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Abstract 

We examine search algorithms in games with incomplete information, formalking a best defence 
model of such games based on the assumptions typically made when incomplete information 
problems are analysed in expert texts. We show that equilibrium point strategies for optimal play 
exist for this model, and define an algorithm capable of computing such strategies. Using this 
algorithm as a reference we then analyse search architectures that have been proposed for the 
incomplete information game of Bridge. These architectures select strategies by analysing some 
statistically significant collection of complete information sub-games. Our model allows us to 
clearly state the limitations of such architectures in producing expert analysis, and to precisely 
formalise and distinguish the problems that lead to sub-optimality. We illustrate these problems 
with simple game trees and with actual play situations from Bridge itself. @ 1998 Elsevier 
Science B.V. 
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1. Introduction 

In games with incomplete information, the actual “state of the world” is unknown; 
for example, some playing pieces may be hidden, some of the playing area may not 
be visible, or the outcome of some moves may not be known. For such games, find- 
ing the optimal strategy is typically NP-hard [4] and thus a heuristic approach is 

often required for timely play. An example of an incomplete information game for 
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which good heuristics have yet to be found is Contract Bridge; a history of aca- 

demic research on the game [ 5,10,11,17,22,24,27,31,32] and a proliferation of 

more than two dozen commercial software packages [ 19,331 have failed to produce 
solutions or systems capable of competing with even good novice human players 

[ 12,231. 

The common approaches to automating Bridge card play involve reducing the search 
space by either considering independently the sub-problems of the card combinations 
in individual suits (first suggested in [ 3]), or by removing the uncertainty over in- 
complete information altogether and considering instead the situation where all the 

players reveal their cards to each other [2,36]. The latter of these approaches has 
prompted some researchers, for example Levy [ 201 and Ginsberg [ 14,151, to suggest 
Bridge-playing architectures that work by examining a statistically significant number 
of the worlds that are consistent with a player’s knowledge. They speculate that in 

any given situation the use of search reduction techniques (such as alpha-beta prun- 

ing and transposition tables) would enable the minimax value of each possible action 
to be established in each of these randomly generated sub-problems, and the most 
promising overall action to be chosen by statistical evaluation based on these values. 

Recently, Matt Ginsberg has produced what he claims to be a “whole new standard” 
[35] of Bridge-playing program with an architecture based on such a sampling ap- 

proach. 
Our interest in incomplete information games arose from our own work in designing 

a system to play Bridge [ 8, lo], and in particular from investigating why this program 
could produce analyses different from those found in expert texts. To identify the rea- 

sons for these discrepancies, we found that we first had to formalise the actual model 
used by human players when analysing Bridge; surprisingly, we could find no explicit 
descriptions of such a model in the literature. Thus, the best defence model of an in- 
complete information game-which we formalised by considering the way that experts 

analyse problems in authoritative Bridge texts-is the first contribution of this paper. We 
go on to show that an equilibrium point for the two players’ strategies is well-defined 
for the best defence model, and describe an algorithm, which we call exhaustive strat- 
egy minimisation, that identifies such equilibrium points. We then use our best defence 

formalisation as a tool to investigate the characteristics of sampling algorithms against 

“best defence”. 
Whilst others have noted before that computer Bridge architectures may not “play 

the same way as humans”, without a formal model of the assumptions made by experts 
when solving such problems the qualitative differences in play have been difficult to 

describe. Our formalisation allows us to identify the two problems that can afflict 
sampling algorithms, independently of how many worlds they consider. We demonstrate 

these problems both theoretically, using simple game trees, and in practice, using actual 

play situations from Bridge itself. 
The first of these problems, which we name strategy fusion, affects any algorithm 

that attempts to combine strategies for particular worlds to produce an optimal strategy 
across all (or some statistically significant subset) of worlds. The flaw in this approach 
occurs because of the property of incomplete information games that the exact state 

of the world at any given point of play may not be known to a player. This imposes 
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a constraint on a player’s strategy that he must behave the same way in all possible 
worlds at such points; a constraint typically broken when combining strategies designed 
for individual worlds. 

The second problem, which we name non-locality, is more subtle than strategy fusion, 
and we take care to distinguish clearly between the two. Non-locality occurs because an 

opponent with some knowledge of the actual world state can use this to his advantage. 
In particular, such an opponent can direct play towards the portions of the game tree 

that are most favoutable in the worlds he expects. Thus, some positions in the game 
may never be reached under particular worlds (as the opponent may always find better 
alternatives). In general, determining what nodes in the search space will be reached 
under what worlds requires examining the entire tree of possibilities (since each move an 
opponent makes gives him the chance to select different portions of the tree in different 

worlds). Tree search algorithms, however, are generally “compositional” in the sense 
that they determine the best play at an internal node of a search space by analysing 
only the subtree of that node. Such algorithms (e.g., minimaxing) will not take into 

account the possibility that under some worlds the play may never actually reach the 
node they are examining. When selecting moves, they may therefore make mistakes 

by erroneously considering payoffs in world states that are in fact of no consequence 
at that position in the tree. As in strategy fusion, the problem is one of handling the 
notion of strategy incorrectly. An algorithm that locally evaluates subtrees considers 

only partial strategies; the complete strategies for the entire game would also have to 
specify what actions would have been taken in all other nodes outside that portion of 

the tree. 
Thus, we demonstrate exactly how the analysis of sampling algorithms will differ 

from that of experts. Whether this shortcoming is actually sufficient to undermine their 

practical playing potential is an issue for empirical testing (such as that apparently being 
carried out by Matt Ginsberg [ 131). Our interest is in clarifying the issues involved in 
finding solutions to incomplete information games, and in understanding the nature of 

the models implicitly used by different approaches. 
We proceed as follows. In Section 2 we introduce preliminary concepts from game 

theory and apply these in Section 3 to games with incomplete information; in particular 

we show how the common model of Bridge play against best defence can be formalised 
within this framework. We follow this in Section 4 by giving an algorithm for computing 
optimal strategies in our best defence model. The second half of the paper then considers 
Bridge in some detail: in Section 5 we present sampling architectures for Bridge card 
play based on the minimax algorithm, and in Sections 6 and 7 we use our game 
theoretic framework to identify why such architectures yield suboptimal results against 
best defence. Finally, Section 8 draws conclusions. 

2. Game theory background 

In this section we introduce definitions and terminology necessary to make the paper 
self-contained. This is based largely on the work of von Neumann and Morgenstern [ 341 
and Lute and Raiffa [ 211. 
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2.1. The extensive and the normal forms of two-player games 

In its extensive form, a game is a finite tree in which each node corresponds to a 

move where a selection between the branches is made. Each node is identified as being 
either a personal move or a chance move. Personal moves are made freely by one of the 
players, creatively named “1” and “2”, since we will consider only two-player games. 

Chance moves are decided by some mechanical device (e.g., the shuffling of a pack 

of cards, or the tossing of a coin) that selects a branch in accordance with definite 
probabilities. There is one distinguished node which represents the start of the game. A 

play, a, of the game involves starting at this distinguished node and allowing each of 
the players (or chance) to choose a branch until a leaf node of the tree is reached. The 
value that each player i attaches to the outcome of a play (Y, (i.e., a leaf of the tree), 

is given by a numerical utility function K;( cu). This value is sometimes also called the 
payoff and Ki a payofffunction. 

One complication is that at any particular move a player may not have full knowl- 
edge of the choices made prior to that point in the play. For example, in many card 
games the play begins with the shuffling and dealing of a pack of cards into hands, 
which are not visible to all players. Also, the outcome of personal moves may be 
hidden from the other player(s), such as when a card is played face down. At any 

move, then, it is possible that a player will be unsure of the actual position of the 
play within the game tree. To precisely formalise the extensive form of a game, there- 
fore, requires the nodes of the tree to be partitioned into sets between which a player 

will not be able to distinguish. We will follow [21] in referring to these sets as in- 

formation sets. We will also mode1 our actual definition on that of [ 21, pp. 39-511, 
requiring the specification of a two-player game in extensive form to include the fol- 

lowing: 
l A finite tree, t, with a distinguished node (the first move in the game). 
l A partition, P(n), of the nodes, n, of the tree into three sets. These sets tell 

which of the two players ( 1 or 2) or chance (0) selects the next move at each 
node. 

l A probability distribution over the branches of each chance move, defined by as- 

signing a probability r(n) to each daughter of a chance node. 
l A refinement of the player partitions into information sets, Z;(n), for each player 

i. Each node, n, at which P(n) = i is classified by Z;(n) into one of the sets of 
nodes (numbered as integers l,2, .) between which player i will not be able to 

distinguish. 
l An identification of corresponding branches for each of the moves in each of the 

information sets. (Since a player cannot distinguish between nodes in an informa- 
tion set, the possible moves will appear the same to him at each node of a set. 
When constructing the tree representation of the extensive form, we must therefore 
indicate which branch at each node of an information set corresponds to the “first” 
possible move, the “second” possible move, and so on. In our diagrams, we will 
assume that this identification is in simple left-right order.) 

. For each player, i, a numerical utility function, K;, defined over the set of end 

points of the game tree. 
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Fig. I. Information sets in the extensive form of a two player game with one chance move. 

Fig. 1 gives an example of the extensive form of a two-player game that starts with a 
chance move (represented by a diamond). This move has five possible outcomes, and 

is followed by a personal move of one of the players (represented by a circle). The 
information set for this player, whatever the outcome of the first chance move, contains 
only one node, i.e., there is no ambiguity over his actual position in the game tree. 

This means that the outcome of the initial chance is known to him. For the second 
player’s moves (represented by squares), however, there are two information sets. This 
is because he is only aware of the outcome of the previous player’s move, and not of 

the outcome of the initial chance move. The actual payoff he will receive (represented 
by the numbers at the leaf nodes) therefore depends on information that is not known 

to him. 
Most games will be represented by a game tree that is too large to enable the ex- 

tensive form to be given in practice. In order to facilitate mathematical analysis it is 
therefore common to work instead with an equivalent formalisation called the normal 
form. This formalisation forces each player, before the game starts, to state in advance 
what choices they would make in any situation that could possibly arise during the 
course of the game. Such a specification forms a strategy. Given the extensive form 
of a game, an easy way to formulate the possible strategies for each player is to as- 

sign a number I,. . , r, to each branch stemming from a node with r branches. A 

strategy for a player with q information sets can then be represented by a q-tuple in 
which each element corresponds to the move to be made in one of the sets. Utilis- 

ing this notion of strategy, a two-person game in normal form is defined by specify- 
ing: 

l two strategy spaces Xl and X2, which are the respective sets from which the two 
players can choose their strategy, and 

l two real-valued payoff functions Ki (xi, ~2) and Kz(xi, x2) that give the utility 
for each player when strategy xi is selected by player i. If there are no chance 

moves in the game, then a given strategy selection (2,) T2) determines a unique 
play of the game, a, and we can define K;(?i ,I?z) = Ki( a). If the game contains 

chance moves then (Zi,Zz) instead impose a probability distribution over all the 
possible plays. If we use prob(a) to denote the probability of play cy occurring 
when (?t,?p) are chosen, the payoff for each player is expressed in terms of the 
mathematical expectation K; (21,222) = C, prob( cr) K; (a). 
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Formulated in this way, the course of a single play of a game first involves the choice 

of a strategy by each player. In non-cooperative games, this choice is made without 
any pre-play communication between the players. The basic theory of non-cooperative 

games is based on the concept of an equilibrium point, due to Nash [25]. This views 

any selection of strategies by each player as being a “solution” to a game whenever 
no single player can individually increase his payoff, or expected payoff, by changing 

his strategy selection. That is, a pair (Z?i,?*) is an equilibrium point if the following 

hold. 

K,(%,~z) 2 Kl(.v,~22) vxi E XI, 

KzC?,,Z22) 2 Kz(%,x2) Vx2 E X2. 
(1) 

A special case, relevant to our domain, is that of zero-sum games, where K1 (XI, x2) + 

K2(xi, x2) = 0, for all XI E Xi, x2 E X2. Under this condition, we can arbitrarily select 
a Ki (we choose KI ) and rewrite ( 1) as 

K,(x,,Z2) f KI(TI,:z) < K,(?I,x~) \JXI E X1,x2 E X2. (2) 

This states that K1 has a saddle point; we consider next when this holds. 

2.2. Minorant and majorant games: the minimax theorem 

Let r represent a non-cooperative, zero-sum, two-player game where the players pick 

their strategies without knowledge of that of their opponent. To analyse such games, 
von Neumann and Morgenstern introduce two variations on r. The first of these, ri, 

is defined so that it agrees with r in every detail except that player 1 must choose x1 
before player 2 chooses x2, so that player 2 makes his choice in full knowledge of the 

particular XI decided on by player 1. Since player 1 is at a disadvantage in this game 
compared to his position in the original game, ri is termed the minorunt game of r. 

The second variation, r2, is the dual whereby player 2 chooses his strategy first; this 
game is termed the mujorunt game of r. 

For these new games, ri and r2, the identification of the optimal strategy is simplified, 

as the “best way of playing” may be given a clear meaning. Let us consider the minorant 
game r,, in which player 1 is the first to select a strategy. For any particular selection, 

Zi, player 2 will choose an x2 to minimise the value of K, (21, x2). Thus, when player 
1 is choosing an xt he can be sure (assuming a competent opponent) that the expected 

outcome of the game is min,, K1 (x1, x2). This formula is a function of xi alone, and 
since player 1 is attempting to maximise his payoff, the best expected outcome he will 

therefore be able to achieve is 

ul = rn~axrn$ K1 (XI ,x2) 

A similar argument shows that if both players play the majorant game well, the 
resulting payoff that can be expected by player 1 is 

u2 =m$nm~axKi(xi,x2). 
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Von Neumann and Morgenstern show that these values can be used to establish upper 

and lower bounds on the value, u, that player 1 can hope for from a play of r itself. 
This result is then refined to produce a theorem that states that there is a subclass of 
zero-sum two-player games (those with perfect information) for which u1 = u = ~2. This 

is equivalent to writing 

maxminKj(xl,X2) =minmxTxKj(rl,~2), (3) 
XI *2 .Q 

which is in turn equivalent to (2) (i.e., it states that K1 must have a saddle point). The 

form of (3) has led Von Neumann and Morgenstern’s result to be referred to as the 
minimax theorem and it forms the basis of the well-known minimax algorithm suggested 

by Shannon [ 301. 

2.3. Pure and mixed strategies 

The minimax theorem does not hold for all two-player games. To achieve an existence 
theorem for general games, Von Neumann and Morgenstern extend the notion of strategy 

as follows. If the sizes of the sets XI and X2 are m and n respectively, the players, rather 
than choosing an XI and an x2 from these sets, instead specify vectors p = (PI,. . . ,pm) 
and q= (ql,..., q,,) (p;, qi 3 0, C pi = 1, C 4; = 1) where pi gives the probability 

that player 1 will select the ith member of XI as his strategy and q; is the probability 
that player 2 will select the ith member of X2. When the players select their strategies 
in this probabilistic manner, the natural interpretation of the expected outcome is the 
mathematical expectation 

K(p, q) = c c K, (xi, x,i)~iqi. 
,=; j=] 

(4) 

As in the previous section, it is possible to show that for this augmented game, 

the function K has a saddle point. This is a probability theoretic interpretation of the 
previous saddle point theorem, and illustrates that in some games there is a definite 

disadvantage to having your strategy “found out” by the opponent. Using a probability 

vector to select randomly from among a number of possible strategies affords protection 
from exactly such an occurrence. Strategies in this augmented sense are called mixed 

strategies. The strategies of the previous section are a special case of mixed strategies 
in which the probability distribution is a l-point distribution, and are referred to as pure 
strategies. 

2.4. Preliminarity and anterior@ 

Let us consider again the extensive form of a game. If we represent a particular play 

of a game as a sequence of moves MI, M2, M3, . . ., we can define the moves that are 
anterior to some personal move Mk as being any move Mi with i < k. Notice that 
this property is transitive, i.e., if M, is anterior to MA and MA is anterior to M,, then 
M, is anterior to M,. We can also look at the amount of information on the outcome 
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of the anterior moves that is available to the player who is called upon to make move 

Mk. It is possible that this player will know which branch was chosen for each of 
the moves Ml,. . . , kfk-1, but it may also be that he has only partial knowledge, or 

no knowledge at all. The simplest way to describe a player’s state of information at 

move Mk is to form a Set of preliminary moves, P. This set consists of the moves M;, 
for some i E {l,...,k- l}, such that the branch chosen for any of the Mj E p is 

known to the player. but the exact choice made at any of the other anterior moves is 

not. 
The class of games in which preliminarity and anteriority coincide (i.e., where a player 

called upon to make a move is informed about the outcome of all the anterior moves) is 

called perfect information games. We have already seen in Section 2.2 that the minimax 
theorem enables each player’s optimal strategy to be interpreted in a precise way for 

such games. However, in games where anteriority does not imply preliminarity (which 

we call incomplete information games), peculiar features can result. For instance, the 
property of preliminarity need not be transitive, as illustrated by the following example, 
which we quote from [ 34, p. 521: 

Poker: Let M, be the deal of his “hand” to player l-a chance move; MA the 

first bid of player l-a personal move of 1; M, the first (subsequent) bid of 
player 2-a personal move of 2. Then M, is preliminary to MA and MA to M, 

but M, is not preliminary to M, (i.e., 1 makes his first bid knowing his own 
“hand”; 2 makes his first bid knowing I’s (preceding) first bid; but at the same 
time 2 is ignorant of l’s “hand”.) 

This intransitivity of preliminarity involves both players, but it is also possible that 

preliminarity could be intransitive among the personal moves of one particular player. 

Bridge provides an example of this, since although it is played by four players, the rules 
of the game dictate that these players form two teams, which play against each other. 

Again using a description from [ 34, p. 531: 

Bridge is a two-person game, but the two players 1 and 2 do not play it them- 
selves. 1 acts through two representatives A and C and 2 through two repre- 
sentatives B and D. Consider now the representatives of 1, A and C. The rules 
of the game restrict communication, i.e., the exchange of information, between 
them. E.g.: let M, be the deal of his “hand” to A-a chance move; MA the first 

card played by A-a personal move of 1; M, the card played [. . .] by C-a 

personal move of 1. Then M, is preliminary to MA and MA to M, but M, is not 
preliminary to M,. Thus we again have intransitivity, but this time it involves 

only one player. 

Intransitivity of preliminarity raises the possibility of signalling (i.e., the spreading 
of information to other players). In Bridge, players who form one team but cannot 
see each other’s cards will wish to promote this signalling, and an elaborate system of 
conventional signals has been developed to enable this. In Poker, the interest of a player 
lies in preventing this signalling, and this is usually achieved by irregular and seemingly 

illogical behaviour when making a choice. The first of these two types of procedures is 
direct signalling and the second is inverted signalling. 
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3. A model of the game of Bridge 

With the definitions of the previous section behind us, we are now in a position to 

formalise the way in which Bridge is analysed in the expert literature. We first describe 

the game and its characteristics in more detail, and then present formal assumptions 
that model the situation analysed in expert texts. It is the formalisation of this model 

that allows us to meaningfully assess whether any given algorithm will produce correct, 

expert-level results in Bridge (as judged by those found in the literature), and more 
importantly to describe precisely the problems that can lead to sub-optimality. 

3. I. Bridge as a game of incomplete information 

Bridge is a card game played with a deck containing 52 cards, comprised of 4 suits 
(spades 4, hearts 0, diamonds 0, and clubs 4) each containing the 13 cards Ace, 

King, Queen, Jack, 10, . ., 2 (we will sometimes abbreviate the first five of these to 

A, K, Q, J, and T). The game begins with the chance move of shuffling the deck, and 
the cards are then dealt between four players, traditionally named North, South, East 
and West. The players form two teams: North/South against East/West. Card play starts 
when one player lays a card on the table, which all the other players then cover in turn 

(in a clockwise direction) with a card from their own hand. Each round of four cards 
is called a trick, and the winner of one trick becomes the first person to play a card on 
the succeeding round. For the purposes of this paper, the only significant rules are: 

l The first player in a trick can freely choose which card to play from all those 

present in his hand. 
l Subsequent players must play a card of the same suit as the one that started the 

trick, if they hold such a card-if they do not, they can make a free choice from 
among the remaining cards in their hand. 

l The winner of the trick is the player who plays the highest card (ranked by 

A > K > Q > J > 10 > > 2) of the suit led. The only exception to this rule is 

when there is a suit declared as the trump suit; if any trump cards are played, then 
the player playing the highest trump card is the winner. 

In addition, play involves one player-the declarer-having complete control over two 
hands of cards, since his partner-the dumnzy-places his cards on the table for all 
to see, and then takes no further part in the proceedings. For simplicity, our Bridge 
examples will always assume that South is the declarer, so that North is the dummy. 

Analysis of the game of Bridge is extraordinarily complicated. The shuffling and 
dealing of the pack of cards at the start of the game in effect selects one of 52!/13!4 
possible positions for the subsequent play (the order of the cards in a hand does not 
matter-hence the dividing factors). Further, each player can initially see only their own 

hand, so (as we have already seen) preliminarity will be intransitive among the moves 

of the players, giving the opportunity for both direct signalling between partners, and 

inverted signalling to confuse the opponents, A related problem caused by this mis-match 
between the available information is that of predicting an opponent’s beliefs. Korf, for 
example, although not motivated by considering games with incomplete information, 
examined the situation where two players have evaluation functions that are not known 
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to the other [ 181. Such a game can be viewed either as a zero-sum game in which 
the difference in evaluation functions is due to their heuristic nature, or as a non-zero- 
sum game in which the evaluation functions represent the payoffs that each player 

would actually receive, or as an incomplete information game in which the difference 

in evaluation functions is due to the differing information available to each player. 
Korf’s description of this situation uses the common convention of naming the two 

players MAX and MIN. In the context of the previous section where we (arbitrarily) 

chose Kt as the payoff function, MAX will be player 1, since he tries to maximise 
the value of KI. Similarly, MIN will be player 2, since he tries to minimise the value. 

The decision process in a three-level MAX-MIN-MAX tree is described by Korf as 

follows: 

MAX’s decision will be based on what he thinks MIN will do. However, MIN’s 
decision will be based on what he thinks MAX will do two levels down. Thus, 
MAX’s decision is based on what MAX thinks that MIN thinks that MAX will 

do. Therefore, the evaluation function that is applied to each of the frontier nodes 
is MAX’s model of MIN’s model of MAX’s evaluation function, and the nodes 
with the maximum values are backed up to the MAX nodes directly above the 
frontier. Next, MAX’s model of MIN’s evaluation is applied to the backed up 

nodes, and the nodes with the minimum values are backed up to the MIN nodes 
directly below the root. Finally, MAX’s evaluation is applied to these backed up 

nodes to determine the final move. 

In Bridge, then, we can identify the following four related complications over perfect 
information games. First, the intransitivity of preliminarity between the moves of the 
two sides will lead us to encounter the problem of ever-deepening levels of reasoning 
about the opposing side’s beliefs. Second, as we saw in Section 2.4, this intransitivity 
also makes inverted signalling possible, making it advantageous for one side to attempt 
to prevent the spread of information about their position to the other side. Third, there is 

the opportunity for direct signailing, in which the two players who form the opposition 
play to increase each other’s information of their side’s situation. Finally, the absence 

of perfect information will entail solutions that are mixed strategies, since using a pure 
strategy will typically give the opponents an advantage if they can “find out” what 
this strategy is. The probabilistic nature of mixed strategies prevents the opponents from 

knowing which pure strategy will be followed, even if they are aware of the exact mixed 

strategy that will be used. 

3.2. The best defence model of an incomplete information game 

The problems outlined above present serious difficulties when combined with game 
trees the size of those generated in Bridge (a lower bound of 1.05 x IO” can be 
established on the expected number of legal play sequences even when all the cards 
are revealed [ 81). Yet authors of Bridge texts are able to analyse play situations and 
to recommend “optimal” strategies for dealing with any given problem. Here, we will 
examine how this is done, formalising a best defence model of incomplete information 
games that captures the assumptions implicitly made in such expert analyses. 
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AKQJ9 
Tricks required: 5 

Strategy: Cash top honors in the 

hope of dropping the Ten 

Chance of success: 87% 

xx 

Fig. 2. Third card combination from the Bridge Encyclopedia. 

3.2. I. Expert analysis of Bridge 
As a representative example of expert texts we will look at the authoritative Bridge 

Encyclopedia [ 11, published by the American Contract Bridge League. This reference 
devotes 56 pages to presenting the best strategies (with percentage chances of success) 

for different card combinations. In Fig. 2, we reproduce one of these examples. 
In this game situation we are concerned with only the cards of one suit and North 

is the dummy, so that South plays both the North and South hands. The remaining 

cards-the Ten plus five low cards (x)-may be held by either East or West, who see 
just their own hand and the dummy. The Encyclopedia’s solution of “Cashing the top 

honours” describes the process of playing, one by one, the Ace, King, Queen and Jack. 
When this is done, the Ten will “drop” (be played by either East and West) unless the 
player who holds it also has at least four low cards. 

To verify the Encyclopedia’s solution, we can proceed as follows. First, we enumerate 
all the possible ways to distribute the unseen cards between East and West. To make 
this process more efficient, we will refer to these possibilities collectively according to 

the number of cards held by the two players. For example, a l-5 split of the cards 
describes the six possible ways to give just one of the unseen cards to West, and the 

remainder to East. 
For each of the possible splits we then check whether the Encyclopedia’s strategy 

succeeds. For example, the strategy will fail if the unseen cards are split O-6, since East 

will be able to play a low card on each of the Ace, King, Queen, and Jack, and then 
beat the 9 with the Ten. If the cards are split I-5, on the other hand, playing the four 
high cards may succeed, but only if the Ten is the single card that is held by West. 
Note that special care is required in the case of a 6-O split. In this situation, East will 
have to play a card from another suit when the Ace is cashed. The situation in this suit 

then effectively becomes one of complete information, since it is known that West must 
hold the remaining cards. Under these conditions, winning a trick with the 9 can be 
guaranteed by playing the low card from the South hand; if West doesn’t play the Ten, 
the 9 will win the trick, but if West does play the Ten it will be beaten by the King, 
allowing the 9 to win a trick later on. 

In the table of Fig. 3 we give, for each possible split of the cards, the probability of 

the split occurring, the number of ways to produce the split, the actual distributions in 
which the Encyclopedia’s strategy succeeds, and the probability of these distributions 
occurring. Summing these probabilities results in the chance of success given in the 
Encyclopedia. 
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Split Probability Total cases Strategy succeeds Contribution 

O-6 0.007 6ce= 1 none 0 
1-5 0.073 %Z, = 6 T-xxxxx (l/6) * 0.073 = 0.012 
2-4 0.242 6c2 = 15 all ( 15/15) * 0.242 = 0.242 
3-3 0.355 6Cj = 20 all (20/20) * 0.355 = 0.355 
4-2 0.242 6c4 = I5 all (15/15) * 0.242 = 0.242 
5-l 0.073 $ = 6 xxxxx-T ( l/6) * 0.073 = 0.012 
6-O 0.007 6C6= 1 Txxxxx- ( l/l) * 0.007 = 0.007 

Total 0.87 

Fig. 3. Verifying the chance of success of the Bridge Encyclopedia solution. 

3.2.2. The best defence model 
The probabilistic analysis of all the strategies listed in the Bridge Encyclopedia can 

be verified in the above way: that is, by examining their outcome under each of the 
possible distributions of the remaining cards. We verified, too, that this was actually 

the technique used when the Encyclopedia’s solutions were originally generated, by 
contacting their author, Eric Crowhurst. According to Crowhurst [6], he solved each 

problem by first using his Bridge expertise to select a small number of promising 
strategies, and then determining their chances of success as we did above: enumerate the 
possible distributions of the remaining cards and analyse the return produced when the 

opponents are allowed to choose their best strategy in each of these perfect information 
situations. Based on this evidence, we formalised the assumptions implicitly made in 

expert analysis of Bridge problems as follows: 

A-I. MIN has perfect information (i.e., preliminarity and anteriority coincide). 

A-II. MIN chooses his strategy after MAX. 

A-III. The strategy adopted by MAX is a pure strategy. 

We call the result of transforming any game by making these modifications its best 
defence form. It should be obvious that A-II follows directly from our discussion above. 

A-I also follows since allowing the opponents to choose the best strategy for each pos- 
sible card distribution in effect assumes that they will always know this distribution. 

Further evidence that the Encyclopedia makes an implicit assumption of complete in- 
formation is that all of the problems are presented only one way around. That is, a card 
combination such as that of Fig. 2 is never presented with South as the dummy and 
North as the hidden hand. From the perspective of East or West, these problems should 
be significantly different, unless we assume that they have complete information. 

Under assumptions A-I and A-II, the optima1 strategies for MAX will in genera1 be 
mixed strategies, since this will afford some degree of protection from his actual moves 
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being completely predicted by MIN. We justify the restriction to pure strategies in A-III 
by the observation that pure strategies form the solutions typically given in expert texts 
(for example, the Encyclopedia only gives pure strategies), and it is this implicit expert 

model that we are trying to capture. However, we should point out that the ability to 

identify the best pure strategies for MAX can in turn be used to generate good mixed 
strategies. For example, the identification of a small number of good (pure) strategies 
for each player makes it feasible to form a matrix of the payoffs produced for each 

possible pair of strategy selections. The vector maximisation problem set up by this 
matrix can be reduced to a set of constrained scalar maximisation problems, which can 
be solved by techniques of mathematical programming. Strategies produced in this way 

would be solutions to the probability theoretic interpretation of the minimax theorem 

introduced in Section 2.3. 

Note that as well as capturing the assumptions made by experts in solving Bridge 
problems, the best defence form is also amenable to formal analysis. A-I cuts the cycle 

of reasoning about beliefs discussed in Section 3.1, since now MIN knows exactly what 

information MAX possesses at any stage of the game, and MIN’s model of MAX’s 
evaluation function will be MAX’s function itself. Further, A-II is the same assumption 
as that made by von Neumann and Morgenstern in reducing a game to its minorant 
form, for which (as we saw in Section 2.2) the outcome can be specified as a function 
of MAX’s strategy only. Finally, A-III enables MAX’s optimal strategy to be found 
from among a finite (although possibly very large) set, in contrast to the set of possible 
mixed strategies. In the next section, we will make use of these properties in discussing 

how the best defence form of a game may be solved. 

4. Solving the best defence model 

In order to use the best defence model to analyse proposed architectures for play 
under incomplete information we now introduce an algorithm that can compute optimal 

solutions relative to the assumptions of the model. We do not suggest this algorithm for 
practical use (although we analyse its complexity in Section 4.5). Rather, this algorithm 
will form the basis for a rigorous evaluation of architectures that have been proposed 
for Bridge card play, allowing us to understand their limitations in producing expert 
analysis, and to formalise the two types of sub-optimality from which they will suffer. 

4.1. Exhaustive strategy minimisation 

As we mentioned in the previous section, assumption A-II (that MIN chooses his 
strategy after MAX) makes the best defence model similar to the minorant form of 
a perfect information game. From Section 2.2, the value to be expected by MAX 
(player 1) in such a game is 

ui =maxminKi(xi,X2). 
x, +: (5) 

For the minorant game, min,, Ki (XI, x2) is a function of xi, so it is easily maximised. 
In the best defence model, however, there is asymmetric information. Specifically, MIN 
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Algorithm esm( r) : Returns optimal strategies for player 1 (MAX) in the best defence, 
extensive form, two-player game r. 

l Form the set of player l’s strategies, S, as q-tuples in which the ith entry represents 
the branch that is chosen at all nodes, n, for which Zi (n) = i. 

l For each s,i E S, calculate lZi = esm( t, s,~). 

l Return the strategy (or strategies) Sj for which E; is maximum. 

Here, the result of esm( t, s) is defined as follows: 

Condition Result 

f is leaf node 

P(node(t)) is 2 

(i.e., MIN to move) 

P(node(t)) is 1 
(i.e., MAX to move) 

P(node(t)) is 0 

(i.e., chance move) 

Ki (t) 

min,,E,srrh(r) esm(ti, s) 

esm( t;, s), where i is the Zt (node(t) ) th element of s 

C,,E.SUhW 7T(nUde(ti))esm(t;,s) 

Fig. 4. The exhaustive strategy minimisation algorithm. 

(player 2) now has perfect information. He therefore always knows his current position 

in the game tree, and for any choice of XI by MAX he can select an optimal x2. MAX, 
on the other hand, is not party to the same information as MIN and will not be able to 
directly identify whether any x2 is optimal for MIN. Specifically, since MAX does not 
have perfect information, there may be moves in the game for which MIN knows the 

outcome but MAX does not. Selection of an optimal x2 will require reasoning about the 
outcome of these moves. 

The algorithm we formulate deals with this problem by identifying (possibly dif- 

ferent) choices of x2 that are optimal under each of the possible outcomes of these 
moves. Essentially, the algorithm directly computes (5) with respect to the best defence 

model: all strategies xi for player 1 (MAX) are enumerated and for each of them 
min,, KI (XI, x2) is separately and exhaustively evaluated by examining each possible 
x2 under each possible outcome of the chance moves. Since this carries out a min- 

imisation operation for each MAX strategy, we call the algorithm exhaustive strategy 
minimisation. 

More concretely, assume that for t a tree, node(t) returns its root node and sub(t) 
computes the set of immediate subtrees of node(t). Fig. 4 then defines exhaustive 
strategy minimisation. 

The assumptions involved in modifying a game into its best defence form are required 
to establish that exhaustive strategy minimisation correctly computes the optimal MAX 

strategy given by (5). First, to be able to actually form a finite set of MAX strategies, S, 
assumption A-III restricting consideration to pure strategies is needed. Second, in fixing 
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a particular s,; E S and calling esm( t, s,i), assumption A-II that MIN selects his strategy 
after MAX is required. Finally, assumption A-I (that MIN has perfect information) is 
used at chance and MIN nodes, since it is only valid to assume that the evaluation of a 
particular node depends just on the subtree of that node if there is no ambiguity over the 
position in the tree. Under these assumptions, it follows by induction on the height of 

game trees t, that for any strategy s for MAX, esm( t, s) computes the minimal payoff to 
which MAX can be restricted by MIN. Therefore, given the top-level maximisation loop, 

the algorithm returns the optimal strategy for MAX and thus correctly computes (5). 

4.2. An example 

To illustrate exhaustive strategy minimisation, we will consider again the example of 

Fig. I. Let us interpret this diagram under the common convention that nodes where it 
is MAX’s turn to move are represented as squares, and those where it is MIN’s turn are 
represented as circles. MAX therefore has two information sets, with two possible moves 

in each, allowing him four strategies. These strategies can be identified by the tuples 
( 1, I), ( 1,2), (2, I), and (2,2). Let us assume that the “lower” of the information sets 

in Fig. 1 is the set “I”, and the “upper” is the set “2”: the tuple (I ,l) corresponds to 

selecting the left-hand branch at every MAX node; ( 1,2) corresponds to choosing the 
left-hand branch at all the MAX nodes in the lower set and the right-hand branch in the 

“upper” set, and so on. 
In (5), the result of each of MAX’s possible strategies is found by minimising over 

all the possible responses by MIN. The esm(r) algorithm models this by calculating 
esm( t, s) for each possible MAX strategy, s. Let us consider how this will function for 

the strategy ( 1, 1). The original call to the esm( t, s) algorithm will examine the root of 
the tree, find it to be a chance node, and make recursive calls on each of the subtrees. 
Each of these subtrees has a MIN node at the root, so further recursive calls will then 
be made on each of their subtrees. The roots of these trees are now MAX nodes, so 

the branch to select is recovered from the strategy under consideration, and found to 
be branch 1. Further recursive calls on the subtrees along these branches encounter leaf 

nodes, at which point the payoffs are returned. These payoffs are then passed back up 
the tree. At the MIN nodes, the minimum of the subtree evaluations is returned. This 
process is depicted in Fig. 5, which shows that the strategy ( I, 1) will lead to a payoff 

of 0 under each outcome of the chance move except the third. If the outcomes of the 
chance move are all equally likely, then, the evaluation of the strategy (1, 1) is l/5. 

Examining the remaining strategies in the same way shows that the strategy (1,2) 
leads to a payoff of 1 in just the first two of the outcomes of the chance move, strategy 
(2,l) leads to a payoff of I in just the final two outcomes, and strategy (2,2) always 
produces a payoff of 0. If we assume equally likely outcomes for the chance move, the 
two strategies which maximise (5) are therefore (1,2) and (2,l). 

4.3. Comparison with standard minimaxing 

The exhaustive strategy minimisation algorithm should not be confused with mini- 
maxing, which correctly produces the game-theoretic value of any finite tree in which 
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0 1 0 1 1 0 1 0 1 

Fig. 5. MAX’s expected payoffs when selecting strategy ( I, 1). 

Algorithm mm(r): Take the following actions, depending on t. 

Condition Result 

t is leaf node 

P(node(t)) is 2 

(i.e., MIN to move) 

P(node(t)) is I 
(i.e., MAX to move) 

P(node(t)) is 0 

(i.e., chance move) 

KI(~) 

mm,E.sub(r) mm( ti> 

maxI,Esuh(t) mm(h) 

C,,EWhW T(flUdt?(ti))TWiZ(ti) 

Fig. 6. Simple adaptation of the minimax algorithm to best defence, two-player, extensive form games. 

the players have perfect information. For comparison. in Fig. 6 we give a formalisation 
of the minimax algorithm on games in extensive form. 

Notice that, where the esm( r) algorithm explicitly manipulates strategies by passing 

them as arguments and analysing them, the mm(r) algorithm builds a MAX strategy 
for each of the possible outcomes of the chance moves by determining a course of 
action for each MAX node on the basis of the subtree with the largest minimax value. 
It should be clear that this approach will always produce an evaluation that is greater 

than or equal to the maximum E,i produced by the esm(r) algorithm. To see this, 
consider any MAX node (the only node at which the actions of the mm(r) and 
esm( r) algorithms essentially differ). At these nodes, the mm(r) algorithm selects the 
maximum subtree value to back up through the tree, whereas the esm( t, si) algorithm 
must select the branch determined by s,j. The evaluation produced by the mm(T) 
algorithm can therefore never be less than that produced by esm( r). 

The differences between the two algorithms can be summarised as follows: 
( I) mm(r) does nof respect the constraint imposed by information sets. That is, 

it does not always choose the same branch at nodes that belong to the same 
information set. 
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WI 1 0 0 1 

w2 1 0 0 1 

w3 1 0 1 0 

w4 0 1 1 0 

w5 0 1 1 0 

Fig. 7. Flattened tree of MIN and MAX moves in a domain with five worlds. 

(2) mm(T) commits to one branch selection at each MAX node, whereas esm(r) 
examines the result of each possible strategy. mm(r) therefore risks incomplete- 

ness. 
In Sections 6 and 7 we show that these differences cause difficulties in games with 

incomplete information. Specifically, we will show that the first leads to the problem of 
strategy fusion, and the second leads to the phenomenon of non-locality. 

4.4. Possible worlds 

Let us say that in a tree that contains chance nodes, each possible pure strategy for 

player 0 (chance) defines a world state, or more simply a world, in which the play takes 
place. For example, the tree of Fig. 1 has just one chance move, which has five possible 
outcomes. Therefore, there are five possible chance strategies and five corresponding 

possible worlds. 
We will use the notion of possible worlds to visualise the extensive form of a game 

in a more compact manner. In particular, we will consider cases, such as Fig. 1, where 

the one chance node occurs at the root of the game tree, and where the subtrees in 
each possible world have the same shape (i.e., the same node and branching patterns). 
In such situations the possible worlds can be represented in the vertical dimension as 
differing payoffs at the leaf nodes, rather than in the horizontal dimension using different 
subtrees for each world. Fig. 7 shows how the tree of Fig. 1 can be represented if we 

refer to the possible outcomes (left to right) of the initial chance move as the worlds 

wi, ~2, ws, ~4, and wg. 
One part of the game definition that is obscured in this modified form of presentation 

is the information sets. However, this information is easily recovered by allowing the 

players to make their branch selections at each node conditional on the world state. 
For example, in Fig. 7, the MIN node is the result of identifying together five nodes 
in distinct information sets, whereas the two MAX nodes each identify together five 



104 1. Frank. D. Bnsin/Artijicial Intelligence 100 (1998) 87-123 

nodes from the same information set. A MIN strategy must therefore allow different 

branch choices at each MIN node under each world and a MAX strategy must specify 

the branches to be chosen at each MAX node under all worlds. 
Allowing a different choice of branch at each MIN node in every world effectively 

gives MIN perfect information, as in our assumption A-I about the best defence model. 
MAX, on the other hand, can only assign probabilities to the possible outcomes of the 

chance move, and must make the same move at each MAX node under every world. 

We will call the extensive form trees presented and interpreted in this way jkttened 

trees. We will use such simplified trees in the remainder of this paper to compactly and 
simply present the extensive form of games that start with a single chance move. 

Note that in general it will not be possible to represent game trees in Bridge in a 
flattened form, even though they will always have just one chance move at the top of 

the tree. This chance move will determine a world, but the possible plays under each of 
these worlds will not in general be the same. For example, MAX will only be able to 
play a given card, such as the Ah, in worlds where he was actually dealt the card to 

begin with. Thus, the subtrees in each world are different and cannot be “flattened” as 

described above. The introduction of the flattened form is simply a presentational device 
to allow simple game trees in extensive form to be presented more easily. 

4.5. The complexity of exhaustive strategy minimisation 

We have stated that the purpose of defining exhaustive strategy minimisation is to form 

a basis for investigating the characteristics of other architectures. That it is probably not 

a practical algorithm itself can be seen by examining its complexity. 
Exhaustive strategy minimisation incorporates a top-level loop that examines the set of 

all possible MAX strategies, S. We will therefore investigate the algorithm’s complexity 
by considering the size of this set. For simplicity, we do this by looking at the type of 

flattened trees we introduced in the previous section, using the complete binary tree of 
Fig. 8 as an example. Recall that this tree represents a game where MIN has perfect 
information, but where MAX never knows the outcome of the one chance move that 
occurs at the start. Each MAX node corresponds to a set of nodes that come from a 

single information set. Here, we have numbered the MAX nodes in the order in which 
they would be encountered during a pre-order traversal of the tree. We will use this 
numbering to construct 5-tuples that correspond to the possible strategies in the game 
by virtue of the ith element representing the choice to be made at the node numbered i 

(effectively, the ith information set). 
Let us consider MAX’s possible branch selections. In the strategies where MAX 

initially selects the left-hand branch at the root of the tree, play is directed to the left- 

hand MIN node. Since we do not know which branch will be selected at this node, we 
must now specify branch selections throughout both its subtrees. Continuing to examine 
the left-most branch first, we encounter MAX node 2 and then MAX node 3, where we 
will assume that we initially again select the left-hand branch. It should be clear that by 
selecting the left-hand branches at these two nodes, we will in fact complete a strategy 
for the game; once the left-hand branch has been selected at the root of the tree, it is 
no longer necessary to specify branch selections for nodes 4 and 5. We will indicate 
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Fig. 8. Complete binary tree of MIN and MAX moves. 

such superfluous branch selections by an underscore. The strategy we have generated by 

always selecting the left-most branch, then, is (1, 1, 1, _, _); overall, the set of possible 

strategies is: 

Left-hand branch at root 

(1,l. I,-,-) 

(1,2,1,-.-I 
( I,11 2, -> -> 
( I12,2, -, -1 

Right-hand branch at root 

(2, -, -, 1, 1) 
(Z-,-,2, I> 
(2. -, -, 1,2) 
(2, -,-, 2,2) 

In general trees, the number of actual strategies in a game is bounded by the number 
of possible n-tuples. As we have seen above, when encountering a MAX node, any one 
of the branches may be selected. However, at nodes that are moves of another player, 
MAX will have to cater for all of the possible branches that may be chosen. Thus, for 
a given tree, t, the total number of strategies g(t) is given by the following: 

c g(ti) if MAX is to move at the root of t, 
t,Esuh( t) 

g(t) = 

I 

l-I g(t;> if another player is to move at the root node of t, 
r,E.suh(t) 

1 if t is a leaf node. 

For complete b-ary trees that alternate between the moves of MAX and MIN this formula 
can be written as a standard recurrence relation. As the addition of an extra layer of 
MIN nodes to the leaves of a tree does not alter the number of MAX strategies present, 
we will write this recurrence as a function of the number of MAX levels, n, in a tree. 
For a b-ary tree with a MAX node at the root, then, we can write the number of MAX 
strategies, g,, as 
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b ifn= I, 
g11 = 

b(g,,_l)” if tl > 2, 

which has the solution 

g, = b’““-“/‘“-1’ 

For the example above where n = 2, and b = 2 this formula gives 8 strategies, as 
expected. For trees with a MIN node at the root, we can solve a similar recurrence to 

produce the formula 

g 
II 

= bb(h”-I)/+1) 

For b-ary trees in general, then, the number of strategies that must be examined is 
doubly exponential in the number of MAX levels that the tree contains. Further, all 
of these strategies are examined in each of the possible worlds. Thus, the exhaustive 

strategy minimisation algorithm will require too much computation to be applied to 
all but the smallest of game trees. However, note that the algorithm given provides 

only an upper bound to the complexity of this problem. We do not know if there 
is a more efficient way of finding the optimal strategy; however, as we will show 

in the following sections, minimaxing, and algorithms based on it, are not a substi- 

tute. 

5. Bridge architectures based on standard minimaxing 

In the remainder of this paper we use our model of best defence in Bridge to examine 
other algorithms for strategy selection, in particular the technique, mentioned in the 
Introduction, of simplifying the task of card play by solving instead the easier problem 
where all the players reveal their cards to each other. Since the perfect knowledge 

situation created by this act is akin to the opponents placing their cards on the table in 
the same manner as the dummy, this scenario is often described as double-dummy Bridge. 
Below, we present the double-dummy architectures proposed by both Levy and Ginsberg 
[ 14, 15,201. In the following sections, we then use our framework to demonstrate why 
such approaches produce suboptimal results and to formalise two general problems that 

can afflict search algorithms in games with incomplete information. Thus, the question 
that motivates us is not “How well will such algorithms play in practice?’ but the stiffer 
“How will the solutions produced by such algorithms compare against the solutions 

found by experts?” 

Repeated minimaxing 

The first person to explicitly propose the use of a double-dummy solver as the basis 
for a program to play Bridge appears to have been Levy 1201. In the paper “The 

Million Pound Bridge Program”, he is confident that this kind of program could win 

the I million pound prize offered by former Bridge World Champion, Zia Mahmood, to 
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trees of legal moves in world W, 

Fig. 9. The minimax values, ei,, of each move Mi under world Wj. 

the designers of a computer player that could defeat him. More recently, Matt Ginsberg 
has produced what he claims to be a “whole new standard” of Bridge-playing program 

with an architecture based on this principle [ 351. 
Let us describe Levy’s algorithm by considering the general problem of selecting 

MAX’s next move in an arbitrary incomplete information game. Suppose that, for some 

move under consideration, the set of worlds that are consistent with the outcomes of 
the previous (anterior) moves is given by W. Let us also say that it is possible to 
choose an n such that when we randomly generate n members, WI,. . . , w, of W, we 
have sufficient computing resources to find the minimax value of the current (complete 
information) game tree under each of these worlds. If there are m possible moves, 

MI,. . . > M,?,, to choose between and we use e;; to denote the minimax value of the 
ith possible move under world w,i, the situation in this world will be as depicted in 

Fig. 9. 

Levy’s proposal was that each legal move, M,, could be given a score based on its 
expected payoff. In the context of Fig. 9, Levy’s score can be expressed as the scoring 
function, f: 

f(M;) = ~e;.iP~h(w.i) 
.j= I 

Selecting a move is achieved by actually using the minimax algorithm to generate the 
values of the eiis, and determining the M, for which the value of f( Mi) is greatest. Since 

this technique relies on repeated applications of the minimax algorithm to problems with 
perfect information, we will refer to it as repeated minimaxing, and to the limiting case 
where every possible world is examined as exhaustive minimaxing. 

Of course, other possible definitions for the scoring function f can be envisaged, 
and indeed Ginsberg’s notion of selecting “the play that works best on average” [ 141 
suggests the following alternative: 
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where k ranges from 1 to m, and 2 is an infix function that equals 1 if both sides are 
equal, and 0 otherwise (that is, a move is given a score of 1 for each world in which it 
is the best, or equal best, alternative). Another possibility (particularly in Bridge, where 
the objective is usually to win at least a certain number of tricks) is to only consider 

moves that guarantee a result at least as large as some minimum value, e, say. That is, 

However, more important than the choice of the scoring function in our current context is 

the answer to the more fundamental question of whether Levy is justified in speculating 
that this kind of architecture is the key to playing the cards “perfectly” (Levy’s quotes). 

Below we show that no possible scoring function can work optimally. 

6. How repeated minimaxing fails: strategy fusion 

The repeated minimaxing architecture described above is based on looking at a rep- 
resentative sample of possible distributions of outstanding cards and using them to 
evaluate the best strategy. We use our framework to show that against best defence this 
may fail, i.e., suboptimal strategies may be returned. Indeed, we show that even an 
exhaustive minimaxing algorithm, examining all the possible distributions, may fail to 

select the correct strategy. Although our discussion is driven by the problems experi- 
enced by repeated minimaxing, we also show that any algorithm which shares specific 

characteristics with minimaxing will experience the same difficulties. We use examples 

from Bridge to show how such sub-optimal algorithms lead to improper play in real 

games. 
Let us return to the flattened version of the game tree we first introduced in Section 2, 

this time labelling the nodes and adding one extra possible path, as shown by the nodes 
d, e, and f in Fig. 10. If MAX picks the left-hand branch at node d, he will encounter 
the tree with four possible strategies that we have already examined in Section 4. 
Alternatively, he may select the right-hand branch, which leads to a subtree in which 
no further MAX choices are necessary. Thus, the extra branch increases the number of 
possible MAX strategies by one. Since we have already seen that none of the strategies 
in the left-hand subtree give a payoff of 1 in more than two worlds, MAX’s best option 

at the root of the tree, guaranteeing a return of 1 under every world, is to select the 
right-hand branch. 

However, using the standard minimax algorithm under any single world, the two 
MIN nodes a and e will always have a minimax value of 1 (since in any single 
world MAX can always choose a branch with a payoff of 1 at nodes b, c and f). 
Applying repeated minimaxing to the root of the tree then, irrespective of the scoring 

function used, must assign both the left-hand branch and the right-hand branch the 
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Fig. IO. A tree of MIN and MAX choices that is mis-analysed by exhaustive minimaxing. 

same score. Thus, repeated minimaxing will perform no better than making a random 

choice between the two moves, even in the limiting case of exhaustive minimaxing. 
Furthermore, reducing the number of worlds in which the right-hand branch gives a 
payoff of 1 can produce situations in which repeated minimaxing will usually select the 
incorrect move, and indeed where exhaustive minimaxing will always select incorrectly. 

For example, consider how exhaustive minimaxing behaves in the situation of Fig. 11 (a), 
where the payoffs on the right-hand branch have been modified so that a payoff of 1 
is achieved in only three worlds. Despite this modification, this branch still represents 
MAX’s best move at the root of the tree, under the assumption that all the worlds are 

equally likely. For exhaustive minimaxing, however, it is the other branch that will be 
selected by any of the scoring functions of Section 5, as the left-hand MIN node has a 
minimax value of 1 in all five worlds, whereas the right-hand node has a value of 1 in 
just three. (Repeated minimaxing may pick the correct branch, but only if it does not 

examine either of the worlds WI and w2 and then makes a fortunate guess). Any sensible 
scoring function will never lead exhaustive minimaxing to select the right-hand branch 

in this situation, as it clearly cannot be rational behaviour, given a set of alternatives 
to choose between, to prefer an option whose evaluation is always less than or equal 
to that of one of the others. To see that no possible scoring function can cope with all 
such situations, consider Fig. I I (b). To an exhaustive minimaxing algorithm, this tree 
will be indistinguishable from that of Fig. 11 (a), as the minimax values of the MIN 
nodes in each are the same under every world. However, in Fig. 11 (a) the best move 
is the right-hand branch, and in Fig. 11 (b) the best move is the left-hand branch. Any 
given scoring function will therefore either make the correct choice in just one of these 
situations or will be unable to distinguish the best move in either case. 
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Fig. II. Two trees with the best initial move marked in bold. 

The source of the difficulty that repeated minimaxing experiences on these trees lies 
in a crucial deviation it makes from the exhaustive strategy minimisation algorithm we 
presented in Section 4. Recall that for each world that it considers, exhaustive strategy 
minimisation examines the result of every possible strategy. Repeated minimaxing, on 

the other hand, uses the minimax algorithm to find the best strategy in a number of 
worlds. As we pointed out in Section 4.3, using minimaxing in this way does not respect 

the constraint imposed by information sets: it allows difSerent strategies to be chosen 
in different worlds. Collecting the minimax values of these strategies and assuming 

that they represent the payoffs that can be expected under each world ignores the fact 
that a choice of a particular strategy has to be made. We therefore call this problem 
strategy fusion. As we saw in Section 4.3, allowing the minimax algorithm to ignore 
the constraint imposed by information sets results in evaluations greater than or equal 

to the correct values (e.g., produced by exhaustive strategy minimisation). Repeated 
minimaxing will therefore have the tendency to over-estimate its scoring of any node; 

the strategy fusion effect leads it to believe that it has the luxury of choosing a different 
strategy in each world, instead of the best single strategy across all worlds. For example, 

given perfect information at node b or node c it is easy to determine which branch to 
select to produce a payoff of 1. Node n will therefore always have a minimax value 
of 1 under repeated minimaxing. However, we have already seen that when a single 
strategy selection is enforced, the best that can be achieved is a payoff of 1 in at most 

two worlds. 
Another way to visualise the strategy fusion problem is to note that the repeated 

minimaxing architecture actually models the task of selecting between some number 
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Fig. 12. A Bridge situation requiring a guess over the best strategy. 

of perfect information games each starting with the same chance move. For example, 
imagine that the subtrees rooted on nodes a and e in Fig. 10 represent the MIN and 
MAX moves in a game starting with a chance move that selects one of the possible 

worlds WI,. . . , w5. Which of these games would we rather play given that they have 

perfect information (for both players)? This is the question that exhaustive minimaxing 
answers, and to which repeated minimaxing approximates. It should be clear that such 

an algorithm will always expect to win the game based on the tree of node a and the 
game based on the tree of node e. It should also be clear that the situation modelled by 
this algorithm is different from the original game as well from the model produced by 

our assumptions about best defence, since it involves assumptions about MAX, as well 
as MIN, having perfect information. 

6.1. A Bridge example 

To see an example of strategy fusion in the game of Bridge, consider the situation of 

Fig. 12, where we control both the North and the South hands against two opponents 
who see just their own hand and the North hand, which is the dummy. 

Assume that spades are trumps-recall that cards in the trump suit beat cards in every 
other suit-and that it is South’s turn to play. We are worried about the last outstanding 

trump (the 24) but cannot force the opposition to play this card by leading the Ah 
because currently it is not North’s turn to play, and South has no cards in the suit. 
However, whichever opponent has the last trump must also have at least one diamond 
or one club. Since players must always follow the suit of the card that starts a trick, it is 
therefore possible to win all the remaining tricks by leading the suit that the opponent 
with the last trump holds, winning in the North hand with the Ace of that suit, and then 
clearing the trumps with the Ah. In reality, this choice between leading a diamond or a 
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Fig. 13. A Bridge example where strategy fusion obscures the best strategy. 

club is a guess, but a double-dummy program will find that it is always possible because 

it has perfect knowledge of every world. A Bridge situation where repeated minimaxing 
is misled by strategy fusion can therefore be constructed by adding four cards to the 
above situation, as in Fig. 13. 

In this new situation, let us assume that the lead is now in the North hand, so that 
there are four possible moves: the lead of the Ace of any suit. Choosing either of 
the diamond or the club suits will be (correctly) evaluated by a repeated minimaxing 

algorithm as less than 100% plays, provided the algorithm examines at least one world 
in which the Ace may lose to a trump played by an opponent. Choosing the spade 

suit, on the other hand, will be (correctly) evaluated as a 100% play, since after 
the AI is played there will be no remaining trumps and North’s other Aces will be 
guaranteed winners. However, exhaustive minimaxing will also assess the Ace of hearts 

to be a 100% play. This is because a trump can be played on this card from the 
South hand (winning the trick) and then the North hand re-entered by making a guess 

between diamonds and clubs as described above. This play, of course, is clearly not 
guaranteed to succeed, as would be revealed by an algorithm such as exhaustive strategy 
minimisation, which would separately evaluate the strategies of re-entering the North 
hand with a club or with a diamond, finding that they would each lose under some of 

the possible worlds. 

4.2. Further discussion: a tendency to delay 

To our knowledge, the concept of strategy fusion has not been formalised before. 
Although others have noted that their algorithms may not “play the same way as 

humans”, the absence of a formal model of the assumptions made by experts when 
solving such problems has meant that the qualitative differences in performance have 
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A98x 

Fig. 14. An example card combination used by Ginsberg (again, North is dummy) 

been difficult to describe. Thus, while others have occasionally been aware of some 

peculiarities in performance, a way to formally describe and analyse such occurrences 
has been lacking. By providing such a formalisation, we are able not only to pinpoint 
precise problems such as strategy fusion, but also to make more general characterisa- 
tions, for example concerning the way in which repeated minimaxing will deal with 

decisions. 
To illustrate, consider the card combination of Fig. 14 introduced by Ginsberg. This 

is a single suit situation, and an “x” represents an arbitrary low card (as in the example 
of Section 3.2.1). The essence of this situation is that if the location of the missing 
Queen is known, it will always be possible to win four tricks. To see this, consider 

what happens if we know that West holds the Queen. We start by playing a low card 
from the South hand, and if West plays the Queen we win with the King and cash the 

remaining top cards. If West chooses not to play the Queen, we win with the Jack or 
the Ten (this play is called a jfinesse), and repeat the same procedure on the following 
trick. Similarly, we can always win the trick if we know that East holds the Queen, 

this time by leading low from the North hand. In practice, the location of the Queen 
is unknown and must be guessed; a wrong guess will allow the Queen to defeat the 
finesse. However, a double-dummy program will always see the position of the cards 

and “know” which opponent to play for the card. 
Ginsberg correctly realises this problem, pointing out that a double-dummy program 

will “assume that it can always play KJTx opposite A98x for no losers”. However, 

he also suggests that such an algorithm “won’t mind playing this suit by starting with 
the 9 (for example)“, whereas human players “might play the Ace first to cater to a 

singleton Queen on our right”. To see why this is not the whole story, consider a game 
tree composed of just the node b in Fig. 1.5. 

We have already seen that under any single world the minimax value of node b is 
always 1, and that such nodes can lead to strategy fusion. However, in this new situation 
the node is at the root of the tree of possibilities. If we use repeated minimaxing to 
analyse this tree, the best move is found by determining the branch that has the highest 
score under some function f. This separate examination of each branch removes the 
freedom to select the best strategy for each world, and since neither of these branches 

alone can guarantee a payoff of 1 under every world, there must now be a payoff of 
0 in some worlds. In effect, then, node b represents a point where a choice between 
strategies that win under different worlds has to be made. If such a decision point occurs 

within a game tree, as in Fig. 10, a repeated minimaxing algorithm will deceive itself 
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Fig. IS. A simple tree with just one MAX choice. 

into thinking that it can always make the correct choice. If the decision point occurs 

at the root of the tree as in Fig. 15, however, some of the freedom to choose different 
strategies in different worlds is lost. A repeated minimaxing algorithm will therefore 
have a tendency to delay such decision points wherever possible, as “doing it later” will 
always appear to be better than “doing it now”. Only when it actually reaches a point 
where a choice has to be made will it realise that its previous evaluations were inflated 

by the effects of strategy fusion. 

To see how this is relevant in Ginsberg’s example, observe that in order to be able 
to always win the finesse for the outstanding Queen against either East or West, it is 
necessary to retain both the Ace and the King. Starting a trick by actually playing either 
of these cards, then, will remove this ability, making it impossible to win all the tricks 
in the suit under every world. Repeated minimaxing will therefore correctly evaluate 
the play of the Ace or the King at less than 100% if it selects any of these worlds to 
examine. The play of any other card in the suit, however, leaves the ability to finesse 

against either opponent intact, always resulting in an (over-estimated) evaluation of 
100%. Therefore, it is not that repeated minimaxing is indifferent over the card to lead 

in the suit, as Ginsberg suggests, but rather that it will prefer to play one of the J, T, 9, 
8, x. Indeed, an exhaustive minimaxing algorithm will only choose to play these cards. 

Sometimes the delaying of a crucial decision can be important, as the later an actual 
choice is made, the more information there is likely to be to inform the decision. For 
example, consider the situation in Fig. 16, where the aim is to win all the tricks and 

there is no trump suit. 
The spade suit is identical to that of Ginsberg’s example, so there is again a guess over 

the position of the Queen. However, this is not necessarily a complete guess. As Frank 

[7, p. 2071 points out in a similar example, “by playing out the winners in the other 
three suits, information will be gained which will increase one’s chance of making the 

right play, possibly up to certainty”. It might be hoped that the tendency of a repeated 
minimaxing algorithm to delay such decisions would result in this discovery play being 

made. However, as we have already seen, although the Ace and King are less than 100% 
plays, the lower cards in the suit are not, so a repeated minimaxing algorithm may well 

choose to play the spade suit early. 
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Fig. 16. An example deal in Bridge. South is declarer, North is dummy and there are no trumps 

Wl I 0 0 1 

W2 1 0 0 1 

w3 1 0 1 0 

w4 0 1 1 0 

% 0 1 1 0 

Fig. 17. Simple tree of MIN and MAX choices in a domain with five possible worlds. 

7. Non-locality (how repeated minimaxing fails again) 

The failure of minimax-like algorithms we address here is more subtle than that of 
strategy fusion and, to our knowledge, has not been studied before. To illustrate it, we 
will refer once more to the flattened version of the tree introduced in Section 2, which 
we repeat in Fig. 17 for ease of reference. 



I16 I. Frank. D. Busin/Art$cinl Intelligence 100 (1998) 87-123 

When actually playing the game represented by this tree, MAX will only ever have to 
make one decision: the selection of a move at either node b or node c (effectively, one 
choice for each information set in the game). Let us again assume equally likely worlds, 

Irrespective of the MAX node at which the play arrives after MIN’s move at the root of 
the tree, repeated minimaxing, using any of the scoring functions from Section 5, will 

usually select the left-hand branch (in the limiting case of exhaustive minimaxing, the 

left-hand branch will always be chosen). Thus, the strategy that will typically be chosen 

by repeated minimaxing, and indeed the one that will always be selected by exhaustive 
minimaxing will be the one we have identified as ( I, 1). However, we have already 
seen in Section 4 that under the assumption of equally likely worlds, the best strategy 
selections are actually ( 1,2) and (2, 1) ! 

The problem here is distinct from that of strategy fusion, and can be traced to 
a different cause: the way in which a branch selection is made at a node on the 
basis of an evaluation only of its direct subtree. The inherent assumption in making a 
branch selection in this way is that the correct move is a function only of the possible 

continuations of the game. In perfect information situations (i.e., where the position 
in the game tree is known), this assumption is justified and the minimax algorithm, 

with its compositional evaluation function, finds optimal strategies. With more than one 

possible world, however, this assumption is no longer valid. This is because a decision 
procedure making this assumption considers only partial strategies at any internal node 
of a tree: the actual strategies themselves would have to specify further choices at other 
MAX nodes in the tree. This is the manifestation of the incompleteness we alluded to 

in Section 4.3. 
To illustrate the discussion here, let us return to the task of selecting a strategy in our 

example tree. If we just analyse the subtree of node b, we see that the left-hand branch 
appears to be the best choice because it produces a payoff of 1 in three out of the 
five possible worlds. In the context of the entire game, however, selecting the left-hand 
branch at node b affects the analysis of node c. Since the left-hand branch at node b 

produces payoffs of 0 in worlds w4 and wg, MIN (who chooses his strategy after MAX 
and has knowledge of the state of the world) will be able to restrict MAX’S payoff to 

0 in these worlds irrespective of MAX’s choice at node c. Under this circumstance, it 
is the right-hand branch that is the best choice at node c, since it offers a payoff of 1 

in two worlds ( w1 and wz), compared to the single payoff of 1 (in world ~3) offered 
by the left-hand branch. Similarly, if we consider making a branch selection at node b 

after choosing a branch at node c, we find that the best selection is no longer the one 

that leads to a payoff of 1 in most worlds. 
In general, the choice of a branch at a given MAX node y1 is not simply a function 

of the payoffs of the paths that contain ~1, but of the payoffs along any path in the tree. 
If MIN can choose a move at an ancestor of n that reduces the payoff (in any world) 
from what MAX would expect by examining n’s direct subtree then the best branch at 
n may change. For example, in the case of Fig. 18, the initial selection of branch a may 
be rendered incorrect if reducing some of the e;,, can result in the maximum value of 

the function f being achieved at a different branch. 
We call this problem of having to consider all other nodes in the tree non-locality. 

TO see that no possible scoring function can cope with the effects of non-locality, 
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Fig. 18. A search process in which the selection of branch N may he rendered incorrect by non-locality. 

consider the examples of Fig. 19. The left-hand subtree is the same in both trees, 
and leads to a MAX payoff of I in just one of the two worlds. However, in one 
tree the best choice is the left-hand branch and in the other it is the right (since 

against a MIN player who knows the actual state of the world, the other strate- 
gies in each tree always give a payoff of 0). No algorithm analysing these MAX 
nodes in isolation will be able to make the correct selection in both situations. Fur- 

ther, non-locality will occur irrespective of the accuracy of the evaluations on which 
node selection is based. For example, in Fig. 18, non-locality would still be possible 

whether the e’s were produced using repeated minimaxing (risking incorrect values 

caused by strategy fusion) or by applying exhaustive strategy minimisation to find 
the results of the optimal strategy for the subtree (therefore producing exact values). 
Thus, non-locality cannot be eradicated by simply replacing the minimax algorithm with 

modified versions, such as average propagation [ 261 or product propagation [ 28,291. 
The back-up rules in such algorithms, when calculating a value to propagate up the 
tree, take into account the value of each subtree at a node. Their use in the re- 

peated minimaxing architecture may therefore reduce the effects of strategy fusion, 
but non-locality will still be present. Also, the very fact that each node contributes 
to the result in such algorithms means that search enhancement techniques such as 
alpha-beta pruning cannot be used to improve efficiency without affecting the values 

computed. 
Non-locality is closely related to the presence of differing levels of information be- 

tween the players of the game. MIN’s ability to lead the play away from a given node 
under certain worlds by selecting branches higher in the tree relies both on his ability to 
choose a strategy after MAX (assumption A-II in our best defence model), and knowl- 
edge of the actual state of the world (which in our examples is perfect knowledge, from 
assumption A-I, but need not be so complete). Given these conditions, non-locality will 
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Fig. 19. Two trees with the best MAX strategy marked in bold. 

arise in any search algorithm that determines the best choice at a node by analysing just 
the node’s subtree. Note that one consequence of this is that non-locality will only occur 

at internal nodes of the search space. Thus, it will only be observed with a repeated 
minimaxing type architecture when a move other than the first in a game is analysed. 

This may explain why the effect has not been formalised before: using partially played 
game situations as test examples is a far less obvious choice than simply examining 

initial game configurations. 
Currently, we are aware of no correct algorithm for identifying optimal strategies 

against best defence other than the exhaustive strategy minimisation algorithm of Sec- 
tion 4. This algorithm overcomes both non-locality and strategy fusion by the simple 
expedient of examining the possible outcomes of each complete strategy separately, but 
has a complexity that is doubly exponential in the number of a player’s moves in the 

game. 2 

7.1. A Bridge example 

We give below an example of non-locality as it can occur in Bridge. Note that it 

is difficult to construct simple examples for the non-specialist in Bridge. The example 
below is, however, representative of the kinds of problems that can arise during actual 

play. 
Consider the situation of Fig. 20, where one trick must be lost because the highest 

remaining card is held by the opposition. For ease of exposition we will assume that the 
possible options are represented using a slightly higher-level representation: rather than 
selecting between possible moves, we will examine applicable tactics [ 8, IO] -operators 

2 Recently we have tested a new algorithm, pclyo~reduction wzinirnuxing 18) that does not suffer from strategy 

fusion and also reduces the occurrence of non-locality. In 191, we have shown that on simple game trees, 

payoff-reduction minimaxing significantly out-performs sampling architectures such as repeated minimaxing. 
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Fig. 20. A Bridge card combination where one trick must be lost. 

that specify not just a card to lead on a trick, but also the card to played by the declarer 

from the third hand, after the first opponent has responded.3 
We will look at the two tactics that succeed in most worlds. The first of these is a 

play that begins by leading the 7 from the North hand. If East plays the Queen straight 
away, declarer plays a low card from the South hand and wins the next two tricks with 
the Jack and the Ten. If East plays the 9, declarer covers with the Ten and is again 

guaranteed two tricks. Finally, if East plays low, declarer again plays a low card from 

the South hand, hoping to find that East also held the 9, thus either forcing out the 
Queen or winning the trick outright. This play is a particular type of finesse (of the 7) 
against East. The other possibility we will examine is a different type of finesse, this 
time of the Jack, against West. This play begins by leading a low card from the South 
hand, intending to play the Jack unless West plays the Queen. Of the eight possible 
ways to split the outstanding cards, the distributions under which each of these tactics 
would produce two tricks are shown in Fig. 21. 

With no further information to guide a choice, then, the most promising of the two 
tactics appears to be the finesse of the Jack. This will fail to win two tricks in only one 
of the eight possible worlds (which is also the least likely), whereas the finesse of the 
7 will fail in two. However, notice that the situation of Fig. 20 can in fact be reached in 

one round of play (each player contributing one card) from the state where the cards 
are initially distributed as in Fig. 22. 

If the declarer does not know the actual distribution of the outstanding cards, his best 
play in this situation is to lead the 6 from the North hand and play low from the South 

hand unless East plays the 9 or one of the King or Queen. Faced with this play, East’s 
best option if he holds the cards shown is to play low with the 5. If he does this, West 
will win the trick with the 9 and the declarer will be restricted to just two tricks in the 

3 Note that Ginsberg suggests a similar representation when discussing the example of Fig. 14. When leading 

a card, he proposes that declarer should “decide in advance” the other card he will play on the trick- 

essentially creating tactics. Within the repeated minimaxing framework, such a representation change has the 

effect of delaying the onset of strategy fusion for one level of search. since instead of choosing between 

individual moves-which are really just partial strategies with only the first step determined-the choice is 

now between options that are partial strategies with the first two steps determined. However, the strategy 

fusion that results from allowing d@w~t completions of these partial strategies in dt&rent worlds will still 

remain beyond this new horizon. Although the use of tactics can indeed “correct” the problems caused by 

strategy fusion in Ginsberg’s example, then. it cannot provide a complete solution unless the “tactics” extend 

to the end of the play, at which point they become complete strategies. 
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Fig. 22. A Bridge example giving rise to non-locality. 

suit. Similarly, if East starts with Kx or Qx, the best option will again be to play low. 
Thus, if the situation of Fig. 20 is encountered as the result of leading the 6 and having 

to beat the King with the Ace, there will be extra information about the lie of the cards. 
Specifically, the cases where East holds the Q5 or the singleton 5 can be ruled out, 

because under these circumstances another branch, higher in the tree, would have been 

chosen by East to restrict the declarer to just two tricks. 
This extra information would have a crucial effect on the situation in Fig. 20. If it 

was known that this position would not be reached under the two distributions where 
East holds the Q5 or the 5, we can see from Fig. 21 that the finesse of the 7 would 
then succeed under all the remaining worlds, whereas the finesse of the Jack would still 

fail in one. The probability of the finesse of the 7 producing two tricks in this scenario 
would therefore be higher than that of the finesse of the J, and the selection made in 

this position would need to be reversed. 

7.2. Estimating the practical significance 

As we mentioned in the Introduction, our interest in Bridge arose from our work on 
a Bridge playing program [ 8, lo], and in particular from coming to an understanding of 
why this program could produce analyses different from those found in expert texts. Our 
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program searches for strategies using a set of tactics like the ones we used to describe 
the Bridge example above. These tactics formalise partial strategies for playing one 
round of cards, and are designed to represent commonly occurring Bridge techniques 

(such as playing a winner, or @essing). The use of tactics restricts the search space 
to the point where, for single-suit problems, all possible tactic combinations can be 

analysed. However, the tactics do not eliminate any optimal strategies from the search 
space, as their composition can be used to represent any of the (textually described) 

strategies found in the Bridge Encyclopedia. Our program solves single-suit problems 
by conducting a bottom-up pass of the tactic search tree, selecting branches at each 
node (under the assumption of equally likely worlds) as indicated in Fig. 18, backing 
up the payoffs in each world of the selected branch. 

We tested this program against solutions from the Bridge Encyclopedia, for simplicity 
restricting attention to the 650 cases where the model strategies were designed to produce 

the goal of obtaining the maximum possible payoff (ignoring, for example, problems 
where the Encyclopedia concentrates on safety plays that attempt to guarantee a lower 
than maximum payoff) [ 81. The program produced sub-optimal strategies in 2 18 cases. 

Hence, non-locality affected 33.5% of the problem set. 4 
We conjecture that one reason for the prevalence of non-locality in these problems is 

that they are very hard: they were designed as an expert reference and contain no trivial 
problems (e.g., where all the top cards are held); hence there is always the opportunity 

for some element of manceuvre. Note, however, that although non-locality appears to be 
a frequent problem, its consequences need not necessarily spell catastrophe for the use 
of local algorithms in practice. In an actual playing situation, a more important question 
than the ability to match expert analysis is the chance that a sub-optimal strategy 
produces a poorer result. For example, in our program the incorrect solutions produce 

the maximum possible payoff with, on average, a probability of 0.07 less than the 

model solution. Hence, if we use the program to play the entire Encyclopedia problem 
set with randomly distributed outstanding cards, the expected number of cases where the 

maximum possible payoff will be missed is just 0.07 * 218 M 15 cases (about 2.3%). 

8. Conclusions 

We have looked at the problem of strategy selection in zero-sum two-player games 
with incomplete information, formalising a best defence model of such games that 

captures the assumptions implicitly used by Bridge experts in analysing play situations. 
We showed that equilibrium point strategies exist for this model and gave an algorithm, 
exhaustive strategy minimisation, capable of computing them. 

The formalisation of an explicit model allowed us to rigorously evaluate other search 
algorithms and to understand their limitations in producing expert analysis of Bridge 
play. Our model allowed us to precisely demonstrate that algorithms based on mini- 

4 More recently, Ginsberg has reported similar findings on complete Bridge deals using a fast repeated 

sampling approach [ IS 1. On a hard test set taken from the Bridge tutoring program Bridge Master [ 161, 

Ginsberg’s program failed to solve 35.6% of the problems 1 I3 1. 
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maxing must return suboptimal results, independently of their evaluation function or 

backup rule. Furthermore, our formalisation of exhaustive strategy minimisation allowed 
us to pinpoint exactly the sources of sub-optimality in repeated minimaxing: strategy 

fusion results from combining different MAX strategies in different possible worlds, and 

non-locality results from examining only partial strategies at internal nodes of a game 
tree. We gave experimental evidence that non-locality occurs often in actual systems. 

While our results provide a clear means of understanding the performance of search 

algorithms against the commonly used mode1 of expert Bridge play, we caution against 
using them to judge the practical merits of systems designed for man-machine play. 

Given the poor complexity of exhaustive strategy minimisation, there may be a real 
cost involved in overcoming the effects of incomplete information that is unacceptable 
in practice. However, we have not yet established a lower bound for the complexity 

of computing equilibrium point strategies for the reduced game model; this remains an 
open-and apparently important-problem for the design of programs that play games 

like Bridge. 
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