
Journal of the Egyptian Mathematical Society (2013) 21, 133–141

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org
www.elsevier.com/locate/joems
ORIGINAL ARTICLE
Some optimal iterative methods and their with

memory variants
F. Soleymani *
Department of Mathematics, Islamic Azad University, Zahedan Branch, Zahedan, Iran
Received 18 October 2012; revised 11 December 2012; accepted 5 January 2013
Available online 4 February 2013
*

E-

Pe

11

ht
KEYWORDS

With memory;

Weight function;

R-order;

High precision computing
Tel.: +98 9151401695.

mail address: fazlollah.soleym

er review under responsibilit

Production an

10-256X ª 2013 Egyptian M

tp://dx.doi.org/10.1016/j.joem
ani@gm

y of Egyp

d hostin

athemat

s.2013.0
Abstract Based on the fourth-order method of Liu et al. [10], eighth-order three-step iterative meth-

ods without memory, which are totally free from derivative calculation and reach the optimal effi-

ciency index are presented. The extension of one of the methods for multiple zeros without the

knowledge of multiplicity is presented. Further accelerations will be provided through the concept

of with memory iteration methods. Moreover, it is shown by way of illustration that the novel meth-

ods are useful on a series of relevant numerical problems when high precision computing is required.
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1. Introduction

We are concerned with numerical methods for the solution of
non-linear equations in this paper [1]. It is known that the com-
mon problems associated with implementation of Newton’s

iteration are as follows: 1. Difficulty in evaluating derivative
of a function. 2. Failure of the method to converge always. 3.
Slow convergence order. To remedy these problems, many iter-
ative techniques with/without memory have been presenting.

To overcome on the first difficulty, Steffensen in [2] replaced
the first derivative of the function in the Newton’s iterate by for-
ward finite difference approximation, and he obtained
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1.002
xnþ1 ¼ xn �
fðxnÞ2

fðxn þ fðxnÞÞ � fðxnÞ
; n ¼ 0; 1; 2; . . . : ð1Þ

This method also possesses the quadratical convergence

and the same efficiency 2
1
2 � 1:414 just like the Newton’s. To

circumvent on the second drawback of Newton’s iterate,
Yun and Petkovic [3] presented non-iterative methods, or

Soleymani and his co-workers developed some hybrid tech-
niques in [4,5]. And finally, for vanquishing the last problem
many developments of different orders have been given to

date; see e.g. [6,7] and the references therein.
In this study, we focus on finding new multi-point tech-

niques, in which there is no need of derivative-calculation and

also they have optimal order of convergence with high efficiency
index according to the hypothesis of Kung and Traub [8] con-
cerning the optimality of multi-point iterations without mem-
ory. The methods, which satisfy this conjecture are called

optimal methods. That is in this work, we look for techniques
that set to rights in the above-mentioned first and third
g by Elsevier B.V. Open access under CC BY-NC-ND license.
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problems, while applying them in a hybrid environment resolves
the second difficulty. To do this, we build optimal eighth-order
classes of methods by using weight functions, which includes

three steps and agrees in the hypothesis of Kung and Traub.
We next extend one of the new methods for multiple zeros
and also obtain further accelerations in convergence and

computational efficiency index without much more functional
evaluation by applying the concept of with memory iteration
methods.

In what follows, we shortly discuss some of the derivative-
free methods in the literature. Then, Section 2 gives the
contributions, where further discussions of the computational
efficiency will be presented in Section 3. Section 4 supports the

theoretical results by numerical testing. Finally, a short conclu-
sion will be drawn in Section 5.

Zheng et al. in [9] provided a family of third-order deriva-

tive-free root solvers as follows

yn ¼ xn � knfðxnÞ2
fðxnþknfðxnÞÞ�fðxnÞ ;

xnþ1 ¼ xn � knf3ðxnÞ
½fðxnþknfðxnÞÞ�fðxnÞ�½fðxnÞ�fðynÞ�

;

8<
: ð2Þ

with three evaluations per iteration wherein kn 2 R n f0g. This
technique has 3

1
3 � 1:442 as its efficiency index.

Liu et al. in [10] gave an optimal quartically convergent

derivative-free technique in the following structure with three
evaluations of the function per iteration

yn ¼ xn � fðxnÞ2
fðxnþfðxnÞÞ�fðxnÞ ;

xnþ1 ¼ yn � f½xn ;yn ��f½yn ;wn �þf½xn ;wn �
f½xn ;yn �2

fðynÞ;

8<
: ð3Þ

wherein wn = xn + f(xn). We here remark that f[xn,yn],

f[yn,wn] and f[xn,wn] are divided differences. This scheme has

4
1
3 � 1:587 as its efficiency index.
In [11], the authors furnished two non-optimal derivative-

free methods of orders four and six. The quartically conver-
gent Cordero et al. method is in the form below

yn ¼ xn � 2fðxnÞ2
fðxnþfðxnÞÞ�fðxn�fðxnÞÞ ;

xnþ1 ¼ xn � 2fðxnÞ2
fðxnþfðxnÞÞ�fðxn�fðxnÞÞ

fðynÞ�fðxnÞ
2fðynÞ�fðxnÞ

;

8<
: ð4Þ

where consists of four evaluations of the function and pos-

sesses 4
1
4 � 1:414 as its efficiency index, just the same as Stef-

fensen’s or Newton’s. Their sixth-order technique which
includes five evaluations of the function per iteration to reach

the efficiency 6
1
5 � 1:430 can be defined by

yn ¼ xn � 2fðxnÞ2
fðxnþfðxnÞÞ�fðxn�fðxnÞÞ ;

zn ¼ yn � yn�xn
2fðynÞ�fðxnÞ

fðynÞ;
xnþ1 ¼ zn � yn�xn

2fðynÞ�fðxnÞ
fðznÞ:

8>><
>>:

ð5Þ

We here remind the well-known family of derivative-free

methodswhichwas givenbyKung andTraub in [8] as comesnext

yn ¼ xn � fðxnÞ
f½xn ;wn � ;wn ¼ xn þ bfðxnÞ; b 2 R n f0g;

zn ¼ yn � fðynÞfðwnÞ
½fðwnÞ�fðynÞ�f½xn ;yn �

;

xnþ1 ¼ zn �
fðynÞfðwnÞ½yn�xnþ

fðxnÞ
f½xn ;zn ��

½fðynÞ�fðznÞ�½fðwnÞ�fðznÞ� þ
fðynÞ
f½zn ;yn �

:

8>>><
>>>:

ð6Þ

This family of one-parameter methods possesses the eighth-

order convergence utilizing four pieces of information, namely,
f(xn), f(yn), f(zn) and f(wn). Therefore, its classical efficiency in-
dex is 8

1
4 � 1:682.
Li et al. in [12] discussed the performance of derivative-free
methods in multiple zero-finding by applying the Schroder
transformation, see [13,14], for converting a multiple zero to

a simple one. For more information on this field, one may con-
sult the papers [15–17].

2. Development of the methods

Let us take heed of the following three-step without memory
cycle in which (3) is in the first two steps

yn ¼ xn � fðxnÞ
f½xn ;wn � ;

zn ¼ yn � f½xn ;yn ��f½yn ;wn �þf½xn ;wn �
f½xn ;yn �2

fðynÞ;

xnþ1 ¼ zn � fðznÞ
f0ðznÞ ;

8>>><
>>>:

ð7Þ

wherein wn = xn + f(xn) and we have four evaluations of the
function and one evaluation of the first-order derivative.
Now, the main challenge is to approximate f0(zn) as efficiently

as possible to gain a novel derivative-free method with better
order of convergence and better efficiency index in contrast
with the optimal fourth-order schemes and the same as (6).

Hence, we take into consideration an interpolating polyno-
mial as comes next

fðtÞ � IðtÞ ¼ aðt� xnÞ2 þ bðt� xnÞ þ c; ð8Þ

whence this approximation polynomial satisfies the interpola-
tion conditions f(xn) = I(xn), f(yn) = I(yn) and f(zn) = I(zn).

By substituting the known data in I(t), we have a system of
three linear equations with three unknowns. By solving this
system and simplifying, we have

a ¼ ðyn�znÞfðxnÞþð�xnþznÞfðynÞþðxn�ynÞfðznÞðxn�ynÞðxn�znÞðyn�znÞ
;

b ¼ ðxn�znÞ
2ðfðxnÞ�fðynÞÞþðxn�ynÞ2ð�fðxnÞþfðznÞÞ
ðxn�ynÞðxn�znÞðyn�znÞ

;

c ¼ fðxnÞ:

8>><
>>:

ð9Þ

Due to this, a powerful approximation of the first derivative
of the function in the third step is attained as comes next

f0ðznÞ � I0ðznÞ ¼ 2aðzn � xnÞ þ b

¼ f½xn; zn� þ f½zn; yn� � f½xn; yn�: ð10Þ

We here recall that f[xn, xn�1, . . ., xn�i] is the divided differ-

ences of f(x). And they can be defined recursively via
f½xi� ¼ fðxiÞ; f½xi; xj� ¼ f½xi ��f½xj �

xi�xj ; xi–xj, and for m> i+ 1, via

f½xi; xiþ1; . . . ; xm� ¼
f½xi; xiþ1; . . . ;xm�1� � f½xiþ1; xiþ2; . . . ; xm�

xi � xm

; xi–xm: ð11Þ

Eventually, using (10) in the last step of (7) leads to the follow-
ing high-order technique

yn ¼ xn � fðxnÞ
f½xn ;wn � ;wn ¼ xn þ fðxnÞ;

zn ¼ yn � f½xn ;yn ��f½yn ;wn �þf½xn ;wn �
f½xn ;yn �2

fðynÞ;

xnþ1 ¼ zn � fðznÞ
f½xn ;zn �þf½zn ;yn ��f½xn ;yn �

;

8>>><
>>>:

ð12Þ

on which there are four function-evaluation per full cycle and it

is totally free from any derivative. Unfortunately, the error
equation of thismethod has turned out to be seven as comes next

enþ1 ¼
ð1þ c1Þ2c22c3ð�ð2þ c1Þc22 þ c1ð1þ c1Þc3Þ

c51
e7n

þOðe8nÞ; ð13Þ
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where ck = f(k)(a)/k!, "k= 1, 2, 3, . . . . Obviously, this proce-

dure is in not optimal according to the hypothesis of Kung and
Traub [8]. Since, a multi-point method consuming four function
evaluations should reach the maximum convergence order eight.

To remedy this, we take into account of the weight function ap-
proach to give two new classes of optimal local order eight.

Consequently, we consider the following uni-parametric
family of iterations, which according to Theorem 2.1. reaches

the convergence order eight using four pieces of information
per full cycle

yn ¼ xn � fðxn Þ
f½xn ;wn � ;wn ¼ xn þ fðxnÞ;

zn ¼ yn � f½xn ;yn ��f½yn ;wn �þf½xn ;wn �
f½xn ;yn �2

fðynÞ;

xnþ1 ¼ zn � fðznÞ
f½xn ;zn �þf½zn ;yn ��f½xn ;yn �

1þ fðzn Þ
fðwn Þ þ h fðzn Þ

fðynÞ

� �2
� ð2þ f½xn;wn�Þ fðynÞ

fðwn Þ

� �3� �
;

8>>>><
>>>>:

ð14Þ

where h 2 R. In what follows, we observe that (14) satisfies the
conjecture of Kung and Traub. A discussion on how we ob-
tained the weight function in the third step of (14) will be given

after the proof.

Theorem 2.1. Let us consider a as a simple root of the non-linear
equation f(x) = 0 in the domain D. And assume that f(x) is
sufficiently smooth in the neighborhood of the root, i.e. D. Then

the derivative-free iterative scheme defined by (14) is of optimal
local order eight and has the following error equation

enþ1 ¼ �
1

c71
ð1þ c1Þc2ðð2þ c1Þc22 � c1ð1þ c1Þc2Þðð1

þ c1Þc2ðð4þ c1Þc32 þ 2c1ð1þ c1Þc2c3 � c21ð1

þ c1Þc4Þ þ ðð2þ c1Þc22 � c1ð1þ c1Þc3Þ2hÞe8n
þO e9n

� �
: ð15Þ

Proof. Using Taylor series and symbolic computation, we can

determine the asymptotic error constant of the three-step uni-
parametric family (14). Furthermore, assume en = xn � a be
the error in the nth iterate and take into account f(a) = 0,

ck = f(k)(a)/k!, "k= 1, 2, 3, . . . . Now, we expand f(xn) around
the simple zero a. Hence, we have

fðxnÞ ¼ c1en þ c2e
2
n þ c3e

3
n þ c4e

4
n þ � � � þO e9n

� �
: ð16Þ

Note that to save the space, we only write some of the obtained
terms for the error equations and show the others by � � � . By
considering (16) and the first step of (14), we attain

xn �
fðxnÞ

f½xn;wn�
¼ aþ 1þ 1

c1

� 	
c2e

2
n

þ ð�ð2þ ð2þ c1Þc1Þc22 þ c1ð1þ c1Þð2þ c1Þc3Þ
c21

e3n

þ � � � þO e9n
� �

:

ð17Þ

We should expand f(yn) around the root by using (17). Accord-
ingly, we have

fðynÞ ¼ ð1þ c1Þc2e2n þ � ð2þ c1ð2þ c1ÞÞc22
c1 þ ð1þ c1Þð2þ c1Þc3

� 	
e3n

þ � � � þO e9n
� �

: ð18Þ

Applying (17) and (18) in the second step of (14) gives us
zn � a ¼
ð1þ c1Þc2 ð2þ c1Þc22 � c1ð1þ c1Þc3

� �
e4n

c31
þ � � �

þO e9n
� �

: ð19Þ

On the other hand, we obtain

fðznÞ ¼
ð1þ c1Þc2 ð2þ c1Þc22 � c1ð1þ c1Þc3

� �
c21

e4n þ � � �

þO e9n
� �

: ð20Þ

This leads us to find the error equation of the denominator of
the last step of (14) as follows

f½xn; zn� þ f½zn; yn� � f½xn; yn� ¼ c1 �
ð1þ c1Þc2c3e3n

c1
þ � � �

þO e9n
� �

: ð21Þ

Dividing (20) by (21) ends in

fðznÞ
f½xn; zn� þ f½zn; yn� � f½xn; yn�

¼ ð1þ c1Þc2ðð2þ c1Þc22 � c1ð1þ c1Þc3Þ
c21

e4n

þ � � � þO e9n
� �

: ð22Þ

Additionally, for the weight function in the last step of (14), we
have

1þ fðznÞ
fðwnÞ

þ h
fðznÞ
fðynÞ

� 	2

� ð2þ f½xn;wn�Þ
fðynÞ
fðwnÞ

� 	3

¼ 1� ð1þ c1Þc2c3
c21

e3n þ � � � þO e9n
� �

: ð23Þ

By considering (22) and (23) in the last step of (14), we attain
the error Eq. (15). This manifests that (14) has the optimal
eighth-order convergence and ends the proof. h

One might ask that how the weight function

1þ fðznÞ
fðwnÞ

þ h
fðznÞ
fðynÞ

� 	2

� ð2þ f½xn;wn�Þ
fðynÞ
fðwnÞ

� 	3

; ð24Þ

was attained. To respond this, in fact, at the end of the third
step of (12), we should consider a weight function by consider-
ing the values of the function at the known nodes to increase

the order one unit. Toward this end, we had taken into consid-
eration the weight functions as comes next

zn �
fðznÞ

f½xn; zn� þ f½zn; yn� � f½xn; yn�

� G
fðznÞ
fðwnÞ

� 	
þH

fðznÞ
fðynÞ

� 	
þ L

fðynÞ
fðwnÞ

� 	� �
; ð25Þ

wherein G(t), H(r), and L(s) are three weight functions, in
which t ¼ fðzÞ

fðwÞ ; r ¼ fðzÞ
fðyÞ, and s ¼ fðyÞ

fðwÞ, (without the index n).

Clearly, these three weight functions should be constructed
such that the order of convergence arrives at eight. Taylor’s
series expansion at the end of the third step shows that

Gð0Þ ¼ G0ð0Þ ¼ 1;

Hð0Þ ¼ H0ð0Þ ¼ 0 and jH00ð0Þj <1;
Lð0Þ ¼ L0ð0Þ ¼ L00ð0Þ ¼ 0;Lð3Þð0Þ
¼ �6ð2þ f½xn;wn�Þ; and jLð4Þð0Þj <1;

8>>><
>>>:

ð26Þ

should be chosen to achieve our goal. One of such cases which
satisfy (26) is given in (14).

Eq. (14) has some interesting features in comparison with
the existing derivative-free methods in the literature. First, its
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order is greater than the optimal fourth-order methods. And
second, it possesses 1.682 as its classical efficiency index, which
is greater than 2

1
2 � 1:414 of (1) and (4), 3

1
3 � 1:441 of (2),

4
1
3 � 1:587 of (3), 6

1
5 � 1:430 of (5) and is equal to 8

1
4 � 1:682

of Kung-Traub family (6). Choosing h = 0 in (14) results in
the follow-up optimal eighth-order method

yn ¼ xn � fðxnÞ
f½xn ;wn � ; wn ¼ xn þ fðxnÞ;

zn ¼ yn � f½xn ;yn ��f½yn ;wn �þf½xn ;wn �
f½xn ;yn �2

fðynÞ;

xnþ1 ¼ zn � fðznÞ
f½xn ;zn �þf½zn ;yn ��f½xn ;yn �

1þ fðznÞ
fðwnÞ

n

�ð2þ f½xn;wn�Þ fðynÞ
fðwnÞ

� �3�
;

8>>>>>>>><
>>>>>>>>:

ð27Þ

where its error equation is

enþ1 ¼ �
ð1þ c1Þ2c22ð�ð2þ c1Þc22 þ c1ð1þ c1Þc3Þð�ð4þ c1Þc32 � 2c1ð1þ c1Þc2c3 þ c21ð1þ c1Þc4Þ

c71
e8n

þO e9n
� �

:

ð28Þ

Up to now, we in fact gave a novel three-step four-point with-
out memory class of iterations as comes next (with forward fi-

nite difference approximation)

yn ¼ xn � fðxnÞ
f½xn ;wn � ; wn ¼ xn þ fðxnÞ;

zn ¼ yn � f½xn ;yn ��f½yn ;wn �þf½xn ;wn �
f½xn ;yn �2

fðynÞ;

xnþ1 ¼ zn � fðznÞ
f½xn ;zn �þf½zn ;yn ��f½xn ;yn �

� Gð fðznÞ
fðwnÞÞ þH fðznÞ

fðynÞ

� �
þ LðfðynÞ

fðwnÞÞ
n o

;

8>>>>>><
>>>>>>:

ð29Þ

where the weight functions satisfy (26). Another similar class

of optimal eighth-order derivative-free methods can be con-
structed as comes next as the second contribution of this paper
(with backward finite difference approximations)

yn ¼ xn � fðxnÞ
f½xn ;wn � ; wn ¼ xn � bfðxnÞ;

zn ¼ yn � f½xn ;yn ��f½yn ;wn �þf½xn ;wn �
f½xn ;yn �2

fðynÞ;

xnþ1 ¼ zn � fðznÞ
f½xn ;zn �þf½zn ;yn ��f½xn ;yn �

� MðfðynÞ
fðwnÞÞ þ K fðznÞ

fðwnÞ

� �n o
;

8>>>>>><
>>>>>>:

ð30Þ

where b 2 R n f0g and the weight function should satisfy

Mð0Þ ¼ 1; M0ð0Þ ¼M00ð0Þ ¼ 0;

Mð3Þð0Þ ¼ �12þ 6bf½xn;wn�; and jMð4Þð0Þj <1;
Kð0Þ ¼ 0; K0ð0Þ ¼ 1;

8><
>: ð31Þ

with the following error equation

enþ1 ¼� 1= 24c71
� �� �

ðc22ð�1þ c1bÞðc1c3ð1� c1bÞþ c22ð�2þ c1bÞÞð24ð�1
þ c1bÞ� c21c4ð1� c1bÞþ c32ð�4þ c1bÞþ2c1c2c3ð�1þ c1bÞ

� �
þ c32M

ð4Þð0ÞÞÞe8nþO e9n
� �

: ð32Þ

An efficient example from our new class (30), (31) can be the
following

yn ¼ xn � fðxnÞ
f½xn ;wn � ; wn ¼ xn � fðxnÞ;

zn ¼ yn � f½xn ;yn ��f½yn ;wn �þf½xn ;wn �
f½xn ;yn �2

fðynÞ;

xnþ1 ¼ zn � fðznÞ
f½xn ;zn �þf½zn ;yn ��f½xn ;yn �

�ð1� ð2� f½xn;wn�Þ fðynÞ
fðwnÞ

� �3
� 1

24

fðynÞ
fðwnÞ

� �4
þ fðznÞ

fðwnÞÞ;

8>>>>>>><
>>>>>>>:

ð33Þ

where its error equation is
enþ1 ¼ �ð1=ð24c71ÞÞðð�1þ c1Þc22ðð�2þ c1Þc22 � ð�1
þ c1Þc1c3Þðð95þ 24ð�5þ c1Þc1Þc32 þ 48ð�1
þ c1Þ2c1c2c3 � 24ð�1þ c1Þ2c21c4ÞÞe8n þO e9n

� �
: ð34Þ

Many similar methods from our proposed classes (29) and
(30) can be produced in which the highest possible order of

convergence is attained by using the smallest possible number
of function evaluations. Each member from the classes is opti-
mal and reaches the optimal efficiency index 8

1
4 � 1:682. Note

that (30) is a uni-parametric class in which whatever the smal-
ler positive value of b be chosen, then the numerical results will
be much better.

Some other examples from the new class are

yn ¼ xn � fðxnÞ
f½xn ;wn � ; wn ¼ xn � fðxnÞ;

zn ¼ yn � f½xn ;yn ��f½yn ;wn �þf½xn ;wn �
f½xn ;yn �2

fðynÞ;

xnþ1 ¼ zn � fðznÞ
f½xn ;zn �þf½zn ;yn ��f½xn ;yn �

� 1� ð2� f½xn;wn�Þ fðynÞ
fðwnÞ

� �3
þ fðznÞ

fðwnÞ

� 	
;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð35Þ

where its error equation is

enþ1 ¼ �1=c71
� �

ð�1þ c1Þ2c22ðð�2þ c1Þc22 � ð�1
þ c1Þc1c3Þ ð�4þ c1Þc32 þ 2ð�1þ c1Þc1c2c3 � ð�1þ c1Þc21c4

� �
e8n

þO e9n
� �

; ð36Þ

and also

yn ¼ xn � fðxnÞ
f½xn ;wn � ; wn ¼ xn � bfðxnÞ;

zn ¼ yn � f½xn ;yn ��f½yn ;wn �þf½xn ;wn �
f½xn ;yn �2

fðynÞ;

xnþ1 ¼ zn � fðznÞ
f½xn ;zn �þf½zn ;yn ��f½xn ;yn �

�ð1� ð2� bf½xn;wn�Þ fðynÞ
fðwnÞ

� �3
þ fðznÞ

fðwnÞÞ:

8>>>>>>>>>><
>>>>>>>>>>:

ð37Þ

The free non-zero parameter b in (37) plays an important role
in the implementation of the new methods. It is also called as

the self-accelerating parameter, which will used in the next
section.

Note that for tackling multiple roots, one may apply a

transformation on the given function, to make the multiple
zero into a simple one. This procedure would add one more
derivative evaluation at least automatically. That is to say, a

first-order derivative will be involved.
To illustrate further, we consider the transformation

h(x) :¼ f(x)/f0(x), which was attributed to [13,14]. Now by
implementing the optimal eighth-order family (37) on the

transformation h(x), we can extend it for dealing with multiple
roots.

By considering b 2 R n f0g; wn ¼ xn � ðbfðxnÞÞ=f0ðxnÞ and
FD ¼ 1�ðfðwnÞf0ðxnÞÞ=ðfðxnÞf0ðwnÞÞ

b , we obtain

yn ¼ xn � fðxnÞ
FDf0ðxnÞ ;

zn ¼ yn � ðFDþh½xn ;yn ��h½yn ;wn �Þf½yn �
h½xn ;yn �2f0 ½yn �

;

xnþ1 ¼ zn �
f½zn � 1þð�2þbFDÞf½yn �3 f0 ½wn �3

f½wn �3 f0 ½yn �3
þf½zn �f0 ½wn �

f½wn �f0 ½zn �

� �
ð�h½xn ;yn �þh½xn ;zn �þh½zn ;yn �Þf0 ½zn �

;

8>>>>><
>>>>>:

ð38Þ

wherein
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h½xn; yn� ¼
f½xn �
f0 ½xn �
� f½yn �

f0 ½yn �
xn�yn

;

h½yn;wn� ¼
� f½wn �
f0 ½wn �
þ f½yn �
f0 ½yn �

�wnþyn
;

h½xn; zn� ¼
f½xn �
f0 ½xn �
� f½zn �
f0 ½zn �

xn�zn ;

h½zn; yn� ¼
� f½yn �
f0 ½yn �
þ f½zn �

f0 ½zn �
�ynþzn

:

8>>>>>>>>><
>>>>>>>>>:

ð39Þ
3. Further acceleration

As was mentioned in the previous section, the free non-zero
parameter has a very important role in further acceleration

of convergence for the new family of methods, e.g. in (37).
Traub in [14] discussed on how to improve and present itera-
tion methods with memory in details using an approximation
for the non-zero parameter of Steffensen’s scheme by a tech-

nique called as Scant approach.
As a matter of fact, based on the presented family without

memory (37), we can present new iterative methods with mem-

ory in this section. Accelerations of convergence speed are ob-
tained in this way, by using the self-accelerating parameter b.
This self-accelerating parameter is applied to improve the or-

der of convergence. To discuss more, we remind the following
important remarks.

Remark 1. Generally speaking, highest possible orders via
methods with memory could be constructed out of optimal

methods without memory, i.e. an efficient procedure launches
n-step Steffensen-type methods with memory, with the order
up to 2n + 2n�1, (50% of an improvement) requiring the same

computational cost to the corresponding families without
memory. Note that by using only one accelerator.

Remark 2. With the choice b = �1/f0(a) when forward finite
difference is used throughout the cycle and b = 1/f0(a) when
backward finite difference approximation has been used
throughout the cycle, it can be proved that the order of the opti-
mal Steffensen-typemethods without memory would exceed the

optimal bound. However, the exact value of f0(a) is not available
in practice, and such acceleration of convergence cannot be real-
ized. But, we could approximate this parameter by an iteration

via the existing data per computing step.

Remark 3. Following Remarks 1–2, basically one has two
techniques at hand to attain the highest possible convergence
R-order for with memory methods with one accelerator

throughout the cycle only. That is, using an interpolation pass-
ing through n + 2 nodes for an n-step optimal without mem-
ory Steffensen-type method of the degree n + 1, the maximal

R-order could be achieved. For example, for (37) and by
applying an interpolation of degree 4 passing through five
nodes, xold, w, y, z, xnew, (per computing step) one may obtain
the highest possible convergence R-order.

Remark 4. The typical interpolating way is taking into account
the Newton interpolation polynomial of the degree n + 1, and
the second way is the rational interpolation, also known as Pade

interpolation of an appropriate degree. Note that higher R-
order is equal to higher computational burden per computing
step, though the efficiency index comes up dramatically.
For example, using (37) (by replacing b with bn)

yn ¼ xn � fðxnÞ
f½xn ;wn � ; wn ¼ xn � bnfðxnÞ;

zn ¼ yn � f½xn ;yn ��f½yn ;wn �þf½xn ;wn �
f½xn ;yn �2

fðynÞ;

xnþ1 ¼ zn � fðznÞ
f½xn ;zn �þf½zn ;yn ��f½xn ;yn �

� 1� ð2� bnf½xn;wn�Þ fðynÞ
fðwnÞ

� �3
þ fðznÞ

fðwnÞ

� 	
;

8>>>>>>>>>><
>>>>>>>>>>:

ð40Þ

and considering the interpolation polynomial as in (8)–(10)
passing through three nodes only (even though we have five

possible nodes per computing step of (40)), we can increase
the convergence R-order from 8 to 9.58. That is, we could
obtain

1=f0ðaÞ � 1=ðf½y; xnew� þ f½xnew; z� � f½y; z�Þ: ð41Þ

The increase of convergence R-order is attained without
any additional calculations so that the novel method with
memory possesses a very high computational efficiency index.

In fact, the parameter b can be computed by using informa-
tion available from the current and previous iteration such that
the eighth-order asymptotic convergence constant to be zero in

the error equation for the family (40).

Theorem 3.1. Let the function f(x) be sufficiently differentiable
in a neighborhood of its simple zero a. If an initial approximation
x0 is sufficiently close to a and the parameter bn in (40) is

recursively calculated by (41). Then, the R-order of convergence
of the three-step method (40) is at least 9.58.

Proof. We now obtain the order of convergence of the family

of methods with memory (40), where bn is calculated from (41).
The error relations with the self-accelerating parameter b = bn
for (40) are in what follows (assuming this time ck = f(k)(a)/
(k!f0(a)), k = 2, 3, . . .)

ên ¼ wn � a � ð�1þ bnf
0ðaÞÞen; ð42Þ

~en ¼ yn � a � c2ð�1þ bnf
0ðaÞÞe2n; ð43Þ

�en ¼ zn � a � cn;4ð�1þ bnf
0ðaÞÞe4n; ð44Þ

enþ1 ¼ xnþ1 � a � cn;8ð�1þ bnf
0ðaÞÞ2e8n: ð45Þ

In order to find the error relation for (40) and (41), we need to
find the expression for �1 + bnf0(a). Using a symbolic soft-
ware such as Mathematica with the use of (41), we attain that

�1þ bnf
0ðaÞ � c3~en�1�en�1: ð46Þ

Substituting the value of �1 + bnf
0(a) from (46) in (45), one

may obtain

enþ1 � cn;8ðc3~en�1�en�1Þ2e8n; ð47Þ
enþ1 � cn;8c

2
3~e

2
n�1�e

2
n�1e

8
n: ð48Þ

From (44), we can write

�en�1 � cn�1;4ð�1þ bn�1f
0ðaÞÞe4n�1: ð49Þ

Using (49) in (48) and further simplifying, we get that

enþ1 � cn;8c
2
3ðc2ð�1þ bn�1f

0ðaÞÞ � e2n�1Þ
2ðcn�1;4ð�1

þ bn�1f
0ðaÞÞe4n�1Þ

2
e8n: ð50Þ



2 3 4 5
Number of Steps

10

20

30

40

Maximum Order

With memory methods 50 Improvement

With memory methods 25 Improvement

Without memory methods

Figure 1 Comparison of methods without memory and with

memory (25% and 50% of improvements) in terms of highest

possible convergence order.
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Number of Steps
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1.4
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Maximum Efficiency Index

With memory methods 50 Improvement

With memory methods 25 Improvement

Without memory methods

Figure 2 Comparison of methods without memory and with

memory (25% and 50% of improvements) in terms of highest

possible efficiency index.
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And thus

enþ1 � cn;8c
2
2c

2
3c

2
n�1;4ð�1þ bn�1f

0ðaÞÞ4e12n�1e8n: ð51Þ

According to (45), we can write

en � cn�1;8ð�1þ bn�1f
0ðaÞÞ2e8n�1: ð52Þ

Combining (51) and (52), we obtain

enþ1 �
e10n c

2
2c

2
3c

2
n�1;4cn;8

e4n�1c
2
n�1;8

: ð53Þ

Note that in general we know that the error equation should
read enþ1 � Aepn, where A and p are to be determined. Hence,
one has en � Aepn�1, and subsequently en�1 � A�1=pe1=pn . Thus,

it is easy to obtain

epn �
A�1þ

4
pc22c

2
3c

2
n�1;4cn;8

c2n�1;8
e
10�4

p
n ; ð54Þ

which results in the equation p ¼ 10� 4
p
, with two solutions

{0.417424,9.58258}. Clearly the value for p = 9.58258 is

acceptable and would be the convergence R-order of the family
(40) with memory. The proof is complete. h

The computational efficiency index of the family (40) with
memory is 1.7594 which is even better than optimal sixteenth-or-
dermethodswithoutmemory. Clearly thisR-order for (40) is not
the optimal bound, and considering amuch enriched approxima-

tion for f0(a) per computing step by applying all five involved
nodes results in the highest possible convergence R-order.

Remark 5. An important remark that must be exposed is the

fact regarding the form of the error equation in the optimal
eighth-order derivative-free methods, when finding the maxi-
mum convergence R-order for with memory methods. That is

to say, for families without memory with the error equation
(for eighth-order methods as an example) enþ1 ¼ xnþ1�
a � cn;8ð�1þ bnf

0ðaÞÞ4e8n, the maximum R-order would be 12
by applying all five nodes (50% improvement), while there is

no such thing, when the error equation is of the form
enþ1 ¼ xnþ1 � a � cn;8 �1þ bnf

0ðaÞð Þ2e8n. To discuss further, in
such a case there would be 25% of improvement, when the

family becomes with memory by applying all five nodes.

Thus the maximum R-order totally depends on the form of

the error equation in general. A comparison between the with-
out memory and with memory methods in terms of the maxi-
mum convergence order and the maximum efficiency index

alongside the number of steps per cycle are given in Figs. 1
and 2. Taking into consideration the above remarks, we have
different ways to produce with memory iterations, that only

some of them reach the highest possible with memory bound.
Considering Remark 5, the maximum convergence R-order for
the family (40), would be 10.

Theorem 3.2. Let the function f(x) be sufficiently differentiable

in a neighborhood of its simple zero a. If an initial approximation
x0 is sufficiently close to a and the parameter bn in (40) is
recursively calculated by (55). Then, the R-order of convergence

of the three-step method (40) is at least 10.

Proof. The proof of this theorem is similar to the proof of
Theorem 3.1, hence it is omitted. h
Using the Newton interpolation passing through five active
nodes (xold, f(xold)), (w, f(w)), (y, f(y)), (z, f(z)), (xnew, f(xnew)), per
computing step to form an interpolation of degree four gives

us the highest possible R-order for (40). Note that many
authors tried to form such interpolating polynomials based
on divided differences, though it is correct, we believe that

built-in algorithms in the programming package Mathematica
[18,19], are mostly better in terms of computational time for
operations. Such a goal is simply coded in what follows:

f[t_] :¼InterpolatingPolynomial[{{xold, fxold},
{w, fw}, {y, fy}, {z, fz},

{xnew, fxnew}}, t] // Simplify

(1/f0[t]) /. Thread[t-> xnew] // FullSimplify
which simply provides the following approximation (much

more easier than the closed form of divided differences
approach)



Table 1 The examples considered in this study.

Test functions Zeros

f1(x) = (sinx)2 + x a1 = 0

f2ðxÞ ¼ ð1þ x3Þ cosðpx2 Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

� 2ð9
ffiffi
2
p
þ7
ffiffi
3
p
Þ

27 a2 = 1/3

f3(x) = (sinx)2 � x2 + 1 a3 � 1.404491648215341

f4(x) = e�x + sin(x) � 1 a4 � 2.076831274533113

f5(x) = xe�x � 0.1 a5 � 0.111832559158963

f6ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þ 8
p

sinð p
x2þ2Þ þ

x3

x4þ1�
ffiffiffi
6
p
þ 8

17 a6 = �2
f7ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2xþ 5
p

� 2 sinðxÞ � x2 þ 3 a7 � 2.331967655883964

f8ðxÞ ¼ arcsinðx2 � 1Þ � x
2 þ 1 a8 � 0.594810968398369

f9ðxÞ ¼ ðsinðxÞ � 2
2Þðxþ 1Þ a9 � 0.785398163397448

f10(x) = x5 + x4 + 4x2 � 15 a10 � 1.347428098968304

Table 2 Results of convergence under fair circumstances for different derivative-free methods.

f, Guess (1) (3) (4) (5) (6) (27) (35)

f1, 0.6

IT 8 4 4 3 3 3 3

TNE 16 12 16 15 12 12 12

ŒfŒ 0.2e�113 0.1e�90 0.4e�141 0.2e�93 0.1e�182 0.1e�200 0.3e�317

f2, 0.8

IT 8 4 4 3 3 3 3

TNE 16 12 16 15 12 12 12

ŒfŒ 0.5e�166 0.5e�104 0.1e�35 0.5e�28 0.2e�113 0.3e�146 0.3e�98

f3, 2

IT 8 4 4 3 3 3 3

TNE 16 12 16 15 0 12 12

ŒfŒ 0.4e�62 0.1e�82 0.9e�180 0.2e�109 Div. 0.4e�111 0.1e�154

f4, 2.8

IT 8 4 4 3 3 3 3

TNE 16 12 16 15 12 12 12

ŒfŒ 0.6e�276 0.1e�184 0.9e�128 0.1e�94 0.3e�398 0.3e�405 0.4e�219

f5, �0.7
IT 8 4 4 3 3 3 3

TNE 16 12 16 15 12 12 12

ŒfŒ 0.3e�8 0.9e�31 Div. Div. 0.4e�53 0.3e�112 0.2e�117

f6, �1.7
IT 8 4 4 3 3 3 3

TNE 16 12 16 15 12 12 12

ŒfŒ 0.4e�221 0.3e�134 0.6e�119 0.2e�91 0.5e�231 0.4e�210 0.1e�81

f7, 1.6

IT 8 4 4 3 3 3 3

TNE 16 12 16 15 12 12 12

ŒfŒ 0.1e�238 0.2e�178 0.7e�210 0.2e�156 0.1e�371 0.1e�433 0.1e�400

f8, 0.3

IT 8 4 4 3 3 3 3

TNE 16 12 16 15 12 12 12

ŒfŒ 0.2e�243 0.7e�226 0.4e�246 0.1e�195 0.3e�466 0.1e�515 0.5e�884

f9, 0.4

IT 8 4 4 3 3 3 3

TNE 16 12 16 15 12 12 12

ŒfŒ 0.3e�84 0.3e�81 0.3e�143 0.2e�103 0.1e�144 0.6e�117 0.6e�665

f10, 1.32

IT 8 4 4 3 3 3 3

TNE 16 12 16 15 12 12 12

ŒfŒ 0.8e�3 0.1e�139 0.4e�26 Div. 0.6e�229 0.5e�247 0.4e�424
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Table 3 Results of the family (40) with memory using (41).

Number of full iterations COC Zero ŒfŒ

3 9.58678 0.56049912163979286993112824338688 1.2310 · 10�3274

Table 4 Results of the family (40) with memory using (55).

Number of full iterations COC Zero ŒfŒ

3 10.0028 0.56049912163979286993112824338688 2.7299 · 10�3606

140 F. Soleymani
1=f0ðaÞ � 1=ðfðxnewÞð1=ð�wþ xnewÞ þ 1=ðxnew � xoldÞ þ 1=ðxnew

�yÞ þ 1=ðxnew � zÞÞ þ ðfðyÞðw� xnewÞ2ðw� xoldÞðxnew � xoldÞ2

�ðw� zÞðxnew � zÞ2ðxold � zÞ � ðxnew � yÞ2ðfðzÞðw� xnewÞ2

�ðw� xoldÞðxnew � xoldÞ2ðw� yÞðxold � yÞ þ ðxnew � zÞ2ðy� zÞ
�ðfðxoldÞðw� xnewÞ2ðw� yÞðw� zÞ þ fðwÞðxnew � xoldÞ2

�ðxold � yÞð�xold þ zÞÞÞÞ=ððw� xnewÞðw� xoldÞðxnew � xoldÞðw� yÞ
�ðxnew � yÞðxold � yÞðw� zÞðxnew � zÞðxold � zÞðy� zÞÞÞ:

ð55Þ

Note that in this case the computational efficiency index
would be 101/4 � 1.7782.

4. Numerical results

In this section, we check the effectiveness of the novel deriva-
tive-free classes (29) and (30), and also the family (40) with

memory. Due to this, we have compared (27) and (35) with
Steffensen’s method (1), Liu et al. scheme (3), the fourth-order
method of Cordero et al. (4), the sixth-order technique of Cor-

dero et al. (5), and the optimal eighth-order family of Kung
and Traub (6) with b = 1, using the examples listed in Table 1.

The results of comparisons are given in Table 2 in terms of

the number significant digits for each test function after the
specified number of iterations, that is, e.g. 0.1e � 200 shows
that the absolute value of the given non-linear function (f1)

after three iterations is zero up to 200 decimal places.
In Table 2, Div. represents that the corresponding iterative

method is divergent for the initial guess. As can be seen,
numerical results are in concordance with the theory developed

in this paper. In all the examples, the new methods improve the
corresponding classical methods. Moreover, when we fix the
same convergence criterion for all methods, the number of iter-

ations and the number of functional evaluations are almost al-
ways better in the proposed eighth-order modified methods.

In Table 2, TNE denotes the Total Number of Evaluations

required for a method to do the specified iterations. The new
methods inherit the merit of the optimal fourth-order two-step
methods without memory with regards to application of di-
vided differences and high efficiency index, which is confirmed

by the results in Table 2. According to Table 2, under a fair
comparison structure, the proposed methods perform well.

Another observation from Table 2 is that, methods (4) and

(5) are not efficient when the non-linear test functions are hard,
their accuracy is not good as well as they need high number of
function evaluations, in fact, although they consist of less

operations (multiplication, addition, etc.) per full cycle, they
include more function evaluations which is not at all good
when the test non-linear functions have complicated

structures.
It could also be inferred from Table 2 that the contributed

methods are better than the existing optimal eighth-order
derivative-free family (6).

It is clear the family (40) with memory with two forms (41)

and (55) is better than the methods without memory. Hence,
we only test it on a well-known oscillatory example
f(x) = (sin(10x2))cosh(x), and report the results on Tables 3

and 4 to support the theoretics of Section 3. The initial approx-
imation is chosen as 0.560507 while the stopping criterion is
Œf(xn)Œ 6 10�1000, the initial guess for b0 is 0.01, and the com-
putational order of convergence (COC) has been computed by

COC ¼ ln jfðxnÞ=fðxn�1Þj
ln jfðxn�1Þ=fðxn�2Þj.

5. Concluding comments

In this research, we have given two simple yet powerful three-
step schemes without memory for solving non-linear equations,
in which there is no need of derivative-calculation per cycle. The

novel classes of iterative methods, which were obtained by con-
sidering the method of Liu et al. (3) in the first two-step of a
three-step cycle reach the optimal efficiency index 1.682.

In comparisons, each test function was computed to estab-
lish the effectiveness of our contributed methods. Table 2 in
Section 4, have manifested that the new derivative-free meth-

ods are robust for good initial approximations.
We have extended one of the schemes for multiple zeros

and discusses on the with memory variants of the new families.
The corespondent R-order for methods with memory have

been found theoretical and established dramatically improve-
ment in the computational efficiency index. 1.778 has been ob-
tained as the highest possible computational efficiency index

for the new methods with memory.
Acknowledgments

The author expresses his sincere thanks to the referee for care-
ful reading and several helpful suggestions.

References

[1] T. Sauer, Numerical Analysis, second ed., Pearson, Boston,

2012.

[2] J.F. Steffensen, Remarks on iteration, Skand. Aktuarietidskr 16

(1933) 64–72.

[3] B.I. Yun, M.S. Petkovic, Iterative methods based on the Signum

function approach for solving nonlinear equations, Numer.

Algor. 52 (2009) 649–662.



Some optimal iterative methods and their with memory variants 141
[4] F. Soleymani, S. Shateyi, Two optimal eighth-order derivative-

free classes of iterative methods, Abst. Appl. Anal. vol. 2012,

Article ID 318165, 14 pp.

[5] F. Soleymani, D.K.R. Babajee, S. Shateyi, S.S. Motsa,

Construction of optimal derivative-free techniques without

memory, J. Appl. Math., vol. 2012, Article ID 497023, 24 pp.

[6] B. Neta, M.S. Petkovic, Construction of optimal order

nonlinear solvers using inverse interpolation, Appl. Math.

Comput. 217 (2010) 2445–2448.

[7] F. Soleymani, S. Shateyi, H. Salmani, Computing simple roots

by an optimal sixteenth-order class, J. Appl. Math., vol. 2012,

Article ID 958020, 13 pp.

[8] H.T. Kung, J.F. Traub, Optimal order of one-point and

multipoint iteration, J. ACM 21 (1974) 643–651.

[9] Q. Zheng, P. Zhao, Z. Li, W. Ma, Variants of Steffensen-secant

method and applications, Appl. Math. Comput. 216 (2010)

3486–3496.

[10] Z. Liu, Q. Zheng, P. Zhao, A variant of Steffensen’s method of

fourth-order convergence and its applications, Appl. Math.

Comput. 216 (2010) 1978–1983.

[11] A. Cordero, J.L. Hueso, E. Martinez, J.R. Torregrosa,

Steffensen type methods for solving nonlinear equations, J.

Comput. Appl. Math. 236 (2012) 3058–3064.
[12] X. Li, C. Mu, J. Ma, L. Hou, Fifth-order iterative method for

finding multiple roots of nonlinear equations, Numer. Algor. 57

(2011) 389–398.

[13] E. Schroder, Uber unendlich viele algorithmen zur Auflösung

der Gleichungen, Math. Ann. 2 (1870) 317–365.

[14] J.F. Traub, Iterative Methods for the Solution of Equations,

Prentice Hall, New York, 1964.

[15] F. Soleymani, Novel computational iterative methods with

optimal order for nonlinear equations, Adv. Numer. Anal.,

2011, Article ID 270903, 10 pp.

[16] F. Soleymani, S.K. Khattri, S. Karimi Vanani, Two new classes

of optimal Jarratt-type fourth-order methods, Appl. Math. Lett.

25 (2012) 847–853.

[17] F. Soleymani, S. Karimi Vanani, Optimal Steffensen-type

methods with eighth order of convergence, Comput. Math.

Appl. 62 (2011) 4619–4626.

[18] S. Wagon, Mathematica in Action, third ed., Springer, 2010.

[19] M. Trott, The Mathematica GuideBook for Numerics, Springer,

2006.


	Some optimal iterative methods and their with  memory variants
	1 Introduction
	2 Development of the methods
	3 Further acceleration
	4 Numerical results
	5 Concluding comments
	Acknowledgments
	References


