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Abstract

We introduce a class of Borel measurable maps between topological spaces which is stable under
usual operations. We characterize those completely regular topological spaces which are Borel sets
in every regular embedding. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the following(X, τ) will denote a Hausdorff topological space. The Borelσ -algebra
of X will be denotedBorel(X, τ), that is, the smallest family of subsets ofX which contains
the topologyτ and is closed by countable unions and complementaries inX. Given another
topological space(Y, δ), a mapf :X → Y is said to be Borel (measurable) iff −1(V )

belongs toBorel(X, τ) for every openV from δ.
It is well known that all the Borel sets in a metric space can be generated by an alternative

application (indexed by the countable ordinal numbers) of the operations “δ” (countable
intersections) and “σ ” (countable unions) starting with the open sets (or the closed sets).
For nonmetrizable topologies a little change is required and the suitable definition is as
follows.
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Definition 1.1. Let (X, τ) be a topological space. The family of the additive sets of class
α (Aα) and the family of the multiplicative sets of classα (Mα) are constructed for every
countable ordinalα by the following inductive process:

(i) A0 consists of all theτ -open sets andM0 consists of all theτ -closed sets.
(ii) If α > 0 then the sets ofAα are of the form

⋃∞
n=1(An ∩Bn) and the sets ofMα are

of the form
⋂∞

n=1(An ∪ Bn), whereAn ∈ Aαn andBn ∈Mαn with αn < α.

Every Borel setA ∈ Borel(X, τ) belongs to some additive (respectively multiplicative)
family Aα (respectivelyMα). Then we say thatA is of additive (respectively multiplica-
tive) classα. The classification of Borel subsets allows to introduce a classification of Borel
functions.

Definition 1.2. Let (X, τ) and(Y, δ) be topological spaces. A mapf :X → Y is said to
be Borel of classα if f −1(V ) ∈Aα for everyV ∈ δ. A Borel map is said to be classifiable
if it is of classα for some countable ordinal.

We may regard Borel sets as the “countably constructible” sets starting from the sets
of the topology. But this intuitive idea disappears when considering Borel functions (even
classifiable). In this paper we propose a class of maps between topological spaces which
try to fill the idea of “countably constructibity” for Borel maps. We callp-Borel maps these
maps and the definition is as follows:

Definition 1.3. Let (X, τ) and(Y, δ) be topological spaces. A mapf :X → Y is said to be
p-Borel if there is sequence(An) of τ -Borel sets inX such that for everyx ∈ X and every
V ∈ δ with f (x) ∈ V there isn ∈ N andU ∈ τ such thatx ∈ An ∩U andf (An ∩U) ⊂ V .

This definition is motivated by a sufficient condition for coincidence ofσ -algebras
employed in [14], which generalizes arguments of Edgar [2] and Talagrand [15]. There are
also conexions with the maps having aσ -relatively discrete base considered by Hansell
in [7]. The properties ofp-Borel maps are studied in Section 2. The first important fact
is that everyp-Borel map is Borel measurable of bounded class. We study the behaviour
of p-Borel maps with respect to composition, sums and limits among other properties.
We also show thatp-Borel maps are Lusin measurable for every Radon measure on the
domain. In Section 3 we give some examples ofp-Borel maps. A deep result of Hansell is
used to show that every Borel map of bounded class from a complete metric space into a
metric space isp-Borel.

In Section 4 we shall use the notion ofp-Borel map to give an intrinsic characterization
of the completely regular absolute Borel spaces.

Definition 1.4. A topological spaceX is said to be absolute Borel if for every embedding
i :X → Z into a regular topological space, theni(X) is a Borel subset ofZ.

It is well known that a metrizable space is absolute Borel, if and only if, it is
homeomorphic to a Borel subset of a complete metric space [10]. More recently, metrizable
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absolute Borel spaces have been characterized internally in terms of complete sequences
of covers [11]. Our main result uses the notion ofČech-complete topological space and it
can be stated as follows.

Theorem 1.5. Let (X, τ) a completely regular topological space. Then the following
statements are equivalent:

(i) (X, τ) is absolute Borel.
(ii) (A, τ) is absolute Borel for everyA ∈ Borel(X, τ).
(iii) There is aČech-complete topologyδ onX finer thanτ such that the identity map

I : (X, τ) → (X, δ) is p-Borel.

A consequence of the theorem is an extension of a classical result of Lusin and Souslin
about injective Borel measurable maps from a Polish space into a metrizable one [8]. We
also show the following: ifX is a Banach space andX∗∗ denotes its bidual, then the
property of beingX a (F ∩ G)σδ in X∗∗ endowed with the weak∗-topology is a weak
invariant ofX. The last result of the paper states that Borel absolute spaces are preserved
by p-Borel isomorphisms.

2. Properties of p-Borel maps

Given families Σ1,Σ2, . . . of subsets ofX, we shall denote top(Σ1,Σ2, . . .) the
topology onX generated by these families, that is, the smallest topology onX containing
the sets of each family. The next result shows that we may think of thep-Borel maps as a
kind of “continuous” maps. The proof is left to the reader (we shall omit the proofs if they
are very easy or rutinary).

Proposition 2.1. Let(X, τ) and(Y, δ) be topological spaces. A mapf :X → Y isp-Borel
if and only if there is a countable collection{An: n ∈ N} of Borel subsets ofX such thatf
is continuous whenX is endowed withtop(τ, {An: n ∈ N}).

The following lemma contains some properties of the additive and multiplicative
families of Borel sets in a topological space.

Lemma 2.2. Let (X, τ) be a topological space,Aα andMα the families defined above.
Then the following holds:

(i) A ∈ Aα if and only ifX \A ∈Mα .
(ii) Aα is stable under countable unions andMα is stable under countable intersec-

tions.
(iii) Aα is stable under finite intersections andMα is stable under finite unions.
(iv) If α < β thenAα ∪Mα ⊂Aβ ∩Mβ .
(v) If α > 0 thenAα+1 = (Mα)σ andMα+1 = (Aα)δ .
(vi)

⋃
α<ω1

Aα =⋃
α<ω1

Mα = Borel(X, τ).
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Theorem 2.3. Everyp-Borel map is Borel measurable of bounded class.

Proof. Let V be aδ-open set inY . We shall check thatf−1(V ) is aτ -Borel set inX. For
everyx ∈ f −1(V ) we can findnx ∈ N andUx ∈ τ such thatf (Anx ∩ Ux) ⊂ V . Now note
that

f−1(V ) =
⋃

x∈f−1(V )

Anx ∩Ux =
∞⋃
n=1

⋃
nx=n

Anx ∩Ux =
∞⋃
n=1

An ∩
( ⋃

nx=n

Ux

)
is aτ -Borel set inX. Note that ifα is a countable ordinal which bounds the additive class
of the sets(An), then for everyV ∈ δ we have thatf−1(V ) is of additive classα. ✷

The following results establishes some properties of the class ofp-Borel maps. Note
that some of them are well known properties of the class of Borel maps.

Proposition 2.4. In order to a given mapf :X → Y bep-Borel, it is enough to check the
condition in Definition1.3 for V belonging to a subbasis ofδ.

Proposition 2.5. If f :X → Y is p-Borel, and X0 ⊂ X and Y0 ⊂ Y are such that
f (X0) ⊂ Y0. Thenf |X0 :X0 → Y0 is p-Borel for the relative topologies.

Proposition 2.6. Let (Xi, τi), i = 1,2,3 be topological spaces, andf :X1 → X2 and
g :X2 → X3 arep-Borel, theng ◦ f :X1 → X3 is alsop-Borel.

Proof. Let (An) ⊂ X1 a sequence of sets satisfying Definition 1.3 forf and let(Bn) ⊂ X2

satisfying Definition 1.3 forg. After Theorem 2.3, the setsf−1(Bn) areτ1-Borel. It is easy
to see that the countable family(An ∩ f−1(Bm)) of τ1-Borel sets satisfies Definition 1.3
for the mapg ◦ f . ✷
Proposition 2.7. Let (X, τ) and (Yi , δi) topological spaces fori ∈ I whereI is finite or
countable. Letfi :X → Yi be p-Borel maps fori ∈ I . Then the mapf :X → ∏

i∈I Yi

defined byf (x) = (fi(x))i∈I is p-Borel.

Proof. Let (Ai
n) a sequence ofτ -Borel sets satisfying Definition 1.3 forfi . Now, for every

finite subsetF ⊂ I and every finite sequence(ni) ⊂ N for i ∈ F consider the set
⋂

i∈F Ai
ni

.
In this way we obtain a countable family ofτ -Borel sets. We claim that this family satisfies
Definition 1.3. Letx ∈ X andV ⊂ ∏

i∈I Yi an open neighborhood off (x) that we can
suppose that is of the form

∏
i∈I Vi whereVi = Yi for i ∈ I \ F andF is finite. For every

i ∈ F we setAi
ni

andUi ∈ τ such thatfi(A
i
ni

∩ Ui) ⊂ Vi . Then we have that((⋂
i∈F

Ai
ni

)
∩
(⋂

i∈F

Ui

))
⊂
∏
i∈I

Vi = V

which finish the proof of the claim. ✷
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Corollary 2.8. Let (X, τ) be a topological space,(Y,∗, δ) be a topological group, and
f,g :X → Y bep-Borel maps. Thenf ∗ g is p-Borel as well.

Proof. The mapx → (f (x), g(x)) is p-Borel after Proposition 2.7 and the composition
with the product map isp-Borel after Proposition 2.6.✷

In similar way to Proposition 2.7, we can prove the following.

Proposition 2.9. Let (Xi, τi) and(Yi , δi) topological spaces fori ∈ I finite or countable.
Let fi :Xi → Yi bep-Borel maps fori ∈ I . Then the mapf :

∏
i∈I Xi →∏

i∈I Yi defined
byf ((xi)i∈I ) = (fi(xi))i∈I is p-Borel.

Corollary 2.10. If f :X → Y is ap-Borel map between topological spaces, then the set

graf(f ) = {
(x, y) ∈ X × Y : f (x) = y

}
is Borel inX × Y (with the product topology).

Proposition 2.11. Let (X, τ) be a topological space,Y a set andf :X → Y a map. Let
(δn) be a sequence of topologies onY such that for everyn ∈ N, when endowedY with δn,
the mapf is p-Borel. Thenf is p-Borel whenY is endowed withtop({δn: n ∈ N}).

The proof of the properties considered above depends mainly upon the similarity
between continuity and propertyp. The next result shows that, whenY is metrizable,
p-Borel functions, like Borel functions, are stable under pointwise limits of sequences.

Theorem 2.12. Letf :X → Y be a map from a topological spaceX to a metric spaceY .
If f is the pointwise limit of a sequence(fn) of p-Borel maps, thenf is also ap-Borel
map.

Proof. Let (Ai
n) be a sequence satisfying Definition 1.3 forfi . Fix a compatible metricd

onY . From Proposition 2.7 and the continuity ofd we deduce that the mapd(fi(x), fj (x))

is p-Borel, and thus the sets

Ei
k = {

x ∈ X: d
(
fi(x), fj (x)

)
� 1/k,∀ j � i

}
areτ -Borel. We claim that the countable family of sets{Ai

n ∩ Ei
k: i, n, k ∈ N} satisfies

Definition 1.3 for f . Fix x ∈ X, ε > 0 and k > 3/ε. There is i ∈ N such that
d(fj (x), f (x)) < 1/2k for every j � i, thusx ∈ Ei

k . Now takeU ∈ τ andn ∈ N such
thatx ∈ Ai

n ∩ U and diam(fi(A
i
n ∩ U)) � ε/3. If y ∈ Ai

n ∩ Ei
k ∩U then

d
(
f (x), f (y)

)
� d

(
f (x), fi(x)

)+ d
(
fi(x), fi(y)

)+ d
(
fi(y), f (y)

)
< ε

which proves the claim. ✷
Remark 2.13. The pointwise limit of a sequence of continuous functions satisfies
Definition 1.3 with a sequence(An) of τ -closed sets.
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Remark 2.14. With the notation of the proof, iff is limit uniformly of the sequence(fn),
then it is easy to see thatf is a p-Borel map with the countable family of Borel sets
(Ai

n)n,i . In particular, this shows that a uniform limit of real Borel measurable maps of
classα is also of classα.

Corollary 2.15. Let (X, τ) be a topological space and(Y, d) a metric space. Then the
smallest family of maps fromX to Y which contains the continuous maps and is closed by
pointwise limits of sequences is composed ofp-Borel maps.

The following results show thatp-Borel maps preserve some good properties of
measures. All the measures will be supposed to be positive and finite.

Definition 2.16. A Borel measureµ is said to be smooth if for every family(Uα) of open
sets there is a countable sets of indexes(αn) such that

µ

(⋃
α

Uα

)
= µ

( ∞⋃
n=1

Uαn

)
.

A Borel measureµ is said to be a Radon measure if for every Borel setA ⊂ X and every
ε > 0 we can find a compact setK ⊂ A such that

µ(A) < µ(K) + ε.

Theorem 2.17. Let f :X → Y bep-Borel. If µ is a smooth Borel measure onX then the
image measuref (µ) is smooth onY .

Proof. Suppose thatf is p-Borel with with some sequence(An) of subsets ofX. Let
(Vi)i∈I a family of open sets inY . Reasoning as in the proof of Theorem 2.3, for every
indexi ∈ I and everyn ∈ N there is a open setUn,i in X such that

f−1(Vi) =
∞⋃
n=1

An ∩Un,i .

For every fixedn ∈ N consider the family(Un,i)i∈I of open sets inX. Sinceµ is smooth
we can take a countable subfamilyIn ⊂ I such that

µ

(⋃
i∈I

Un,i

)
= µ

(⋃
i∈In

Un,i

)
thus

µ

(
An ∩

⋃
i∈I

Un,i

)
= µ

(
An ∩

⋃
i∈In

Un,i

)
and we deduce that

µ

( ∞⋃
n=1

⋃
i∈I

An ∩ Un,i

)
= µ

( ∞⋃
n=1

⋃
i∈In

An ∩ Un,i

)
.



M. Raja / Topology and its Applications 123 (2002) 267–282 273

TakingI0 =⋃∞
n=1 In we obtain

f (µ)

(⋃
i∈I

Vi

)
= f (µ)

(⋃
i∈I0

Vi

)
and thusf (µ) is smooth. ✷
Theorem 2.18. Let f :X → Y bep-Borel. For every regular measureµ onX and every
ε > 0 there is a closed setF ⊂ X with µ(F) > µ(X) − ε such thatf restricted toF is
continuous. Moreover, ifµ is Radon the closed setF can be chosen compact.

Proof. Without loss of generality we can suppose thatµ(X) = 1. Letτ be the topology on
X and suppose thatf is p-Borel with some sequence(An) of subsets ofX. Fixedε > 0,
for everyn ∈ N takeτ -closed setsFn ⊂ An andF ′

n ⊂ X \An such that

µ
(
Fn ∪ F ′

n

)
> 1− 2−nε.

TakeF = ⋂∞
n=1(Fn ∪ F ′

n). Then we have thatF is a τ -closed set withµ(K) > 1 − ε.
By construction, the topologiesτ and top(τ, {An: n ∈ N}) coincide onF . Sincef is
continuous for the topology top(τ, {An: n ∈ N}), thenf is τ -continuous when restricted to
F . Whenµ is Radon, the setF can be made compact just takenFn andF ′

n compact. ✷
Definition 2.19. It is said thatf is Lusin µ-measurable if for everyε > 0 there is a
compact setK ⊂ X with µ(X \ K) < ε such thatf |K is continuous.

Corollary 2.20. A p-Borel mapf :X → Y is Lusin µ-measurable for every Radon
measureµ onX. In particular the image measuref (µ) onY is Radon.

The sets of a topological space(X, τ) which are measurable for every Radon measure are
called universally measurable. The family of all universally measurable subsets of(X, τ),
denoted Univ(X, τ) is aσ -algebra containing the Borel subsets.

Corollary 2.21. LetX be a set andτ2 ⊂ τ1 be topologies onX. If the identity map

I : (X, τ2) → (X, τ1)

is p-Borel, then

Univ(X, τ1) = Univ(X, τ2).

The last result of the section allows us to make continuousp-Borel maps without loss
of certain good properties of the topology. For the proof we shall use the following lemma,
which will also be useful in the last section.

Lemma 2.22. LetX be a set and letC be a class of topologies onX which satisfies these
two properties:

(i) If τ ∈ C andS is τ -closed, thentop(τ, {S}) ∈ C.
(ii) If {τn} ⊂ C is a sequence, thentop({τn: n ∈ N}) ∈ C.
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Then the following holds:
(1) Suppose that(τα) is a transfinite sequence such thatτ1 ∈ C, τα+1 = top(τα, {Fα

n : n ∈
N}) where everyFα

n is τα-closed and ifα a limit ordinal τα = top(τβ : β < α). Then
τγ ∈ C and

τγ = top
(
τ1,
{
Fα
n : n ∈ N, α < γ

})
for every countable ordinalγ . The sets{Fα

n : n ∈ N} are of additive classα in
(X, τ1).

(2) Given τ1 ∈ C and (An) ⊂ Borel(X, τ1) of additive classγ there is a transfinite
sequence(τα)α�γ ⊂ C as in (1) such that everyAn is τγ -open. The sets{Fα

n : n ∈
N, α < γ } are of additive classγ in (X, τ1).

Proof. It is not difficult using transfinite induction.✷
The following result is well known in the context of Polish spaces.

Proposition 2.23. Let (X,d) be a complete metric space,Y a topological space and(fn)

a sequence ofp-Borel maps fromX to Y . Then there is a complete metricd0 on X finer
than d such that everyfn is d0-continuous and the identity mapI : (X,d) → (X,d0) is
p-Borel. In particular,(X,d) and(X,d0) have the same density character.

Proof. Let (An
m)m be a sequence of Borel sets satisfying Definition 1.3 forfn. The class

of completely metrizable topologies finer thand satisfies the hypothesis of Lemma 2.22.
Indeed, ifd1 is a complete metric finer thand andF is d1-closed, then taked2 andd3

complete metrics bounded by 1 defined respectively onF andX \ F . Taked0(x, y) equal
to d1(x, y), d2(x, y) or 1 depending if the pointsx andy lies inF , X \F or different sets
respectively. It is easy to check thatd0 is a complete metric compatible with top(d1, {F }).
This proves condition (i) of Lemma 2.22. To verify condition (ii) of the lemma, suppose
that(dn) is a sequence of complete metrics onX finer thand . It is not difficult to show that
d0 =∑∞

n=1 2−n min{dn,1} is complete metric compatible with top({dn: n ∈ N}). To finish
the proof of the proposition, apply Lemma 2.22 to the countable family(An

m)n,m in order
to get a completely metrizable topologyτγ finer thand which makes everyfn continuous.
The affirmation about the density character is consequence of Proposition 3.6.✷

3. Examples of p-Borel maps

In this section we shall give some sufficient conditions for a map between topological
spaces to bep-Borel. The first and second examples are just trivial remarks.

Example 3.1. Let f :X → Y a map between topological spaces such that there is a
sequence Borel setsAn ⊂ X such thatf |An is continuous andX = ⋃∞

n=1An. Thenf

is p-Borel.
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We call the maps as aboveσ -continuous. In particular, Borel measurable maps with
countable range areσ -continuous, and sop-Borel (if the range is finite, we have the simple
maps). When the spaceY is metric, it is possible to show that ap-Borel mapf :X → Y is
uniform limit of a sequence ofσ -continuous maps.

Example 3.2. Let f :X → Y a Borel measurable map. Suppose thatf (X) has a countable
network of relatively Borel sets. Thenf is p-Borel.

It is well known that ifX is a Polish space,Y metrizable space andf :X → Y a Borel
measurable map, thenf (X) is separable. Thus we have the following.

Corollary 3.3. Any Borel measurable map from a Polish space into a metric space isp-
Borel.

In a complete metric space a subset is called analytic if it can be obtained by Souslin’s
operation applied to closed sets. This notion of analytic subset coincides with the classical
one if the metric space is separable. An indexed family{Hi: i ∈ I } is saidσ -discretely
decomposable if for eachi ∈ I there is a decompositionHi = ⋃∞

n=1Hi,n such that the
family {Hi,n: i ∈ I } is discrete for everyn ∈ N. A deep result of Hansell [6] allows us to
remove the separability hypothesis from the metric case.

Theorem 3.4 (Hansell).Let X be a complete metric space. Then every disjoint family
with the property that arbitrary unions of sets from the family are analytic isσ -discretely
decomposable.

The following is a reformulation of Hansell’s result about the existence ofσ -discrete
bases for Borel measurable map between metric spaces.

Example 3.5. If X is a complete metric space andY is metrizable, then every Borel map
of bounded classf :X → Y is p-Borel.

Proof. Suppose thatf is of classα. Let
⋃∞

n=1 Bn a basis ofY where everyBn is disjoint.
Sincef is Borel measurable,f −1(Bn) satisfy the hypothesis of the theorem above, so
it is σ -discretely decomposable. For everyV ∈ Bn put f −1(V ) =⋃∞

m=1H(m,V ) where
{H(m,V ): V ∈ Bm} is discrete. Define

A(n,m) =
⋃

V∈Bn

f −1(V ) ∩H(m,V ).

A discrete union of sets of additive classα is also of classα (see [10]), in particular, the
setsA(n,m) are Borel. It is easy to check thatf has propertyp with the countable family
{A(n,m): n,m ∈ N}, thusf is p-Borel. ✷

Fleissner’s Axiom (see [4]) implies that every disjoint family in a metric space with
the property that arbitrary unions of sets from the family are analytic isσ -discretely
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decomposable. Assuming this, the proof of Example 3.5 shows that every Borel map of
bounded class between metric spaces isp-Borel.

Proposition 3.6. Let f :X → Y be ap-Borel map between topological spaces and let
A ⊂ X be a subset. Ifℵ is a cardinal which bounds the density of all the subsets ofA, the
ℵ bounds the density of all the subsets off (A).

Proof. TakeS ⊂ f (A). We have to construct a dense subset ofS of cardinality not greater
thanℵ. Suppose thatf satisfies Definition 1.3 with a sequence of sets(An) ⊂ X. For every
n ∈ N, letDn be a dense subset ofAn ∩f −1(S) of cardinality not greater thanℵ. We claim
thatf (

⋃∞
n=1Dn) is dense inS. Indeed, letf (x) ∈ S any point. TakeV a neighbourhood

of f (x). There isn ∈ N andU ∈ τ such thatx ∈ An ∩ U andf (An ∩ U) ⊂ V . Since
An ∩ f −1(S) ∩ U is nonempty, it contains points ofDn, and thusV contains points of
f (Dn). ✷

The preceding result implies whenX andY are metrizable that thep-Borel image of
separable subsets are separable.

Example 3.7. Let τ be the usual topology onR and letδ be the discrete topology on
R. Under Martin’s Axiom and the negation of the Continuum Hypothesis there exists a
uncountable subsetX of R such that every subset is a relativeFσ (see [12]). Consequently,
the identity mapI : (X, τ) → (R, δ) is first Borel class but it is notp-Borel.

The following is a topological version of renorming results from [14].

Proposition 3.8. Let (X, τ) and(Y, δ) be topological spaces, and letf :X → Y be a map.
Thenf is p-Borel if and only if there is a Borel measurable real functionh onX such that
δ-limω f (xω) = f (x) for every net(xω) such thatτ -limω xω = x and limω h(xω) = h(x).

Proof. Suppose thatf is p-Borel with a sequence(An). Let χA be the characteristic
function of the setA. Consider the series

h(x) =
∞∑
n=1

3−nχAn(x).

Let (xω) be a net withτ -limω xω = x and limω h(xω) = h(x). We want to show thatδ-
limω f (xω) = x. Firstly, we claim that

lim
ω

χAn(xω) = χAn(x)

for everyn ∈ N. Indeed, consider the mapT : {0,1}N → [0,1] defined byT ((an)
∞
n=1) =∑∞

n=1 3−1an. This map is continuous, from the product topology to the standard one
on [0,1], and one-to-one as a consequence of the inequality 1>

∑∞
n=1 3−n = 2−1. By

compactness, the inverseT −1 :T ({0,1}N) → {0,1}N is continuous. The proof of the claim
follows easily from the continuity of the projections on coordinates. Now, for everyδ-
neighbourhoodV of f (x) there isn andU ∈ τ such thatx ∈ An ∩ U ⊂ V . SinceχAn(xω)
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must be constant forω big enough, we deduce thatxω ∈ An. Also, for ω big enough
xω ∈ U , thusf (xω) ∈ V which shows theδ-convergence of(f (xω)).

To see the converse suppose that there exists such functionh. Let (Bn) be a countable
basis ofR. The condition means that for everyx ∈ X and everyV ∈ δ with f (x) ∈ V , there
is U ∈ τ andn ∈ N, with x ∈ U andh(x) ∈ Bn, such that ify ∈ U andh(y) ∈ Bn, then
f (y) ∈ V . Clearly, this implies thatf is p-Borel with the sequenceAn = F−1(Bn). ✷

In [14] we have studied equivalent conditions on a Banach space for the identity map
I : (X,weak) → (X,‖ · ‖) to be p-Borel. For the sake of completness we include the
following.

Example 3.9. If X is normed space which has an equivalent Kadec norm‖ · ‖, that is, the
norm topology and the weak topology coincide on the unit sphereS‖·‖ = {x ∈ X: ‖x‖ = 1},
then the identity mapI : (X,weak) → (X,‖ · ‖) is p-Borel.

Proof. Using the homogeneity of the norm it is easy to see that if‖ · ‖ is Kadec, then a net
(xω) ⊂ X is norm convergent to a pointx if and only if (xω) converges weakly tox and
limω ‖xω‖ = ‖x‖. Thus the functionh(x) = ‖x‖ satisfies Proposition 3.8.✷

As a consequence we obtain the result of Edgar [2], if a Banach space admits an
equivalent Kadec norm then the weak Borel sets coincide with the norm Borel sets.
An analogous result can be proved for a dual Banach spaceX∗ having aw∗-Kadec
norm, that is, the norm and theweak∗ topologies coincide on the unit sphere. In this
case,I : (X∗,weak∗) → (X∗,‖ · ‖) is p-Borel, and this implies that Univ(X∗,‖ · ‖) =
Univ(X∗,weak∗) by Corollary 2.21. It is well known that for a Banach spaceX, it is
always true that Univ(X,‖ · ‖) = Univ(X,weak). But in the case of a dual Banach space
X∗, a theorem of Edgar [2] states that the identity Univ(X∗,‖ · ‖) = Univ(X∗,weak∗) is
equivalent to the Radon–Nikodym property ofX∗.

4. Absolute Borel spaces

For convenience we introduce the following definition from [14].

Definition 4.1. Let Z be a set,τ1 andτ2 two topologies onZ. We say that a subsetX ⊂ Z

has propertyP(τ1, τ2) with a sequenceAn ⊂ Z of sets, if for everyx ∈ X and everyV ∈ τ1

with x ∈ V , there isn ∈ N andU ∈ τ2 such thatx ∈ An ∩U ⊂ V .

Lemma 4.2. Let X be a set andτ2 ⊂ τ1 two topologies onX. If X hasP(τ1, τ2) with
τ2-Borel sets, then

Borel(X, τ1) = Borel(X, τ2).

Proof. The identity mapI : (X, τ2) → (X, τ1) is p-Borel. ✷
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In order to characterize the absolute Borel completely regular topological spaces we
shall use the notion of̌Cech-complete topological space. The definition ofČech-complete
space that we shall use is in fact a result by Frolik [5]. We prefer this definition because it
is formulated in terms of the topology of the space.

Definition 4.3. A completely regular topological space(X, δ) is said to běCech-complete
if it has a complete sequence of open covers, that is, there areδ-open covers(Sn) of X

such that every filterF in X has a cluster point provided thatF ∩ Sn �= ∅ for everyn ∈ N.

Next lemma is part of Frolik’s characterizations ofČech-complete topological spaces.
The proof uses ideas that come from Sierpinski’s results about completely metrizables
subspaces of a regular topological space (see [9]).

Lemma 4.4. A Čech-complete topological space(X, τ) is a F ∩ Gδ-set in every regular
embedding. Conversely, if(X, τ) is a F ∩ Gδ-set in some compact space, then(X, τ) is
Čech-complete.

Proof. Suppose that(X, τ) is a dense subspace of a regular space(Z, τ̃ ). Let (Sn) be a
complete sequence of open covers ofX. We define for everyn ∈ N the open sets

Gn = {
z ∈ Z: ∃Un,z ∈ τ̃ , z ∈ Un,z,X ∩ Un,z ∈ Sn

}
.

Clearly we have thatX ⊂ Gn for everyn ∈ N. We claim thatX =⋂∞
n=1Gn. Indeed, take

z ∈ ⋂∞
n=1Gn. We have for everyn ∈ N that z ∈ Un,z andX ∩ Un,z ∈ Sn. Let F be the

filter of neighborhoods ofz. The regularity of(Z, τ̃ ) implies that
⋂

U∈F U τ̃ = {z}. By the
density ofX in Z, we have thatF|X is also a filter andX ∩ Un,z ∈ F|X ∩ Sn for every
n ∈ N. Applying thatSn is a complete sequence of covers, we have that

∅ �=
⋂
U∈F

(X ∩ U) τ ⊂ X ∩
⋂
U∈F

U τ̃ .

This implies thatz ∈ X.
Now suppose that(X, τ) is F ∩ Gδ-set in a compact space(Z, τ̃ ). ChangingZ by X τ̃ ,

we may assume without loss of generality thatX is a denseGδ-set inZ. PutX =⋂∞
n=1Gn,

where everyGn is τ̃ -open. For everyn ∈ N defineSn as the collection of the sets of the
form X ∩ U whereU ∈ τ̃ andU τ̃ ⊂ Gn. Every filterF must have a cluster point inZ by
the compactness. IfF ∩ Sn �= ∅ for everyn ∈ N, then the cluster points must belong toGn

for everyn ∈ N, soF has its cluster points inX and this shows that(Sn) is a complete
sequence of open covers ofX. ✷

A well-known consequence is thatF ∩ Gδ subsets ofČech-complete spaces are also
Čech-complete.

Lemma 4.5. The class of̌Cech-complete topologies on some setX which are finer than a
prefixed Hausdorff topology verify the properties of Lemma2.22.
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Proof. Let τ be aČech-complete topology onX. Let F ⊂ X a τ -closed set. Assume that
X is aGδ-set in some compact space(Z, τ̃ ). It is easy to see that the following map

i :X → {0,1} × Z

defined byi(x) = (0, x) if x ∈ F and i(x) = (1, x) if x ∈ X \ F is an embedding ofX
endowed with top(τ, {F }) andi(X) is aF ∩ Gδ-set in the compact space{0,1} × Z, and
thus top(τ, {F }) is aČech-complete topology.

Now suppose that(τn) is a sequence of̌Cech-complete topologies onX. Assume that
there is a Hausdorff topologyτ0 such thatτ0 ⊂ τn for everyn ∈ N. Take a compact space
(Zn, τ̃n) containing(X, τn) as aGδ subspace for eachn ∈ N. Let τ = top({τn: n ∈ N}) and
consider the map

i :X →
∞∏
n=1

Zn

defined byi(x) = (x)∞n=1. It is easy to see thati is an embedding of(X, τ) into a compact
space and

∏∞
n=1X is aGδ subset of

∏∞
n=1Zn. We claim thati(X) is closed in

∏∞
n=1(X, τn).

It is enough to show thati(X) is closed in the coarser topology of
∏∞

n=1(X, τ0). Indeed,
if (xn)

∞
n=1 ∈∏∞

n=1X \ i(X), thenxn1 �= xn2. As τ0 is Hausdorff, takeU1,U2 ∈ τ0 disjoint
neighborhoods ofxn1 andxn2, respectively. Letπn be the projection on thenth coordinate.
It is easy to see thatπ−1

n1
(U1)∩π−1

n2
(U2) is a neighbourhood of(xn)∞n=1 that does not meet

i(X). We have that(X, τ) is homeomorphic to a relatively closed subset of aGδ subset of
a compact space, and thusτ is Čech-complete. ✷

An internal characterization for absolute Borel metrizable spaces in terms of complete
sequences of covers was obtained in [11]. The main result of this section provides
a characterization of those completely regular spaces which are absolute Borel and a
sufficient condition in the regular case.

Theorem 4.6. Let (X, τ) a regular topological space. Consider the following statements:
(i) (X, τ) is absolute Borel.
(ii) (A, τ |A) is absolute Borel for everyA ∈ Borel(X, τ).
(iii) There is aČech-complete topologyδ on X finer thanτ such thatX hasP(δ, τ )

with a sequence(An) of τ -Borel sets.
(iv) There is a complete metricd on X finer thanτ such thatX hasP(d, τ ) with a

sequence(An) of τ -Borel sets.
Then (iv) ⇒ (iii) ⇒ (ii) ⇒ (i). If (X, τ) is completely regular, then(i), (ii) and (iii) are
equivalent. If(X, τ) is metrizable, then all the statements are equivalent.

Moreover, ifγ > 0 is countable ordinal, then(X, τ) is of multiplicative classγ + 1 in
every regular embedding if(for (X, τ) completely regular, if and only if) the sets(An) of
(iii) and(iv) can be taken of additive classγ .

Proof. It is clear that (iv)⇒ (iii) and (ii) ⇒ (i).
(iii) ⇒ (i) Assume that(X, τ) is a subspace of a regular topological space(Z, τ̃ ). Put

An = A′
n ∩ X whereA′

n ∈ Borel(Z, τ̃ ) are of additive classγ . Applying Lemma 2.22,
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there is a transfinite sequence of regular topologies( τ̃α)α�γ with τ̃1 = τ̃ and τ̃α+1 =
top( τ̃α, {Fα

n : n ∈ N}) whereFα
n is τ̃α-closed, and everyA′

n is τ̃γ -open. Sinceδ is stronger
thanτ , the transfinite sequence defined byδ1 = δ, δα+1 = top(δα, {X ∩ Fα

n : n ∈ N}) and
for α a limit ordinal τα = top(τβ : β < α) is made up ofČech-complete topologies by
Lemmas 2.22 and 4.5. We claim thatδγ = τ̃γ |X. Indeed, it is easy to see by induction that
τ̃α|X ⊂ δα for α � γ . In particular,̃τγ |X ⊂ δγ . On the other hand, everyA′

n is τ̃γ -open, and
the inclusionδγ ⊂ τ̃γ |X follows.

We have that(X, τ̃γ |X) is Čech-complete, so by Lemma 4.4,X is aF∩Gδ -set in(Z, τ̃γ ).
Note that ãτγ -open set has additive classγ in (Z, τ̃ ), and thusX has multiplicative class
γ + 1 in (Z, τ̃ ).

(iii) ⇒ (ii) It is enough to see that(A, τ |A) satisfies the condition (iii). Ifδ is a Čech-
complete topology onX such thatX hasP(δ, τ ) with τ -Borel sets, by Lemma 2.22, we can
construct aČech-complete topologyδγ on X such thatA is δγ -open andX hasP(δγ , τ )

with τ -Borel sets. Now(A, δγ |A) is Čech-complete andA hasP(δγ |A, τ |A) with τ |A-
Borel sets.

(i) ⇒ (iii) Consider(X, τ) as subset of itšCech–Stone compactification(βX, τ̃ ). If X is
of multiplicative classγ + 1 in βX then it can be writtenX =⋂∞

n=1Xn where everyXn

is of additive classγ . By Lemma 2.22, there is ǎCech-complete topology onβX obtained
from τ̃ by adding a countable sequence of sets of additive classγ making everyXn open.
ThusX is aGδ-set in aČech-complete space and so it isČech-complete too for that finer
topology.

(i) ⇒ (iv) It is enough to consider(X, τ) into some complete metric space and reasoning
like in (i) ⇒ (iii). ✷

Since any compact space is absolute Borel, we obtain as a corollary that Borel subsets
of a compact space are absolute Borel spaces. We also have the following.

Corollary 4.7. A completely regular topological space is absolute Borel if and only if it is
a Borel subset in itšCech–Stone compactification.

The following extends a result of Oncina [13] about Banach spaces with a countable
cover by sets of local small diameter.

Corollary 4.8. Let (Z, τ ) be a regular topological space. LetX be a subset ofZ such
that there is metricd onX stronger than the restriction ofτ . Suppose thatX hasP(d, τ )

and the closedd-balls areτ -closed inX. If (X,d) is complete, thenX is (F ∩ G)σδ-set in
(Z, τ ).

Proof. Assume thatX hasP(d, τ ) with a sequence(An). We claim thatX hasP(d, τ )

with (An
τ ). Fix x ∈ A. Takeε > 0. There existsAn andU ∈ τ such thatx ∈ An ∩ U ⊂

B(x, ε/2). Thus

x ∈ An
τ ∩ U ⊂ An ∩ U τ ⊂ B(x, ε/2) τ ⊂ B(x, ε).
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Since closed sets are of first additive class, by applying Theorem 4.6 we deduce thatX is
a subset of the second multiplicative class ofZ, that is, a(F ∩ G)σδ subset. ✷

An example where the above Corollary can be applied is a Banach space having an
equivalent Kadec norm. Following result appears in [3].

Corollary 4.9 (Schachermayer).If X is a Banach space having an equivalent Kadec norm,
then(X,weak) is an absolute Borel space. In particular,X is weak∗-(F ∩G)σδ-set inX∗∗.

Notice that if a Banach spaceX is a weak∗-Borel subset in its bidualX∗∗, then(X,w)

is absolute Borel. Indeed,(X∗∗,w∗) is absolute Borel because it isσ -compact.
We can get as corollaries some classic results, see Kuratowski [10]. The first one tell us

that the Borel subsets of complete metric spaces are absolute Borel spaces.

Corollary 4.10 (Sierpinski).LetX be a metrizable space. ThenX is Borel subset in every
embedding into a regular space if and only ifX is homeomorphic to a Borel subset of a
complete metric space.

Lemma 4.11. Let (X,d) be a Polish space and letτ be a coarser Hausdorff topology on
X. ThenX hasP(d, τ ) with τ -Borel sets. In particular,(X, τ) is an absolute Borel space.

Proof. Sinced has a countable basis, it is enough to prove that anyd-open subset isτ -
Borel. Observe that thed-open andd-closed subsets can be regarded as continuous images
from polish spaces to(X, τ), so they are Souslin subsets. By the Separation Theorem [1,
IX §6], disjoint Souslin subsets in a Hausdorff space can be separeted by a Borel subset.
In particular, ad-open subset ofX must beτ -Borel. ✷
Corollary 4.12 (Lusin–Souslin).Let X be a Polish space,Z a regular space and let
f :X → Z be a one-to-onep-Borel map. Thenf (A) is a Borel set inZ for every Borel
subsetA ofX. If Z is metrizable, it is enough to askf to be a Borel measurable one-to-one
map to get the same conclusion.

Proof. Since any Borel subset ofX is a Polish space with some stronger topology,
Proposition 2.23, we only have to prove thatf (X) is Borel. Again by Proposition 2.23,
we can take a metricd such that(X,d) is complete separable andf is continuous. Ifτ is
the topology ofZ, thenf−1(τ ) is a regular topology onX coarser thand . By Lemma 4.11,
X has P(d,f −1(τ )) with Borel sets. Now apply Theorem 4.6 to the embedding of
(X,f−1(τ )) into (Z, τ ) to get the conclusion. IfZ is metrizable, thenf is p-Borel by
Example 3.3. ✷

We shall say that an one-to-one map between topological spaces is ap-Borel
isomorphism if the map and its inverse arep-Borel. Theorem 4.6 says that a topological
space is absolute Borel if there is a particularp-Borel isomorphism to ǎCech-complete
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space. The following result shows that the property of being absolute Borel is preserved
underp-Borel isomorphism.

Theorem 4.13. A topological space is absolute Borel if it isp-Borel isomorphic to an
absolute Borel space.

Proof. Let f :X → Y be ap-Borel isomorphism between topological spaces, and assume
that (X, τ) is absolute Borel. Suppose thatf has satisfies Definition 1.3 with a sequence
(An) of τ -Borel sets. By Theorem 4.6 there is aČech complete topologyδ on X finer
thanτ such thatX hasI : (X, δ) → (X, τ) is p-Borel. By Lemma 2.22 we may assume
that everyAn is δ-open. The topologyf (δ) on Y is Čech-complete and statement (iii) of
Theorem 4.6 is verified, soY is an absolute Borel space.✷
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