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In this paper using KAM theory we investigate the stability nature of the zero
equilibrium of the system of two nonlinear difference equations

Xyy1 = X, + b1y, + f(crx, +c29,) } "

=0,1,...,
Yne1 = X, + byy, + f(c1x, + c2,)

where a;, b;,c;, i =1,2, are real constants and f: R — R is a C* function.
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1. INTRODUCTION

The main goal in this paper is to generalize the results concerning the
stability nature of the zero equilibrium of the systems considered in [2]-[4].
So we consider the system of two nonlinear difference equations

Xn+1 = alxn + blyn +f(clxn + CZyn) = Fl(xn’yn)
Yn+1 = A%y + b2yn +f(clxn + CZyn) = FZ(xn'yn)
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where a;, b;, c;, i = 1,2, are real constants and f: R — R is a C* function

I 1Al

such that
f#0,  f(0)=0,  f(0)=0. (2)
Moreover, the map F = (F,, F,) satisfies the following condition:

“F is an area preserving map with an elliptic fixed point at the origin

and eigenvalues A, A such that AF # 1, k = 3,4.” (H)

In the first proposition of this paper we prove that F satisfies the
condition (H) if and only if

a,b, —a,b, =1, la, + b,| < 2, a, +b, # -1,

(a, —ay)c, = (by — by)cy. )

It is known (see [1-6]) that if F satisfies the condition (H), KAM theory
can be applied to study the stability of the zero equilibrium of (1). In
Proposition 2 we find conditions on a;, b, c;, i = 1,2, and the function f

so that the zero equilibrium of (1) is stable.

2. MAIN RESULTS

We now prove our main results.
In the first proposition we find necessary and sufficient conditions so
that the map F = (F,, F,) satisfies the condition (H).

ProrosITION 1.  Consider the map F = (F,, F,) where F,, F, are defined
in (1) where f: R - R is a C* function such that (2) are satisfied. Then F
satisfies the condition (H) if and only if (3) hold.

Proof. Suppose that F satisfies the condition (H). Then from (2) it is
obvious that the point (0,0) is a fixed point for F. Let, for any x,y € R,

JdF, JF,
x J a, +c,.f" b, +c,f’

DF — y _ 1 1f, 1 2f/ . (4)
JF, JF, a, +c,f by, +c,f

ox ay
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Then, using (2), we can see that the characteristic equation of DF with
x =y = 0 is the following:

X — Ma, +b,) +ab, —a,b, =0. (5)

From the condition (H) we have that (5) has roots A and A where AF # 1,
k = 3,4. Then we have

a;b, —a,b; =1, la, + b,| < 2, a, + b, # —1. (6)

Moreover, since from the condition (H), F is an area preserving map (see
[1D we have for all x,y € R

det DF(x,y) = 1. (7)

Therefore, relations (4), (6), and (7) imply that

f’(u)((al —ay)c, — (by — bz)cl) =0 (8)

for all u € R. Since (2) holds, it is obvious that there exists a u € R such
that f'(u) # 0. Then, from (8),

(ay —ay)c, = (by — by)cy. (9)

Hence from (6) and (9), relations (3) are satisfied.
Suppose now that (3) holds. Then we can easily prove that F satisfies
the condition (H). This completes the proof of the proposition. [

In the following proposition using KAM theory we study the stability of
the zero equilibrium of (1) where (2) and (3) hold.

ProposITION 2. Consider the system of two nonlinear difference equations
(1) where f: R > R is a C* function such that (2) hold and a;, b;, c;,
i = 1,2, are real constants such that (3) are satisfied. Moreover, suppose that

¢, #0 ifb, #b,,

: (10)
¢, #0 ifb, = b,.
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Then the zero equilibrium of (1) is stable if the following conditions are
satisfied:

£7(0) # p(f"(0))?,
c2(2c + 1)5’(“1 - az)

. ifb, # by,
. (2 =c)(c+1)(by = by)a, ' ? (11)
P —cy(1+ 2¢) Y-
[CEBICE) F01= 02
where ¢ = a, + b, and g: R — R is a function such that
g(v) =v?—cv+ 1 (12)

Proof. We may proceed to find the Birkhoff Normal Form of (5) by
using the transforms of KAM theory described in [2].

First Transformation. First we find the matrix P such that
1 . = a; 1
P7AP = diag( A, A), A=(a )

where A, A are the eigenvalues of the matrix 4 which satisfy (12). Since A
satisfies (12), we get
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transforms (1) into the system

a, —a; + A _
un+1=)tun+ﬁf( ,uun+,uvn)
_ , n=0,1,..., (13)
- a, —a; + A _
Un+1 = /\Un + ?f( Mun + M’Un)
where
ci(a;, — A
M=M+02- (14)

Since (2) holds, by writing the Taylor expansion for f( uu, + mv,) about
(0,0) and keeping terms up to order 3, from (13) we take

a, —a; + A
Uy = Aty + —— 7=

A 2 B 3
x5 G+ B+ o+ 0| 4 0,

_ (15)
- a, —a; + A
R

A , B 3
X ?(p,un+;_wn) +E(Mun+ﬁvn) + O,,

where n =0,1,... and 4 = f"(0), B = f"(0).

Second Transformation. In (15) we make the change of variables

un:§n+¢2(§n’nn) +¢3(§n’nn)’ (16)
Uy = My + lpZ(fn’nn) + ¢3(§n’nn)’

with

k
i(€m) = L a0,
e k=23 (17)
h(€,m) =2 akjgj”f]k_j,
j=0
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to obtain
§n+l = Agn + Ay §n2”’ln + 04' Mh+1 = 7‘”’7;1 + aZ gnnnz + 04' (18)
In order to calculate the coefficients a;;, @, we substitute (16), (17),
(18) to (15). Then the resulting equations will show an equality of two
power series in ¢, and 7, whose coefficients can be identified recursively

up to order 3. Hence we get

A(a, —a; + N p?

o - - 1
220 =) (A=)

A(a, —a, + N up
ay = =
(A=A -2

A(ay, —a, + ) ?
Gy = 02 — )

2(A = A (A=)

(a; —a, + Ap ( ,U«ZB)
Uy = — | A(« + a,, ) + — |,
30 TEEN e (azm 2 1) 6 (19)
a4, = arbitrary,

a; —a, — A _ _ —a
ap = ————5 | Api(ay + &) + ARAy

(A=2)

B —2
+Apla,, + rE ,

(a, —a, + )L B
Ooy = ——= — | A( « + a,o ) + — |,
33 (R = N)(A— ) ( 2 M zoM) 6

and

o — Appag(a; —a; + A) + Appdy(a;, —a, + A)
2 A=A A=

Aplay(a, —a; + A)  Afpfay,(a, —a; + A)
+ = + =
A—A A—A

Bu*u(a, — a; + A)
2(A =)

(20)
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We suppose first that b, # b,. Then from (3), (14), and since A satisfies
(12), we get

(“1 - 7\)(‘11 —ay)c,

B b - by
_ cz((al - 7\)(511 —a,) +by(a, —a,) — 1)
a,(b, — b,)
_ cz((al - az)(al - A+ bz) - 1)
a,(b, — b,)
c,((a; —a)A—1
- 2((a21(b1 j)bz) ) (21)
Then relations (19), (20), and (21) imply that
B cla, —ay)x — 117
T T (by - by
( 4% [ (ay—a, + M)((a, — a) A — 1)’
ay(by = by) 2(3 = 1) (A2 = &)
N la, —a; + )\Izl(al —ay)A — 1/
(A-N'(A-1)
. (a, —a; + )\)2((a1 —a,)\ — 1)2
(A= 1)°(1 =)
| laz = @+ NP — ap)A - 1|2)
2(2 = M)’ (7 = 2?)
. B(a, —a, + )\)((ai —a,)A — 1) )
2(r — 1)
Then, for b, # b, we take
c3(g(a, — ay)) [ c,A*(2¢ + 1)g(a, —a
M) - iggbi - bjz - c()(c + 1))i§(1171 - 12?2) A @
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Suppose now that b, = b,. Then using (9) and since from (6), a, # a,,
we have ¢, = 0. So, from (14), it is obvious that

= M (23)

Therefore, from (19), (20), and (23), we get

2
cla, — A
&Ky = —
2 P
2 T\2 2 312
e A | (a; —a; + N)*(a; = A) . la, — a; + Alla, — Al

a | 23— ) (A - ) A= N (-1

(a, —a, + /\)2(a1 - 7\)2 lay, — a, + A’la, — XIZ)
+ 5 + — —
(A=0)(1-2 200 = ) (A =A%)

B(a, —a; + )\)(al - 7\)
2(A =)

Then, since A + A = a, + b,, a, = (a;b, — 1)/b,, we have

R(ay) =

c3b2 c; A%(1 + 2¢) ) (24)

41 —-ab,)\ (2-¢)(1+¢)
Third Transformation. The change of variables
§& =r, tis,, n, =71, —Is,,
transforms (18) into the system
Thy1 = EE(/\)rn - S(/\)sn + rn(rrf + Si)m(QZ)

- sn(r,f + s,f)?s(az),

I(A)r, + R(A)s, +5,(r2 + 52N (ay)

(25)

Sn+1

+ rn(r,f + sﬁ)%(az).
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Let w =y, + y,(r2 + 52), ¥4, v, € R. Then

COS W = €0S ¥, cOS(yy(r7 + 7)) — sinyg sin(yy(rZ + s2))

(1_M+m

T cos v,

3(,2 4 (2 3
[ sty - 2D

30 sin vy,

= C0S ¥ — vy} + s)siny, + O, (26)
Working similarly, we can find
sinw = siny, + y,(r} + 52)cos y, + O,. (27)

We write now (25) into the Birkhoff Normal Form
Fur1| _ [cosw —sinw)[ 7. 0,
(S,,H)_(sinw cos w )(Sn)+(04)' (28)
Then, from (25), (26), (27), and (28), we take

M(ay)
~sin Yo

N(A) =cosyy, 7y = (29)

Hence, since A is a root of (12), and (22), (24), (29) hold, it follows that

C
COS Yo = 7,

2
_ Cg(g(”l —a,))
2V4 — c2ad(b, — b,)°

c,A%*(2¢c + 1) g(a, — a
v, = 2 A%( )8(ay 2) _ Bl if b, # b,,
(2 =c)(c +1)ay(b, = b,)
c3p? c, A%(1 + 2¢
- -2 ( A ) +B|, ifb, =b,.
2V4 — ¢ (1 — ayby) | (2= c)(1 +¢)

(30)
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Since a, —a, € Rand —2 < ¢ < 2 hold, it follows that a, — a, does not
satisfy (12). Hence if (11) is satisfied, from (10) and (30) we get vy,, v, # 0.
Therefore, from Theorem 2.13 of [5], the zero equilibrium of (1) is stable.
This completes the proof of the proposition. ||

Remark 1. We see now that our system (1) includes systems considered
in [2], [3], and [4] and Proposition 2 holds for all of them.

First consider the system in [3]:

a

—2u, — v, +In[———
e o = U (1+(a—1)e”"

>1
)’ 4 , n=0,1,....

Upy1 = Uy

(31)

Then by adding both sides of (31) and setting u, =x,, y, = u, + v,,
f(x) =1In(a/[1 + (a — De*D — [(1 — a)/alx, we take the following sys-
tem:

2a +1
Xn+1 = a xn_yn+f(xn)

3a+1 '
xl’l _yi‘l +f(xn)

n=01,..., (32)

Yn+1 =

which is equivalent to (31). It is obvious that (32) is included in (1) where
a,=Qa+1/a,a,=@Ba+1/a, b,=b,=—1,¢,=1,¢,=0. Wecan
easily prove that (2), (3), and (10) are satisfied. Moreover,

1-a (1-a)2-a)

10 = = (o) =
a(3a + 2)

C(a-1)(2a + 1)’

« (33)

p:

where the constant p is defined in Proposition 2. Therefore, from (33) and
since a # 0, relation (11) is satisfied. Hence, from Proposition 2, the zero
equilibrium of (31) is stable.

Next consider the system defined in [2]:

u,,,= -0, +1In

. B
6,1+E)—|nE ’ }’l=011!"" (34)

Un+1 =Uu,
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where B € (0,%), B8 # 1, and E is the positive solution of the equation
E? — E — B = 0. Working similarly, we can prove that (34) is equivalent to
the system

E+1
xn+1 = E xn _yn +f(xn)

r 1 . n=01,..., (35
Yn+1 = E Xn = Yn +f(xn)

where f(x) = In(e* + B/E) — In E — (1/E)x. It is obvious that (35) is
included in (1) where a, = (E + 1)/E, a, = QE + 1)/E, b, = b, = —1,
¢, =1, ¢, = 0. We can prove that (2), (3), and (10) hold. Furthermore,

E-1 oo (E=1(E-2)
Ez ' f (O)_ E3

E(E +2)
C(QE-1)(E+1)’

f(0) =

(36)

p:

where p is defined in Proposition 2. Then since g8 € (0,%) and 8 # 1,
relations (36) imply that (11) holds and so the zero equilibrium of (34) is
stable.

Finally, consider the system defined in [4]:

Xpp1 =X, —ay, +a(l—e+y,)

n

) =0,1,..., (37
Yn+1 = Xy + (1_a)yn +a(1—eyn +yn) " ( )

where a is a constant, 1 <a <4, a # 2,3. It is obvious that (37) is
included in (1) where @, =a, =1, b, = —a,b,=1—a,¢;,=0,¢, = 1.
We can easily prove that (2), (3), and (10) are satisfied. Moreover,

5—2a
/) =-a,  fU0)=-a, p-

~a(a—3)’ (38)

where p is defined in Proposition 2. Then since a # 2, relations (38) imply
that (11) holds and so the zero equilibrium of (37) is stable.
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