
Proof Transformation via Interpretation

Functions:

Results, Problems and Applications

Piotr Kosiuczenko

Department of Computer Science
University of Leicester

Leicester, UK

Abstract

Change is a constant factor in Software Engineering process. Redesign of a class structure requires
transformation of the corresponding OCL constraints. In a previous paper we have shown how
to use, what we call, interpretation functions for transformation of constraints. In this paper we
discuss recently obtained results concerning proof transformations via such functions. In particular
we detail the fact that they preserve proofs in equational logic, as well as proofs in other logical
systems like propositional logic with modus ponens or proofs using resolution rule. Those results
have direct applications to redesign of UML State Machines and Sequence Diagrams. If states in a
State Machine are interpreted by State Invariants, then the topological relations between its states
can be interpreted as logical relations between the corresponding formulas. Preservation of the
consequence relation can bee seen as preservation of the topology of State Machines. We indicate
also an unsolved problem and discuss the mining of its positive solution.

Keywords: UML, Redesign, Proof Transformation, Constraint Transformation, State Machines,
Sequence Diagrams, Formal Methods.

1 Introduction

Unified Modelling Language provides textual and diagrammatic means for
system specification (cf. [13]). Systems and their real-world environments
are modelled using abstractions such as Classes Diagrams, State Machines or
Sequence Diagrams. There are different software engineering processes which

1 This research was partially funded by the EU project Leg2Net and EU project AGILE.

Electronic Notes in Theoretical Computer Science 127 (2005) 139–145

1571-0661 © 2005 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.08.040
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82412364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


can be applied. In the old fashioned Waterfall Model, one has to begin with a
correct requirement specification, make refinements to obtain the design and
then implement the design specification. These steps can be adequately de-
scribed using the notion of refinement (cf. e.g. [8]). This works correctly,
if the requirements do not change and the software developers have a clear
idea regarding how to proceed. In practice however, a specification constantly
changes due to a number of factors including changed or new client require-
ments, new technology enablers and so on. In such a case extensive manual
reengineering of system specification and design is needed. Today’s software
engineering processes embrace change as being a constant factor. In this case,
requirements tracing is much harder to achieve. The notion of refinement
with its monotonicity assumption can barely model such changes. For exam-
ple, if an interface or class signature changes, a formula or a constraint which
described a property concerning classes implementing this interface may no
longer make sense. No tool in the market allows one for an automatic transfor-
mation of constraints. Changes have to be made to the specification manually,
which is very time consuming and error prone.

A number of approaches to redesign of UML class models exist already.
The best known is the refactoring approach [1]. It provides simple patterns for
code and class structure modification to extend and modify a system without
altering its behavior. The interpretation function, used in abstract algebra
[11], transforms a single operation into a complex term. Graph rewriting
systems may be used to transform specifications (cf. e.g. [3]).

In a previous paper [8] (see also [5]) we have studied the redesign of UML
State Invariants with OCL constraints, as well as the transformation and trac-
ing of constraints. We have introduced a new notion of interpretation function
for redesign of State Invariants which extends, in a natural way, the notion
introduced in [11]; an interpretation function is a compositional function gen-
erated by a mapping satisfying conditions analogous to orthogonality in term
rewriting systems. Our concept of redesign is more general than the concept
of refinement since we do not assume that properties are only added or refined,
but we allow for changing them in an arbitrary way. For example a number of
design level classes might be restructured or a specification level class might
be split into several design level classes. Properties, which have to be pre-
served, may concern dependencies between classes, associations, attributes or
generalization relationships. They are expressed by OCL formulas and trans-
formed. Our approach is motivated by the notion of abstraction as it is used
in UML [13]. Interestingly, our approach allows us for not only an automatic
constraint transformation but also for an automatic proof transformation. In
the technical report [6], we have shown that several kinds of entailment re-

P. Kosiuczenko / Electronic Notes in Theoretical Computer Science 127 (2005) 139–145140



lations are preserved by interpretation functions; in particular such functions
preserve equational proofs, proofs using propositional tautologies, resolution
rule and induction. This allows one to save the clerical work of redoing proofs
after transformation of a Class Diagram.

In this paper we present briefly the results contained in the technical report
[5] and discuss their applications to redesign of State Machines and Sequence
Diagrams. In section 2, we present briefly the idea of interpretation functions
and the acompanying results. In section 3, we show how this idea and results
can be applied to redesign of State Machines and Sequence Diagrams. In
section 4, we conclude this paper and list some open problems.

2 Interpretation Functions

Interpretation functions proved to be very useful as a vehicle for an auto-
matic transformation of OCL constraints when changes to Class Diagrams
are performed [6] (see also [4]). For example, if an attribute a of type Inte-
ger is replaced by a path b.x , where b is an association pointing to another
class and x is an attribute of that class, then every OCL constraint or State
Invariant containing a has to be modified.

This kind of modifications can be performed using interpretation functions,
i.e. partial functions generated by mappings satisfying conditions analogous to
orthogonal term rewriting systems (cf. e.g. [12]). A domain of such a mapping
satisfies conditions valid for all domains of orthogonal term rewriting systems;
i.e. all terms in the domain are linear and non-overlapping.

Interpretation functions have several useful properties. They allow us to
transform OCL specifications. The idea is that the designer or implementer
who changes a class structure maps modified Model Elements on the target
Model Elements, the transformation of the corresponding constraints being
accomplished automatically. Such functions preserve equational proofs, proofs
using propositional tautologies, resolution rule and proofs by induction [5].
This allows one to save the clerical work of redoing proofs of this kind after
transformation of Class Diagrams.

3 Applications

Interestingly, results concerning preservation of consequence relation have also
implications for redesign of other UML diagrams. In the following three sub-
sections we consider application of our concepts to State Machines and Se-
quence Diagrams.

P. Kosiuczenko / Electronic Notes in Theoretical Computer Science 127 (2005) 139–145 141



3.1 State Machines

One of the most useful kind of UML diagrams are the so called State Machines
[13]. A State Machine is composed of a number of states connected by edges
corresponding to transitions. States can be structured; one state can contain
several other states called substates. In UML, ”a state is a condition during
the life of an object or an interaction during which it satisfies some condition,
performs some action, or waits for some event” [13]. Consequently States in a
State Machine correspond to formulas; in the first case the formulas are called
State Invariants. Such formulas may describe values of object attributes and
inter-relationship between different objects; they can be expressed for example
in OCL. States of a State Machine can be represented by trees, in particular
by propositional formulas (cf. [9]). We argue that topological relation between
states in a State Machine can be interpreted as logical relations between the
corresponding formulas. In this case, preservation of the entailment relation
can be seen as preservation of the topology of State Machines. It is natural
to assume that the invariant corresponding to a substate implies the invariant
corresponding to its superstate, since the invariant corresponding to the sub-
state should be more restrictive. This condition (we call it state monotonicity)
can be formally expressed as follows:
For every two states s1 and s2, s1 is a substate of s2 if and only if the formula
corresponding to s1 implies the formula corresponding to s2.

On the other hand, one can be interested, if the states of a State Ma-
chine cover all possibilities. In the case of a State Machines describing the
behavior of an object, this means that for every combination of the objects
attributes, there is a state covering this combination. When states are in-
terpreted by invariants, this covering property can be equivalently expressed
by the requirement that for every combination of attributes, there is a State
Invariant describing this combination. Formally, let Fi for i = 1, ..., n, be
formulas corresponding to all states of a State Machine M ; the states of M

cover all possibilities if and only if the formula F1 ∨ ... ∨ Fn is a tautol-
ogy. Equivalently, F1 ∨ ... ∨ Fn can be proved without using domain specific
formulas.

A stronger property (we call it exhaustiveness) says that for every, so called,
or-state all its substates cover all possibilities. Formally, let s be an or-state,
let F be the corresponding State Invariant, let s1,..., sn be all substates of s

and let F1, ...,Fn be the corresponding invariants. F is exhaustive if and only
if F is logically equivalent to the disjunction F1 ∨ ... ∨ Fn . We say that states
in a State Machine are non-overlapping, if for every two different substates
s1 and s2 of an or-state s , the conjunction of the corresponding invariants
F1 ∧ F2 is logically false.

P. Kosiuczenko / Electronic Notes in Theoretical Computer Science 127 (2005) 139–145142



There are several other useful properties of this kind which can be ex-
pressed by logical relations between formulas. For example that all reach-
able states are defined by non-contradictory formulas or that disjunctions of
formulas corresponding to orthogonal states are equivalent to the superstate
invariant (a condition analogous to exhaustiveness).

As explained above, transformation of a Class Diagram requires the trans-
formation of the corresponding constrains (for example OCL constraints).
Consequently, if the states of a state Machine are described by formulas, those
formulas may need to be changed. If implication in first order logic is preserved
by interpretation functions, then all properties described above are preserved
by such functions. The results presented in [5] show, that interpretation func-
tions preserve proofs using equational reasoning, resolution rule, propositional
tautologies and induction. Consequently at the moment we can say that if the
above mentioned properties are proved using those kinds of reasoning, then
they are preserved by interpretation functions. If for example, there is a proof
of the state-monotonicity property using above mentioned ways of reasoning,
then after transformation via an interpretation function this property remains
valid after transformation.

3.2 Sequence Diagrams

UML 2.0 introduces conditions to Sequence Diagrams (SD) [14]. They do
not play such a central role as state invariants in State Machines. On the
other hand, the structuring mechanisms in SD are of different kind; these are
operations on sets of traces to facilitate behavior specification. The previous
section contains a list of State Machines properties which can be defined in
logical terms. In a similar way one can define properties of Sequence Diagrams.
In this case, those constraints concern composition of trace specifications. For
example, one can require that conditions in a Sequence Diagram, which is
obtained using parallel composition, are non-contradictory or that Sequence
Diagrams combined by alternative composition have exclusive pre-conditions.
As in the case of State Machines, the preservation of logical consequences
implies that such properties are preserved by interpretation functions.

4 Concluding Remarks and Future Work

In this paper we show that results presented in [6] and in [5] have direct appli-
cations to transformation of UML diagrams, in particular to State Machines
and Sequence Diagrams. We show that logical relations between State Invari-
ants in a State Machine are preserved, if they can be proved using certain
kinds of proofs.

P. Kosiuczenko / Electronic Notes in Theoretical Computer Science 127 (2005) 139–145 143



There are still several open questions. In particular, it is not known, if
interpretation functions preserve entailment relation of first order logic. This
question may seem purely theoretical, but a positive answer would have very
interesting implications for State Machines and Sequence diagrams; it would
mean, for example, that interpretation functions preserve topology of State
Machines. Even if the answer is negative, the results obtained so far prove to
be useful.

In the future, we are going to further study the properties of interpreta-
tion functions in logical terms. We are going to investigate, if the entailment
relation of first order logic is preserved by interpretation functions. In first or-
der logic there is an equivalence between semantic and syntactic consequence.
Our results obtained up to now focus mainly on the syntax. Institutions ap-
proach the problem of transformation from the model theoretic point of view
(cf. e.g. [10]). We are going to study the relation of interpretation functions
to institutions. We plan also to implement a tool supporting class redesign,
transformation and tracing of model elements. Such a tool will be very help-
ful since a purely manual transformation of complex OCL constraints is very
laborious and error prone.

References

[1] Fowler, M., Refactoring: Improving the Design of Existing Code, Reading, Mass., Addison-
Wesley, 2000.

[2] Gamma, E., Helm, R., Johnson, R., and J. Vlissides, Design Patterns, Addison- Wesley,
Reading, 1995.

[3] Grosse-Rhode, M., and Presicce, F., and M. Simeoni, Formal software specification with
refinements and modules of typed graph transformation systems, Journal of Computer and
System Sciences, 64(2), 2002.

[4] Kosiuczenko, P., Formal Redesign of UML Class Diagrams, in (Evans, A., France, R., Moreira,
A., Rumpe, B. Eds): Proc. of pUML Workshop on Practical UML Based Rigorous Development
Methods, Toronto. GI-Edition, Lecture Notes in Informatics, 2001.

[5] Kosiuczenko, P.,
Proof Transformation via Interpretation Functions, Technical Report nr. 2004/27, University
of Leicester, 2004, 16 pages: http://www.cs.le.ac.uk/~pk82/Theory1.1.pdf.

[6] Kosiuczenko, P., Redesign of UML Class Diagrams: a formal Approach, submitted for
publication, 2004.

[7] Kosiuczenko, P., Proof Transformation via Interpretation Functions: Results, Problems and
Applications, to appear in ENTCS, 2004.

[8] Lano, K., Formal object oriented development, Springer, Berlin, 1995.

[9] Lütgen, G., and M. Mendler, Statecharts: From Visual Syntax to Model-Theoretic Semantics,
in proc. of Wirtschaft und Wissenschaft in der Network Economy, Tagungsband der GI/OCG-
Jahrestagung, K. Bauknecht, W. Brauer, Th. Mück (eds.), Viena, 25.09.2001.

P. Kosiuczenko / Electronic Notes in Theoretical Computer Science 127 (2005) 139–145144

http://www.cs.le.ac.uk/~pk82/Theory1.1.pdf


[10] Tarlecki, A., Institution: An Abstract Framework for Formal Specifications, In (Astesiano, E.,
Kreowski, H. -J., Krieg-Brückner, B. Eds.): Algebraic Foundations of System Specification,
Springer, 1999.

[11] Taylor, W., Characterizing Malcev conditions, Algebra Universalis, 3, Springer, Berlin, 1973,
351–397.

[12] Terese et. al., Term rewriting systems, Cambridge University Press, 2003.

[13] OMG, Unified Modeling Language Specification, Version 1.5, 2003.

[14] OMG, Unified Modeling Language Specification, Version 2.0 (pending), 2004.

P. Kosiuczenko / Electronic Notes in Theoretical Computer Science 127 (2005) 139–145 145


	Introduction
	Interpretation Functions
	Applications
	State Machines
	Sequence Diagrams

	Concluding Remarks and Future Work
	References



