 6 . This technique is similar

o what was employed by Carter et al. (2013) for CRISM data. 

. Maximum log-likelihood method 

.1. Overview 

In the maximum log-likelihood method (MLM) with Poisson

istributed data, the mean μ( λ, x, y ) represents the blurred ver-

ion of the actual values c ( λ′ , x ′ , y ′ ) for the CRISM SSA data

 ( λ, x, y ) (e.g., Snyder et al., 1992 ): 

 ( λ, x, y ) ∼ P oisson [ μ( λ, x, y ) ] . (1)
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Fig. 3. False color map-projected single scattering albedo (SSA) image of CRISM L data for ATO0 0 02DDF9 covering a portion of Endeavour Crater is shown overlain on a 

HiRISE-based mosaic. The CRISM image has been regularized to 12 m/pixel. Traverses for the Opportunity rover are also plotted through sol 4320 and include paths within 

Marathon Valley on the Cape Tribulation rim segment of the 22 km diameter Endeavour Crater. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 4. Sensor space false color composites of I/F L data for ATO0 0 02DDF9 generated from spectral radiance data without any further processing (top) and as SSA data after 

removing extrema and regularization using the log maximum likelihood algorithm (bottom). The MLM SSA data show less noise elements, especially column-dependent 

noise. Vertical white lines show the column for which row to row pixel spacing is plotted in Fig. 8 . North is roughly in the downward direction because CRISM acquires data 

during its ascending orbits. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.). 
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Fig. 5. Flow chart illustrating the approach used to retrieve SSA estimates from 

CRISM spectral radiance (RA) files. The DISORT radiative code is used to model at- 

mospheric gases and aerosols along with the Hapke photometric function as a sur- 

face boundary condition. After a series of iterations to minimize residual CO 2 gas 

absorptions the output is an SSA data cube ( d ( λ, x, y ), where λ is wavelength and 

x , y represent spatial dimensions of the hyperspectral image cube). 

Fig. 6. SSA spectra are shown for a mean of 680 pixels from the sensor space im- 

age cube ATO0 0 02EC79 covering a spectrally homogeneous area on the hummocky 

plains. Area is shown in Appendix Fig. A1 . Data are shown with and without re- 

moval of extreme values using a median filter as described in the text. 
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The log-likelihood function for Poisson distributed data is given

by 

l ( d| μ) = 

∑ 

λ∈ �

∑ 

x ∈ X 

∑ 

y ∈ Y 

{ d ( λ, x, y ) ln [ μ( λ, x, y ) ] − μ( λ, x, y ) } (2)

where 

μ( λ, x, y ) = 

∑ 

λ′ ∈ �′ 

∑ 

x ′ ∈ X 

′ 

∑ 

y ′ ∈ Y 

′ 
h 

(
λ, x, y | λ′ , x ′ , y ′ 

)
c 
(
λ′ , x ′ , y ′ 

)
(3)

with 

h 

(
λ, x, y | λ′ , x ′ , y ′ 

)
= h spec 

(
λ| λ′ , y 

)
h spat 

(
x, y | x ′ , y ′ ) (4)

where �, X , and Y are sets of wavelengths, rows, and columns in

sensor space, respectively. Primed coordinates are projected on the

Martian surface and the h variables represent the spectral and spa-

tial transfer functions for the CRISM instrument, which vary with

wavelength and column for the 2D detector array. To reiterate, μ( λ,
, y ) is the best estimate for the observed data taking into account

he instrument spatial and spectral transfer functions, c ( λ′ , x ′ , y ′ )
s the best estimate of the pure data, and d ( λ, x, y ) is the measured

RISM data. 

I -divergence is an information-theoretic measure of discrepancy

etween two nonnegative vectors or functions ( Csiszár, 1991 ). The

 -divergence between μ( λ, x, y ) and d ( λ, x, y ) is given by 

 ( d| μ) = 

∑ 

λ∈ �

∑ 

x ∈ X 

∑ 

y ∈ Y 

{
d ( λ, x, y ) ln 

[
d ( λ, x, y ) 

μ( λ, x, y ) 

]

−d ( λ, x, y ) + μ( λ, x, y ) 

}
(5)

here I ( d | μ) ≥ 0, with equality if and only if 

 ( λ, x, y ) = μ( λ, x, y ) ∀ λ, x, y ∈ �, X , Y , respectively . (6)

By inspection, minimizing the I -divergence is equivalent to

aximizing the log-likelihood for the above functions. 

For the projected SSA image cube c ( λ′ , x ′ , y ′ ) to be a minimizer

f the I -divergence the following relationship must hold: 

∑ 

∈ �

∑ 

x ∈ X 

∑ 

y ∈ Y 

h 

(
λ, x, y | λ′ , x ′ , y ′ 

)
d ( λ, x, y ) 

μ( λ, x, y ) {= H 0 

(
λ′ , x ′ , y ′ 

)
for c 

(
λ′ , x ′ , y ′ 

)
> 0 

≤ H 0 

(
λ′ , x ′ , y ′ 

)
for c 

(
λ′ , x ′ , y ′ 

)
= 0 

(7)

here 

 0 

(
λ′ , x ′ , y ′ 

)
= 

∑ 

λ∈ �

∑ 

x ∈ X 

∑ 

y ∈ Y 

h 

(
λ, x, y | λ′ , x ′ , y ′ 

)
. (8)

The above statements are known as the Karush-Kuhn-Tucker

KKT) conditions ( Kuhn and Tucker, 1951; Karush, 1939 ). 

Consider iterative updates for estimates of c ( λ′ , x ′ , y ′ ) defined

y 

 

( k +1 ) 
(
λ′ , x ′ , y ′ 

)
= 

c ( k ) 
(
λ′ , x ′ , y ′ 

)
H 0 ( λ′ , x ′ , y ′ ) 

∑ 

λ∈ �

∑ 

x ∈ X 

∑ 

y ∈ Y 

h 

(
λ, x, y | λ′ , x ′ , y ′ 

)
× d ( λ, x, y ) 

μ( k ) ( λ, x, y ) 
(9)

here 

( k ) ( λ, x, y ) = 

∑ 

λ′′ ∈ �′′ 

∑ 

x ′′ ∈ X 

′′ 

∑ 

y ′′ ∈ Y 

′′ 
h 

(
λ, x, y | λ′′ , x ′′ , y ′′ 

)
c ( k ) 

(
λ′′ , x ′′ , y ′′ 

)
(10)

nd where { �′ , X 

′ , Y 

′ } = { �′′ , X 

′′ , Y 

′′ } (the sets are identical). The

equence of images { c ( k ) ( λ′ , x ′ , y ′ )}, k = 0, 1, 2… monotonically con-

erges to the I -divergence minimum that satisfies the KKT condi-

ions ( Eq. (7) ). This sequence is an expectation-maximization (EM)

lgorithm for Poisson data ( Dempster et al., 1977; Shepp and Vardi,

982; Snyder and Miller, 1991 ). It is also referred to as the Lucy-

ichardson algorithm ( Richardson, 1972; Lucy, 1974 ). 

The convex nature of the data-fit term l ( d | μ) is important

o note. If the only element in the null space of Eq. (4) is

 ( λ′ , x ′ , y ′ ) = 0, then the method guarantees the sequence

 c ( k ) ( λ′ , x ′ , y ′ )} converges to a unique I -divergence minimizer.

nyder et al. (1992) and others rigorously prove this property. 

The presence of noise in CRISM data and the ill-posed nature of

he forward operator create instabilities in estimates for c ( k ) ( λ′ , x ′ ,
 

′ ). To overcome this problem we include a convex penalty func-

ion in the Huber class in the spatial and spectral domains to guar-
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Fig. 7. Flowchart illustrating the iterative maximum log-likelihood with penalty 

function used to retrieve the best estimate of SSA values in the presence of Poisson 

noise. Inputs include the despiked version of the SSA cube, the CRISM DDR that 

contains latitude and longitude values for each sensor space pixel, the location of 

MRO as a function of time during which the data were acquired, and topographic 

information from MOLA data. The h variables are the spatial and spectral transfer 

functions, μ is the estimate of the actual SSA values, blurred by the transfer func- 

tions, and c is the projected version. 
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ntee a global solution (e.g., Green, 1990; De Pierro, 1994; Bouman

nd Sauer, 1993 ): 

( c ) = 

∑ 

λ′ 
i 
,x ′ 

i 
,y ′ 

i 

∑ 

j 

( 

βspat δ2 
spat ln 

{ 

cosh 

[ 

c 
(
λ′ 

i 
, x ′ 

i 
, y ′ 

i 

)
− c 

(
λ′ 

i 
, x ′ 

j 
, y ′ 

j 

)
δspat 

] }

+ βspec δ2 
spec ln 

{ 

cosh 

[ 

c 
(
λ′ 

i 
, x ′ 

i 
, y ′ 

i 

)
− c 

(
λ′ 

j 
, x ′ 

i 
, y ′ 

i 

)
δspec 

] } ) 

(11) 

here β is the weighting, δ is the threshold for transition be-

ween quadratic and linear regimes, c( λ′ 
i 
, x ′ 

i 
, y ′ 

i 
) is the pixel of in-

erest, and c( λ′ 
j 
, x ′ 

j 
, y ′ 

j 
) is a neighboring pixel. F ixed values for β

nd δ were chosen based on testing multiple scenes with vary-

ng locations, lighting and viewing conditions, and spanning sev-

ral years of observations on Mars. The spectral and spatial values

or β are 0.04 and 0.01, respectively, and for δ are 0.9 and 4.0, re-

pectively, and achieve a balance between smoothing the spectral

oise and maintaining unique spectral features. Thus the overall

pproach is minimizing a penalized I -divergence min c I ( d | μ) + �( c ),

hich is a convex function of the hyperspectral data cube c , guar-

nteeing that the iterative algorithm converges. For small value

ifferences, the Huber penalty reduces to Tikhonov regularization

see e.g. Fraeman et al., 2012 for early work on using Tikhonov reg-

larization with CRISM), while for large differences it reduces to

otal variation regularization. 

.2. Forward projection 

To implement the MLM approach we begin with an initial map

rojected version c ( λ′ , x ′ , y ′ ) of the SSA data populated with a con-

tant value, i.e., an initial guess, and then forward project to sen-

or space to generate an initial blurred version of the scene μ( λ,

, y ) ( Fig. 7 ). The output spatial resolution for c ( λ′ , x ′ , y ′ ) is cho-

en based on the typical along track pixel separation as shown in

ig. 8 . A pixel size of 12 m is reasonable for the two example ATOs

iscussed in this paper, given that the median along-track spacing

f the pixels ranges from ∼11 to 13 m. We use a Mars equirect-
ngular projection because both data sets were acquired near the

quator. 

The spectral and spatial transfer functions can be modeled as

ither single or multiple Gaussians based on preflight calibrations.

e have found that the single Gaussian is a good approximation

o the transfer functions as shown below for the spectral function:

 spec = 

2 

√ 

ln ( 2 ) 

FWH M spec 

√ 

π
e − ln ( 16 ) ( λ′ 

c,i 
−λ0 ) 

2 
/ FWHM 

2 
spec (12) 

here the FWHM spec is given for each detector in

anometers, λ′ 
c,i 

is the wavelength for pixels p c,i in c ( k ) ( λ′ , x ′ , y ′ ),
nd λ0 is the center wavelength for the pixel in d ( λ, x, y ). 

The spatial transfer function is also modeled as a Gaussian with

he spectral FWHM converted to the spatial domain. For the case

hat the target pixel is directly beneath the spacecraft on a flat sur-

ace (nadir viewing geometry), the weight for a neighboring pixel

s 

 spat = S(λ′ ) A c,i 

ln (16) 

πFWHM 

2 
spat 

× e 
− ln (16) R 2 ♂{ [ lat (x ′ 

c,i 
) −lat (x 0 )] 2 +[ lon (y ′ 

c,i 
) −lon (y 0 )] 2 } / FWHM 

2 
spat (13) 

here 

WH M spat = FWH M spec 
spatial sampling 

spectral sampling 

= FWH M spec 
2 ξ tan ( IFOV / 2 ) 

6 . 55 nm / channel 

≈ FWH M spec 
ξ IFOV 

6 . 55 nm / channel 
(14) 

nd where x ′ 
c,i 

and y ′ 
c,i 

correspond to coordinates for pixels p c, i in

 

( k ) ( λ′ , x ′ , y ′ ) that neighbor the kernel center p c , x 0 and y 0 are the

oordinates for the pixel of interest p d in d ( λ, x, y ), A c, i is the ef-

ective area of pixel p c,i , S ( λ′ ) is the normalization factor, R ♂ is

he radius of mars, ξ is the instrument’s altitude above the Mar-

ian surface, IFOV = 61.5 μrad, 6.55 nm gives the average spacing

etween CRISM bands, and FWHM spec is the FWHM of the sin-

le Gaussian approximation to the spectral transfer function. The

ormalization is done band by band. The single Gaussian spectral

WHM is provided as a PDS data product, but the spatial FWHM is

ot and so must be estimated by converting the spectral FWHM to

patial units, which gives a reasonable estimate. The forward pro-

ection then maps c ( λ′ , x ′ , y ′ ) to the blurred sensor space version

f the data, μ( λ, x, y ). 

In general the target pixel is not located at a nadir view. To

ncorporate how the spatial transfer functions sample the sur-

ace for off-nadir viewing and surface topography, we map the

aussian kernel onto an image plane centered at the target pixel

nd perpendicular to the line of sight from CRISM. The position

nd orientation of this plane are derived from several data sets.

PICE data give the spacecraft position as a function of time. The

DR provided with CRISM archives supplies elevation (above the

reoid) and areocentric latitude and longitude for the target pixel

 d , which we combine with the baseline areoid from MOLA Mis-

ion Experiment Gridded Data Records (MEGDRs), to calculate the

ector position of the target pixel. The DDR also provides slope

agnitude and azimuth for each CRISM pixel, from which we de-

ive the unit normal vector of the target pixel, allowing projection

f each pixel area onto the image plane and proportionally weight-

ng its contribution. Elevations and unit normal vectors for neigh-

oring pixels p c, i are derived via interpolation. In the off-nadir

ransfer function, the exponential argument is the squared distance

etween target and neighbor pixels along the image plane, rather

han along a spherical surface. 
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Fig. 8. Plot of row to row pixel spacing projected onto the surface for column 321 for ATO0 0 02EC79 (Left) and ATO0 0 02DDF9 (Right). The large variation is a consequence 

of the gimbal actuator jitter as it rotates CRISM’s optical system to follow an overlapping path along the ground track of the spacecraft. Dark horizontal lines are shown at 

12 m spacing and approximately represent the median value which was then used to regularize the c cube (projected SSA data) at 12 m/pixel. 
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3.3. Backward projection and iterations 

The back projection in our MLM procedure maps the blurred

version of the SSA data in sensor space back to the map-projected

version of the scene. The d ( λ, x, y ) SSA data cube is divided by

the μ( k ) ( λ, x, y ) cube and back projected through the transfer func-

tions to generate a new estimate of c ( k + 1) ( λ′ , x ′ , y ′ ) as shown in

Fig. 7 , with appropriate application of the penalty function de-

scribed by Eq. (11) . Deblurring is an inverse problem, and it is

imperative that the transfer function convolution orders are con-

sistent throughout the algorithm. The back projection begins with

the spectral followed by the spatial transfer functions. The new es-

timate of the scene SSA cube is then used in an iterative fashion

through the same procedure to produce a series of estimates of

the I -divergence ( Eq. (5) ), decreasing to the best estimate of the

SSA projected cube in the presence of Poisson noise, as shown by

Snyder et al. (1992) . We compute: 

argmin 

c 

(
−H 0 

(
λ′ , x ′ , y ′ 

)
c 
(
λ′ , x ′ , y ′ 

)( k +1 ) 

EM 

ln 

[
c 
(
λ′ , x ′ , y ′ 

)]
+ H 0 

(
λ′ , x ′ , y ′ 

)
c 
(
λ′ , x ′ , y ′ 

)
+ β

∑ 

˜ x ∈N ( λ′ ,x ′ ,y ′ ) 
δ2 

× ln 

{ 

cosh 

[ 

2 c 
(
λ′ , x ′ , y ′ 

)
− c ( k ) 

(
λ′ , x ′ , y ′ 

)
− c ( k ) ( ̃  x ) 

δ

] } ) 

(15)

where we first compute the update without the penalty from

Eq. (9) to yield c ( k +1 ) 
EM 

. The first two terms are the non-trivial

I -divergence terms when minimizing with respect to c ( λ′ , x ′ , y ′ ),
whereas the third term incorporates the penalty function into the

minimization. This third term is the upper bound on the penalty

which is decoupled across all spatial-spectral coordinates, allowing

for a parallel implementation to find the solution ( De Pierro, 1994 ).

The notation in Eq. (15) in the summation for the penalty ˜ x ∈
N ( λ′ , x ′ , y ′ ) is over the set of spatial-spectral coordinates in the

neighborhood of the point ( λ′ , x ′ , y ′ ). This neighborhood set in-

cludes a larger domain in the spectral dimension than in the spa-

tial. 

Newton updates to find the stationary points of the argument

in Eq. (15) are used with a trust region. The final results are the

best estimates of the scene SSA values blurred by the spectral and

spatial transfer functions in sensor space ( μ cube) and the map

projected version with the transfer functions removed ( c cube)

( Figs. 1–4 ). The power and robustness of the MLM algorithm is

best seen with a direct comparison to previous processing tech-
iques and in combination with other measurements, both in situ

nd orbital. 

. ATO0 0 02EC79 covering curiosity traverses in Gale Crater 

Curiosity landed on the hummocky plains north of Aeolis Mons

informally known as Mount Sharp) in August 2012 and crossed

nto the lower slopes of Mount Sharp in 2015, characterizing

he fluvial-deltaic-lacustrine basal deposits with its complement

f remote sensing, contact science, and analytical instrumenta-

ion ( Grotzinger et al., 2015 ). Portions of the northern outcrops

f Mount Sharp are covered with wind-blown sands informally

amed the Bagnold Dunes. In 2015–2016 the Namib Dune within

he Bagnold Dune Field was the site of an extensive campaign fo-

used on understanding the grain size distributions and mineraloc-

urrences and abundances ( Ehlmann et al., 2016 ). The rationale

as to understand modern wind-blown sand dynamics to help

etter understand the environments of deposition for the sand-

tones encountered during Curiosity’s traverses. The Namib Dune

easurement campaign also provided an unprecedented opportu-

ity to use ATO0 0 02EC79 ( Table 2 , Figs. 1, 2, 9 , 10 ) regularized SSA

pectra, spatially localized to 12 m/pixel, to model the grain sizes

nd mineral abundances using Hapke theory for direct comparison

o Curiosity’s measurements ( Lapôtre et al., 2016 ). 

To illustrate improvements using our methodology we also pro-

ected SSA data at 12 m/pixel using a popular map projection code

from the Environment for Visualizing Images (ENVI) Version 5.3)

hat does not utilize spectral or spatial transfer functions or re-

rieval of the best estimates of the scene in the presence of Pois-

on noise. The resultant product and our MLM rendition are both

hown as false color images in Fig. 9 . The MLM product sharpens

orphological details and removes noise, most noticeably in the

orm of vertical stripes. For example, the texture of the washboard

errain that is located south and southwest of Curiosity’s location

n Sol 1298 becomes evident with MLM processing ( Fig. 9 ). Com-

aring the Namib Dune and surrounding washboard terrain in the

LM product with the corresponding HiRISE image ( McEwen et al.,

007 ), with its spatial resolution of 25 cm/pixel, also illustrates

he high level of textural detail in MLM processed CRISM images

 Fig. 10 ) as opposed to the normally processed data. In addition,

he MLM product better localizes spectral information through use

f the spatial transfer function to localize the SSA values to specific

2 m/pixel locations. 

The utility of increased localization of spectral signatures us-

ng the MLM methodology is illustrated using Curiosity’s measure-
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Fig. 9. (Top) False color L SSA data ATO0 0 02EC79 projected at 12 m/pixel using a standard projection tool without removing spikes, use of the log maximum likelihood 

approach for retrieving the best estimate of SSA values, or removing the blurring associated with spatial and spectral transfer functions. (Bottom) Equivalent product after 

extrema removal and use of the maximum log-likelihood approach, projected at 12 m/pixel. Note the increase of sharpness for the latter product. Both figures are overlain 

with Curiosity’s traverses. The Namib Dune, site of an extensive Curiosity measurement campaign, is labeled on both figures. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. HiRISE color mosaic is shown at the top, with Curiosity’s traverses and the location of the Namib Dune labeled. Bottom frame shows ATO0 0 02EC79 S data regularized 

to 12 m/pixel with similar annotation. Both scenes have been enhanced to approximately the same false color views. HiRISE RGB colors are derived from the red channel 

(0.57 to 0.83 μm) and blue-green channel ( < 0.58 μm), and blue has been estimated from the red and blue-green data. For the CRISM color image RGB corresponds to bands 

located at 0.7097, 0.5989, and 0.5337 μm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 2 

Summary of Observational Parameters for CRISM Data. L s is the solar longitude or season with L s = 0 ° corre- 

sponding to the southern hemisphere fall equinox. Sol is the Mars day after Curiosity (Gale Crater) and Op- 

portunity (Endeavour Crater) rover landings. The next four rows correspond to atmospheric optical depths 

of dust and ice aerosols, CO 2 surface pressure for the central portion of the scenes, and the amount of wa- 

ter vapor that best models the I/F values in DISORT. H 2 O ppt stands for the thickness of water that would 

be precipitated onto the surface if converted from vapor to liquid phases. Detector temperature is provided 

next. δλ is the time-dependent wavelength shift for CRISM observations. The range of elevation, incidence, 

emergence, and phase angles are then provided for the scene, relative to the areoid. 

Parameter ATO0 0 02EC79 Gale Crater ATO0 0 02DDF9 Endeavour Crater 

Acquisition Date March 26, 2014 February 9, 2014 

L s 103 ° 88 °
Center Latitude 4.69 ° S 2.32 ° S 

Center Longitude 320.95 ° E 354.66 ° E 

Curiosity/ Opportunity Sol 583 3573 

Curiosity/ Opportunity τ (at 0.90 μm) 0.45 0.54 

τ dust (at 0.90 μm) 0.40 0.45 

τ ice (at 0.32 μm) 0.05 0.09 

Pressure 8.10 mb 7.20 mb 

H 2 O ppt 9.3 μm 9.0 μm 

T Detector −148 °C −148 °C 
δλ −0.5297 nm −0.4322 nm 

Incidence Angle 57 ° 55 °
Emergence Angle Range 2–32 ° 4–32 °
Phase Angle Range 59–82 ° 58–80 °

Fig. 11. Portion of a Navcam mosaic of Namib Dune acquired in the location where Curiosity did an extensive remote sensing, contact science, scooping and delivery to 

CheMin, the on-board X-ray diffraction spectrometer. Tracks show motions associated with positioning for scooping sand with the robotic arm. 
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ment campaign on the western side of Namib Dune, a feature well-

resolved in the MLM-processed data. The measurement campaign

included scooping and sieving dune sands, and retrieving miner-

alogy using the Chemistry and Mineralogy (CheMin) instrument’s

transmission X-ray diffraction (XRD) capabilities ( Achilles et al.,

2016 ) ( Fig. 11 ). For modeling the dune sands using ATO0 0 02EC79,
n 89 pixel region of interest was mapped over the Namib Dune

nd SSA spectra were retrieved for both S and L data for this re-

ion ( Fig. 12 ). Individual SSA spectra for minerals of a given grain

ize combine linearly based on Hapke theory ( Hapke, 2012 ), and

hus the problem becomes one of a robust retrieval of a unique

et of minerals and grain sizes to replicate the regularized SSA
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Fig. 12. (Above) SSA spectrum of Namib Dune where Curiosity conducted its measurements and shown for a mean of 89 pixels from the MLM processed image cube 

ATO0 0 02EC79. Blanked regions correspond to the blocking filter for the S data, where there are known artifacts, and poorly defined values between the S and L detectors 

where low S/N leads to poor SSA retrievals. (A) SSA spectrum of Namib Dune (L-data, red), MAP (blue), and subset of accepted models (gray). (B) Residual (data/model) of 

the MAP. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 

Namib Dune Mineral Abundances and Grain Sizes. Mineral 

abundances and grain sizes describing the MAP as inverted 

from the regularized SSA of sands at the Namib Dune. Cor- 

responding 95% confidence intervals for the mean model are 

given in parentheses. 

Mineral Abundance (wt %) Grain size ( μm) 

Olivine 24.4 (1.3--19.5) 773 (171--787) 

High Ca Pyroxene 7.8 (0.3–16.7) 102 (75–782) 

Low Ca Pyroxene 5.7 (0.2–37.4) 262 (74–782) 

Plagioclase 16.3 (9.7–50.0) 146 (82–741) 

Magnetite 3.9 (0.7–29.2) 133 (26–194) 

Basaltic Glass 41.9 (12.2–52.9) 193 (158–663) 
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ata ( Lapôtre et al., 2016 ). A Markov-Chain Monte Carlo (MCMC)

lgorithm ( Minson et al., 2013 ) is implemented to invert for prob-

bility densities of mineral abundances and corresponding grain

izes from the SSA spectrum, using optical constants of olivine,

wo pyroxenes (low and high Ca), a plagioclase, magnetite, and

asaltic glass as inputs, and Hapke’s theory ( Hapke, 2012 ) for for-

ard modeling and evaluation of model likelihood. This technique

llows mapping the likelihood of given mineral assemblages and

alculating associated confidence intervals. The inversion was per-

ormed from the L data only to avoid the strong effects of ferric

xides in dust at shorter wavelengths. Table 3 summarizes weight

bundance and grain size parameters describing the maximum a

osteriori probability (MAP) estimate, i.e. the most probable model

or the 12-dimensional posterior probability density function (PDF)

esulting from the MCMC inversion. 95% confidence intervals are

resented that correspond to the mean model, the mean of all

0 0,0 0 0 accepted models ( Lapôtre et al., 2016 ). Whereas the in-

ersion is mostly insensitive to grain size, inverted mineral abun-

ances favorably compare to those measured with CheMin in the

ess than 150 μm-sand fraction, with a mean error of 7.5 wt% and
 maximum error of 14.9 wt% for olivine ( Achilles et al., 2016;

apôtre et al., 2016 ). The normally processed data (i.e., “volcano

can” processed data) could not be fit in a satisfying way by any

ixture of the same mineral endmembers. SSA values were esti-

ated from the volcano-scan corrected data by normalizing by the

osine of the incidence angle. Inversions using ATO SSA data with-

ut MLM regularization produce similarly good mineral assem-

lages. However, the regularized data enables the use of a stricter

ovariance criterion in the MCMC inversion, and the corresponding

AP residual has an RMS about four times lower than that of the

AP for the non-regularized ATO SSA data. 

. ATO0 0 02DDF9 covering opportunity traverses in Endeavour 

rater 

Opportunity has been exploring the rim of the 22 km wide,

oachian age Endeavour Crater since 2010 with a focus on char-

cterizing evidence for aqueous alteration of the Shoemaker for-

ation impact breccias and the underlying finely-layered Matije-

ic formation ( Squyres et al., 2012; Arvidson et al., 2014, 2016 ).

RISM ATO0 0 02DDF9 was acquired to complement a suite of four

TO observations over the Cape Tribulation rim segment, where

ray et al. (2009) and Noe Dobrea et al. (2012) used non-ATO

RISM observations (i.e., 18 m/pixel) to detect evidence for dehy-

rated Fe 3 + and Mg 2 + smectites. Overlapping and regularized ATO

bservations projected at 12 m/pixel allowed detection and map-

ing within the Marathon Valley portion of Cape Tribulation of

.3 and 2.4 μm M-OH combination absorptions uniquely associated

ith Fe 3 + and Mg 2 + smectites ( Fox et al., 2016 ). ATO0 0 02DDF9

s one of the observations used by Fox et al. (2016) . It has the

ighest degree of overlap and will be used here to illustrate the

dvantages associated with using our methodology. Fig. 13 shows

alse color images for data projected at 12 m/pixel using standard

ap projection code and our MLM methodology. The morphology
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Fig. 13. (Top) False color L SSA data ATO0 0 02DDF9 projected at 12 m/pixel using a standard projection tool without removing spikes, use of the log maximum likelihood 

approach for retrieving the best estimate of SSA values, or removing the blurring associated with spatial and spectral transfer functions. (Bottom) Equivalent product after 

extrema removal and use of the maximum log-likelihood approach, projected at 12 m/pixel. Note the increase of sharpness for the latter product. Both figures are overlain 

with Opportunity’s traverses. Marathon Valley, a site of extensive exploration by Opportunity, is labeled in both figures. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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of Cape Tribulation and Marathon Valley is much sharper in the

MLM as opposed to the other product. Further, use of standard

processing methods limit smectite detections to a broad swath

across Marathon Valley, with weak and noisy spectral retrievals.

The MLM-processed version allows much better spatial localiza-

tions of SSA spectra, making it possible to discriminate at the out-

crop level between regions of the valley floor that carry the smec-

tite signature and regions that do not. 

The smectite detections derived from the SSA spectra for scene

ATO0 0 02DDF9 are located in specific areas within Marathon Valley,

Spirit of Saint Louis crater, and its surrounding apron ( Fig. 14 ). The

absorption depths are quite shallow relative to laboratory-derived

spectra of pure phyllosilicates when both data sets are shown as

continuum removed spectral radiance factors for direct compar-

isons. Opportunity was directed to characterize these smectite-

bearing localities and found that they are associated with relatively

planar, polygonally-fractured impact breccia outcrops ( Fig. 15 ). The

breccias, as characterized by Opportunity, have a basaltic composi-

tion, with a slight enrichment in Mg and S relative to other brec-

cias measured on Endeavour’s rim ( Mittlefehldt et al., 2016; Fox

et al., 2016 ). Rocks within fracture zones between the polygons

tend to be redder and are enriched in Al and Si relative to sur-

rounding rocks, suggestive of leaching by fracture-enhanced fluid

flow ( Mittlefehldt et al., 2016; Fox et al., 2016 ). The large areal ex-

tent of the polygonal outcrops relative to the fractures strongly ar-

gues that the outcrops carry the smectite signature and thus that

the aqueous alteration was isochemical, with low water to rock ra-

tios. The exception would be more extensive leaching along the

fractures, consistent with enhanced fluid flow along these features.

Similar results were found for the Matijevic formation on the Cape

York Endeavour rim segment, with evidence from CRISM ATO data

for Fe 3 + smectites associated with planar outcrops that Opportu-

nity found to be of basaltic composition ( Arvidson et al., 2014 ). Ev-

idence for extensive leaching was confined to the Esperance frac-

ture zone, again implying alteration in a low water to rock envi-

ronment, with the exception of enhanced fluid flow along fractures

( Arvidson et al., 2014 ). 
. Conclusions 

Mars Reconnaissance Orbiter Compact Reconnaissance Imag-

ng Spectrometer for Mars (CRISM) hyperspectral image data have

een acquired in an along-track oversampled (ATO) mode with in-

ent of processing the data to better than the nominal ∼18 m/pixel

round resolution. An iterative maximum log-likelihood method

MLM) was developed and implemented that utilizes the instru-

ent spectral and spatial transfer functions and includes a penalty

unction to regularize the CRISM data, both in sensor space and

s projected hyperspectral image cubes at 12 m/pixel. Preprocess-

ng steps include retrieval of surface single scattering albedos (SSA)

sing the Hapke Function and DISORT-based radiative modeling of

tmospheric gases and aerosols. Resultant SSA cubes are despiked

o remove extrema and tested to ensure that the remaining data

re Poisson-distributed, an underlying assumption for the MLM al-

orithm implementation. 

Two examples of regularized ATO data sets are presented.

TO0 0 02EC79 covers the route taken by the Curiosity rover dur-

ng its ascent of Mount Sharp in Gale Crater. SSA data are used to

odel mineral abundances and grain sizes predicted to be present

n the Namib barchan sand dune sampled and analyzed by Curios-

ty. CRISM-based results with high fidelity localization and use of

patial transfer functions to remove spectral effects from surround-

ng areas compare favorably to results derived from Curiosity’s

une sand measurement campaign. ATO0 0 02DDF9 covers Spirit

f Saint Louis Crater and Marathon Valley on the Cape Tribula-

ion rim segment of Endeavour Crater. High fidelity localization of

SA spectra demonstrate that Fe 3 + and Mg 2 + smectite signatures

re located on specific planar impact breccia outcrops. Conversion

f SSA spectra for these regions to spectral radiance factors al-

ows direct comparisons to absorption depths for laboratory spec-

ra and demonstrates that the outcrops have only a minor smec-

ite component. Opportunity’s exploration and characterization of

he smectite-bearing outcrops show that these impact breccias are

asaltic in composition and have been isochemically altered, most

ikely in a low water-to-rock environment. 
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Fig. 14. (Above) Portion of a HiRISE color image covering Marathon Valley that shows mapped concentrations of Fe 3 + and Mg 2 + smectites derived from the maximum log- 

likelihood SSA cube projected at 12 m/pixel. Red areas correspond to locations in which both ∼2.3 and 2.4 μm absorptions were twice the noise depth, whereas blue areas 

correspond to regions with absorptions at least 1.5 times the noise levels. (Upper right) Continuum-removed spectra from the SSA cube showing 2.3 and 2.4 μm absorptions 

due to metal-OH combination bands and indicative of Fe 3 + and Mg 2 + smectites are shown as means for the areas delineated in the HiRISE image. The Hapke function was 

used to first compute the radiance factor values for direct comparison to lighting and viewing conditions that pertained to collecting the laboratory data shown in the lower 

right plot. (Lower right) Laboratory-based spectra of pure phyllosilicate mineral powders. Both sets of spectra are shown in continuum removed form for radiance factors. 

For the CRISM data the radiance factors were estimated from SSA spectra and the Hapke function to correspond to lab spectra, which were acquired in a radiance factor 

lighting and viewing geometry of 0 ̊ emergence and 30 ̊ incidence angles. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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Fig. 15. Portion of an Opportunity Navcam mosaic looking to the east into Marathon Valley and the floor of Endeavour Crater. Several targets are shown for which Opportu- 

nity acquired detailed imaging and compositional data. Note the relatively planar and polygonal nature of the outcrops. 
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Appendix A. Poisson hypothesis test 

The MLM algorithm is based on an assumption that the data

d ( λ, x, y ) can be modeled as the product of Poisson distributed

random variables m ( λ, x, y ) and a scale factor α( λ, x, y ) 

d ( λ, x, y ) = α( λ, x, y ) m ( λ, x, y ) 

m ( λ, x, y ) ∼ P oisson 

(
μ( λ, x, y ) 

α( λ, x, y ) 

)
(A1)

where the scale factor α( λ, x, y ) = α is assumed to be constant and

independent of spectral band and spatial location, and μ( λ, x, y ) is

the blurred version of the scene, as before. To test this assumption

we retrieved data from ATO0 0 02EC79 for a spatially homogeneous

area on the hummocky plains ( Fig. A1 ) and found for despiked data

that α= (6.47 ± 2.73)×10 −5 , so α is essentially invariant ( Fig. A2 ).

It is important to choose a spatially homogeneous area to perform
he Poisson test because (1) samples in a homogeneous area have

he same mean and (2) a sufficient number of samples with the

ame mean is needed to estimate α. Fig. A3 shows a direct com-

arison between the expected Poisson cumulative and probability

istribution functions and the corresponding histograms for scaled

ata d ( λ, x, y )/ α retrieved from the homogeneous area of Fig. A1 at

avelength 1.99 μm. Because data at all bands (with the exception

f beginning and end bands, affected by boundary effects) show

imilar results, only one wavelength is presented as an example.

lthough there are some differences between the shape of the

oisson distribution and the histogram near its peak, the cumu-

ative distributions match closely, providing qualitative motivation

hat the region is Poisson distributed. 

Given the homogeneous region appears Poisson distributed, we

cale the entire regularized sensor space SSA scene μ( λ, x, y ),

hich is the mean of the data d ( λ, x, y ), by the scale factor

. Chi-square tests are applied to robustly evaluate whether the

ata follow a Poisson or Gaussian distribution. The scene con-

ains a large number of random variables with different means,

ue to differences in morphology and mineralogy. A random vari-

ble could be, for example, a given texture in the scene. Pix-

lsrepresenting the same mineralogical unit are samples of this

andom variable. These samples have the same distribution, and

ll random variables are assumed to be independent. Testing the

istribution of a large number of samples from a single ran-

om variable has been studied extensively through, for exam-

le, the chi-square hypothesis test, the Kolmogorov-Smirnov Hy-

othesis test ( Massey Jr., 1951 ), and the D’ Agostino-Pearson test

or Normality ( D’ Agostino and Pearson, 1973 ). However, CRISM

mage cubes are characterized by many random variables with

 limited number of samples, or even one sample in most

ases, for each random variable. This situation has not been well
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Fig. A1. Homogeneous area marked in pink for ATO0 0 02EC79 sensor space SSA data, shown with the same RGB wavelengths as used in the main test. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.). 

Fig. A2. Scalar vector of homogeneous area before and after median filter for data 

from the homogeneous area shown in Fig. A1 . Note that the vector is essentially 

constant for all wavelengths after a median filter has been applied. (For interpreta- 

tion of the references to colour in this figure legend, the reader is referred to the 

web version of this article.). 

Fig. A3. Distribution of samples in the homogeneous area at wavelength 1.99 μm 

after scaling by the expected scale vector in Fig. A2. Cumulative Distribution Func- 

tion (CDF) is shown in blue while Probability Density Function (PDF) is shown in 

green. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.). 
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The histogram of G-statistics can be used in goodness-of-fit

esting. The null hypothesis that all random variables are Poisson

orresponds to 

 null : m i ∼ P oisson ( λi ) i = 1 , 2 , 3 , · · · , N (A2)

here m i is the Poisson distributed random variable with mean λi 

nd N is the total number of random variables. Hence, the prob-
bility mass function of m i is q λi 
( m i ) = λ

m i 
i 

e −λi / ( m i ! ) . Harremoës

nd Tusnády (2012) show that for a Poisson distribution, the test

-statistic 

 

2 ( m i ) = −2 ln q λi 
( m i ) 

= 2 ( λi + ln m i ! − m i ln λi ) 
m i →∞ → 2 

(
m i ln 

m i 

λi 

− m i + λi 

)
= 2 I( m i | λi ) (A3) 

s approximated by a χ2 -distribution with one degree of freedom.

he limit m i → ∞ is valid because m i is proportional to photon

ounting. Numerically, α is O (10 -4 ) implying m i is O (10 4 ), since SSA

alues are O (1), which is sufficiently large. A second possible null

ypothesis is that the data are Gaussian distributed random vari-

bles with means ρ i and equal variances σ 2 

 null : m i ∼ N 

(
ρi , σ

2 
)

i = 1 , 2 , 3 , . . . , N. (A4)

Here each random variable has a different mean but the same

ariance. It is important that the variances are equal because each

andom variable has a limited number of samples, making the vari-

nce difficult to accurately compute. An additional physical motiva-

ion is that the magnitude of the additive Gaussian noise through-

ut the scene should be similar. This is known as the basic as-

umption for additive white Gaussian noise (AWGN). The corre-

ponding test G-statistic is 

 

2 ( m i ) = 

( m i − ρi ) 
2 

σ 2 
(A5) 

hich has a χ2 -distribution with one degree of freedom. 

If G 

2 is a χ2 random variable, the probability that G 

2 will ex-

eed the observed value g 2 is 

r 
[
G 

2 > g 2 
]

= 1 − F χ2 

(
g 2 

)
(A6) 

here F χ2 (·) is the cumulative distribution of a χ2 random vari-

ble with 1 degree of freedom. This probability is reported as the

-value of each measurement: 

pv ( m i ) = 1 − F χ2 

[
G 

2 ( m i ) 
]
. (A7) 

Given a number η between 0 and 1, if the P-value is less than

, the test is rejected, and if the P-value is larger than η, the test

s accepted. As N → ∞ , η indicates the probability that the test is

ejected if the null hypothesis is true ( Devore, 2001 ): 

= Pr [ H null is rejected | H null is true ] . (A8) 

his probability is often reported as the type I error, or signifi-

ance. 
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Fig. A4. Cumulative distribution of P-values for various cases (simulation). The case 

for Poisson random variables (RVs) is in red while Gaussian is in green. The hypoth- 

esis is likely to be true if the data fall close to the diagonal line (blue). (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.). 

Fig. A5. Cumulative distribution of P-values for Poisson and Gaussian tests. The 

Poisson hypothesis (magenta) is more accurate than the Gaussian hypothesis with 

the same variance (red) for the whole scene. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.). 
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To demonstrate this concept, Fig. A4 shows the results of a

simulation of 10 0,0 0 0 random variables with mean values rang-

ing over three orders of magnitude. When generating Poisson ran-

dom variables, 10 0,0 0 0 means are first uniform-randomly gener-

ated and then 10 0,0 0 0 Poisson samples are generated from the

corresponding mean (one sample for one mean). Means are gen-

erated in the same way for Gaussian random variables, while vari-

ance is chosen asthe expectation of 10 0,0 0 0 means. A hypothesis

that accurately describes the random variables should yield cumu-

lative distributions that approximate a diagonal line through the

plot. Tests in which the hypothesized distribution is false yield

curves that are not along the diagonal. Assuming a Poisson dis-

tribution when the variables are actually Gaussian distributed is

worse than assuming the variables are Gaussian distributed when

they are actually Poisson distributed. One possible explanation is

that when the mean becomes sufficiently large, the Poisson distri-

bution can be approximated by a Gaussian distribution, but this is

not valid in the opposite sense. 

In Fig. A5 we apply this method to the scaled, median filtered

ATO0 0 02EC79 IR SSA data cube d ( λ, x, y )/ α for each of the two hy-

potheses: 1) the data are Poisson distributed; 2) the data are Gaus-

sian distributed with the same variance for all pixels. We use SSA
stimates derived from our MLM method for the means assum-

ng a Poisson distribution. For the Gaussian hypothesis an altered

LM algorithm that minimizes square error is implemented, with

hemedian filtered SSA data cube again as input. The Poisson null

ypothesis yields a cumulative distribution much closer to the di-

gonal than the Gaussian null hypothesis with the same variance

or all pixels. The remarkable linearity of the Poisson cumulative

istribution indicates the filtered CRISM data distribution is well

pproximated by a Poisson distribution. 
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