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Retinoic acid (RA) is essential for maintenance of most epithelial tissues. One RA biosynthesis pathway consists
of cellular retinol-binding protein (Crbp), retinol dehydrogenase (Dhrs9/eRoldh), retinal dehydrogenase 1-3
(Aldh1a1-3), and cellular RA-binding protein 2 (Crabp2). Previously, we localized Aldh1a2 and Aldh1a3 to
both epithelial and mesenchymal cells within the hair follicle throughout the hair cycle. This study expands
that observation by examining the complete pathway of RA biosynthesis and signaling via RA receptors a, b, and
g by immunohistochemistry in C57BL/6J mice wax-stripped to initiate and synchronize the cycle. This pathway
of RA biosynthesis and signaling localized to the majority of layers of the hair follicle, sebaceous gland, and
interfollicular epidermis in a hair cycle-dependent manner, suggesting that RA biosynthesis within the hair
follicle is regulated in both a spatial and temporal manner. This localization pattern also revealed insights into
epithelial–mesenchymal interactions and differentiation state differences within the RA biosynthesis and
signaling pathway, as well as novel observations on nuclear versus cytoplasmic localization of Crabp2 and RA
receptors. This complex pattern of RA biosynthesis and signaling identified by immunolocalization suggests
that endogenous RA regulates specific aspects of hair follicle growth, differentiation, and cycling.
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INTRODUCTION
Vitamin A and its derivatives (retinoids) are essential for the
development and maintenance of multiple tissues, including
skin and hair (Wolbach and Howe, 1925; Frazier and Hu,
1931). Retinoic acid (RA) is the active form of vitamin A. The
synthesis of RA from circulating retinol occurs by the action
of two enzyme families (Napoli, 1999). Retinol dehydro-
genases (Roldhs) convert retinol into retinal, whereas retinal
dehydrogenases (Raldh/Aldh1a) convert retinal into RA.
There are several classes of Roldhs but only the short-chain
dehydrogenases/reductases (SDR family), localized on the
endoplasmic reticulum, recognize and oxidize retinol bound
to cellular retinol-binding protein (Crbp, contested gene
name Rbp1) (Napoli, 1999). Because of this feature, these

Roldhs are argued to be the physiological enzymes that
produce RA for hormonal signaling, although other Roldhs
may also contribute. The SDR family member dehydrogenase
reductase 9 (Dhrs9), identified in this laboratory as eRoldh
(Rexer and Ong, 2002) (also known as hRDH-TBE, hRoDH-
E2, (Chetyrkin et al., 2001; Soref et al., 2001; Markova et al.,
2003) is present in the majority of vitamin A-sensitive
epithelial cells (Everts et al., 2005). Currently, there are three
known Raldhs (gene names Aldh1a1–3) found in mice, rat,
and human that convert retinal into RA. Aldh1a2tm1Ipc-null
mice die in utero due to defects in heart development
(Niederreither et al., 1999) and Aldh1a3tm1.1Pcn-null mice die
within 10 hours of birth due to defects in nasal development
(Dupe et al., 2003), implying that they are essential for RA
synthesis. But Aldh1a1tm1Gdu-null mice have no apparent
phenotype (Fan et al., 2003). Although analysis of Aldh1a1,
Aldh1a2, and Aldh1a3 single-, double-, and triple-null mice
revealed a redundant role for Aldh1a1 in eye morphogenesis
(Molotkov et al., 2006), Aldh1a1 may also be involved in the
catabolism of excess retinol (Fan et al., 2003; Molotkov and
Duester, 2003). Two binding proteins, Crbp and cellular RA-
binding protein type II (Crabp2), are also closely associated
with RA synthesis (Bucco et al., 1997; Napoli, 1999). Crbp
acts to chaperone retinol and retinal to retinoid metabolizing
enzymes (Ong et al., 1988; Napoli, 1999), whereas Crabp2
carries RA to the nucleus, where it shuttles RA to RA recep-
tors (Rars) and increases transcriptional efficiency (Dong
et al., 1999; Budhu and Noy, 2002; Sessler and Noy, 2005).
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Three Rars have been described (Rar a (Rara), Rar b ((Rarb),
and Rar g (Rarg)), which bind DNA and regulate transcription
of specific genes in an RA-dependent manner. The binding
of Crabp2 and Rar has only been proven for Rara, but may
also occur with Rarb and/or Rarg. In contrast to Crabp2,
Crabp1 is not directed to the nucleus on RA binding and does
not bind Rars (Dong et al., 1999; Budhu and Noy, 2002).
Crabp1 may be involved in RA catabolism, but this is still
unclear (Boylan and Gudas, 1992; Chen et al., 2003). There-
fore, it can be assumed that expression of these binding
proteins, enzymes, and receptors indicates sites of RA
synthesis and action. This assumption is supported by
similar localization patterns between defects seen in vitamin
A-deficient rat embryos and Aldh1a2- and Aldh1a3-null mice
with immunohistochemical and in situ hybridization locali-
zation patterns of enzymes and binding proteins involved
in RA synthesis (Bavik et al., 1997; Niederreither et al., 1999;
Blentic et al., 2003; Dupe et al., 2003). The expression
pattern of the complete system for RA synthesis and signaling
in the hair follicle and sebaceous gland throughout the hair
cycle has not been defined. Only individual components
of this system were examined by different laboratories and
no integrated understanding of all components has yet been
attempted to our knowledge (Siegenthaler et al., 1984; Billoni
et al., 1997; Reichrath et al., 1997; Markova et al., 2003).
Crbp, Aldh1a1, Aldh1a3, and Crabp2 were found in a screen
of genes altered by the hair cycle, but a detailed analysis of
their location was not performed (Lin et al., 2004). Similar
analysis of the complete system for RA synthesis in numerous
rat epithelial tissues implicated both epithelial and mesench-
ymal cells in the synthesis of RA, which suggests a novel
requirement for the movement of retinal between cell types
(Li et al., 2004; Everts et al., 2005).

The hair cycle proceeds through four main stages: growth
(anagen), regression (catagen), rest (telogen), and release
(exogen). Signaling between epithelial and mesenchymal
cells in the stem cell containing bulge and transiently
proliferating cell containing bulb regions regulates this cycle.
Previously, we reported that Aldh1a2 was expressed in the
bulge region during anagen and early catagen, whereas
Aldh1a3 expression alternates between the mesenchymal
dermal papilla and epithelial precortex in the bulb region
during mid-late anagen (Everts et al., 2004). This study
extends that observation and characterizes the expression of
the complete system for RA biosynthesis and signaling
including Crbp, Dhrs9, Aldh1a1, Aldh1a2, Aldh1a3, Crabp2,
Rara, Rarb, and Rarg during the hair cycle in wax-stripped
C57BL/6J mice. This complete system was expressed in
the majority of layers of the hair follicle, sebaceous gland,
and interfollicular epidermis in a hair cycle-dependent
manner. Components were not always all in the same cell
layer suggesting epithelial–mesenchymal interactions are
important in this tissue as was seen for other epithelial
tissues. In addition, in some sites expression of the RA
synthesis and signaling pathway flowed through different
stages of differentiation, with the most differentiated cells
expressing the final proteins in this pathway –nuclear Crabp2
and Rars.

RESULTS
This study characterized the cell-specific location of all
known components necessary for RA biosynthesis and
signaling in the depilation-induced hair follicle both to
obtain predictions of where endogenous RA fits into the
signaling network that regulates the hair cycle, as well as to
better understand the physiological pathway of RA biosyn-
thesis and signaling. As RA synthesis cannot be measured
directly, we are assuming that presence of enzymes, proteins,
and receptors equates to RA synthesis and signaling based on
similar assumptions made in the embryo during development
(see Introduction). In addition, RA is diffusible and can act
in either the cell where it is produced (autocrine) or in a
neighboring cell (paracrine).

RA biosynthesis enzymes, binding proteins, and receptors
localized to the stem cell niche

The bulge has been shown to contain stem cells that produce
cells for the cycling lower half of the hair follicle (Cotsarelis,
2006). In telogen samples collected immediately after
depilation (day 0), the RA biosynthesis and signaling pathway
was weak or absent, except for localization of Rarb within the
bulge and Rara just outside the bulge (Tables S1 and S2). In
the second cycle of telogen (21–30 days after depilation)
immunoreactivity (IR) of the RA biosynthesis and signaling
system within the bulge was more intense, especially for
Crabp2. During anagen I, Dhrs9, Aldh1a2, Rara, Rarb, and
Rarg localized within the bulge and Rara and Crabp2 were
localized to cells just outside the bulge (Tables S1 and S2).
IR for RA synthesis proteins was greater during anagen II
with the additional weak appearance of Aldh1a1 (Figure 1a,
d, g, m, and p, arrowhead; 1j and m, long arrow). Rarb was
localized to the cytoplasm, whereas Crabp2, Rara, and Rarg
were both cytoplasmic and nuclear-localized. This locali-
zation pattern of RA synthesis and signaling in the stem
cell niche remained relatively constant throughout anagen V,
except Aldh1a3 appeared both within the bulge and,
with greater IR, in the cells outside during anagen IIIb–V
(Table S1). During anagen VI/catagen I the IRs of Dhrs9,
Aldh1a1, Aldh1a2, Aldh1a3, Rara, Rarb, and Rarg were
reduced, whereas Crabp2 localization switched from outside
to within the outer edge of the bulge (Table S1, Figure 3a, d,
e, i, l, m, p, q and t, arrowhead). Crbp IR within the
bulge increased during anagen V then faded through
catagen. Dhrs9 and Rarb localized to the bulge through
catagen IV and then faded. Aldh1a1 and Aldh1a3 were not
seen in the bulge beyond anagen V, whereas Aldh1a2,
Crabp2, Rara, and Rarg remained in the bulge throughout
the hair cycle.

RA biosynthesis enzymes, binding proteins, and receptors
localized to both matrix and dermal papilla cells, as well as
their precursor cells

The bulb is formed in early anagen from epithelial cells that
proliferate and migrate from the bulge stem cells, which
eventually enclose the dermal papilla (Cotsarelis, 2006).
Once in the bulb, these cells are called matrix cells and
are argued to be transiently amplifying cells. During anagen

1594 Journal of Investigative Dermatology (2007), Volume 127

HB Everts et al.
IHC of RA Synthesis/Signaling in Hair Cycle



the mesenchymal connective tissue sheath that surrounds the
bottom portion of the hair follicle proliferates and migrates
into the dermal papilla (Tobin et al., 2003). Rara localized to
the connective tissue sheath surrounding the lower hair
follicle, which peaked during anagen IIIa, dropped during
anagen VI/catagen I, and remained weak through catagen
(Figure 1m–o, data not shown). Rara and Rarg localized in the
dermal papilla throughout the hair cycle with a slight drop
during anagen VI/catagen I (Table S2, Figure 2d, h, l, and p,
arrow, Figure 3q and r). Aldh1a3 appeared in the dermal
papilla in anagen IIIb, peaked during anagen IV, dropped
during anagen VI/catagen I, then was no longer seen (Table
S2, Figure 2b, f, j, and n, arrow; Figure 3i and j). Dhrs9 was
seen in the dermal papilla from anagen I–catagen IV, peaked
during anagen I, II, and IV, then faded during catagen V
(Table S2, Figure 1a and c, Figure 2a, e, i and m, short arrow).
Crabp2 IR appeared in the dermal papilla during anagen IIIa,
peaked during anagen IV, dropped during anagen V, was
weak during catagen I–IV, then faded (S2, Figure 2c, g, k, and
o, arrow; Figure 3m and n). Crbp, Dhrs9, Aldh1a2, Rara,
Rarb, and Rarg were seen in the proliferating and migrating
keratinocytes during early anagen (S1, Figure 1a, g, m, and p,
yellow x). Crabp2 localized to the nucleus of a few of these
cells (Table S1), but only Dhrs9, Rara, Rarb, and Rarg IR were
seen in these cells once they reside in the bulb (matrix cells),
beginning in anagen II and remained present throughout

anagen (Table S2, Figure 1a, c, m, o, p, and r, arrowhead,
Figure 2a–p, arrowhead).

RA biosynthesis enzymes, binding proteins, and receptors
localized to the outer root sheath, companion layer, inner root
sheath, and hair fiber

Dhrs9, Rarb, and Rarg IR were seen in the permanent outer
root sheath (isthmus and infundibular) throughout the hair
cycle, but Crbp, Aldh1a2, Crabp2, and Rara IR were more
variable (Table S1, Figure 1a, d, g, j, m, and p). As the lower
outer root sheath forms, Dhrs9, Aldh1a2, and Rarb appeared
in a gradient with the greatest IR occurring near the bulge
and reduced IR downward as was previously reported for
Aldh1a2 (Everts et al., 2004; Table S1). This pattern remained
throughout the lifespan of these cells, but IR was less during
catagen. But Crabp2 localization within the outer root sheath
was weak or absent from anagen IIIa–IV, increased during
anagen V, became constant and strong during anagen VI/
catagen I–III, formed a gradient upward during catagen IV and
then faded (Table S1, Figure 3m–p). Crbp appeared in the
outer root sheath in a similar pattern as Crabp2, but increased
during anagen IV and remained strong through catagen VI
(Table S1, Figure 3a–d). Rara and Rarg were also present
in the outer root sheath, but localization appeared more
constant (Table S1, Figure 3q–t). Rara also localized to the
connective tissue sheath surrounding the lower hair follicle

a d g j m p

b e h k n q

c f i l o r

Figure 1. Localization of RA biosynthesis and signaling pathway in anagen II hair follicles. Localization of (a–c) Dhrs9, (d–f) Aldh1a1, (g–i) Aldh1a2,

(j–l) Crabp2, (m–o) Rara, and (p–r) Rarb in anagen II hair follicles from C57BL/6J mice that were wax-stripped to induce anagen. For a, d, g, j, m, and p,

bar¼ 25.2 mM, for b, c, e, f, h, i, k, l, n, o, q, and r, bar¼ 10.1 mM. Yellow arrowhead, bulge; yellow diamond, epidermis; yellow X, proliferating keratinocytes;

S, sebocytes; long arrow, cells outside bulge; block arrow, nuclear localization; black arrowhead, matrix; short arrow, dermal papilla.
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with greater IR than the outer root sheath during anagen I–V
(Figure 1m–o, data not shown).

The companion layer was one of the few sites to contain
both Aldh1a2 and Aldh1a3. Aldh1a3 and Rara localized to
the companion layer as soon as this structure developed in
anagen IIIa and remained in a gradient of strong to weaker
IR as this layer differentiated upward through catagen V
(Table S3, Figure 3i–l, q–t, short arrow). Aldh1a3 and Rara
IR decreased during catagen VI–VIII and were localized more
in the isthmus. By contrast, Aldh1a2 was seen to various
degrees during anagen IIIc–catagen VIII with a gradient of
weak to stronger IR as this layer differentiated upward (Table
S3). Rarb was seen in the companion layer during anagen
IIIb–V, and catagen III in a gradient of weak to strong IR,
but this gradient was reversed and more variable during
anagen VI/catagen I–II and catagen IV–VIII. Dhrs9 and
Crabp2 localized to the companion layer with a less apparent
gradient throughout the hair cycle when this layer is present
(Table S3, Figure 3e–h, m–p, short arrow). Crbp was seen in
the companion layer more variably peaking during anagen
VI/catagen I (Table S3, Figure 3a–d, short arrow).

Dhrs9 and Aldh1a3 appeared in the inner root sheath cone
as it formed during anagen IIIa and remained strong through
anagen VI/catagen I, then reduced IR through catagen VIII
(Table S2, Figure 3e–h, i–l, yellow x). Crbp and Crabp2 were
seen in the inner root sheath from anagen IIIc–catagen IV,
peaking during anagen VI/catagen I (Table S2, Figure 3a–d,
m–p, yellow x). Rara and Rarg localized to the inner root
sheath from anagen IIIa–catagen V (Table S2, Figure 3q–t,
yellow x). This system for RA synthesis and signaling showed
a gradient with the strongest IR near the bulb and reduced IR
as these cells differentiated and moved upward. Aldh1a3 IR
was greater in the outer Henle’s layer throughout anagen
(Figure 3k, yellow arrow), whereas Crabp2 IR appeared
strongest in the inner root sheath cuticle during anagen VI/
catagen I only (Figure 3o, fat arrow).

Aldh1a3 localized to the hair fiber with a gradient of strong
IR occurring in the precortex/premedulla and reduced IR as
these cells differentiate and move upward throughout anagen
(Table S2, Figure 2b, f, j, and n and Figure 3i–l, yellow
diamond). Aldh1a3 IR was stronger in the premedulla and
medulla than precortex and cortex. Dhrs9 localized variably to

a e i m

b f j n

c g k o

d h l p

Figure 2. Localization of RA biosynthesis and signaling pathway in the bulb during anagen. Expression of (a, e, i, and m) Dhrs9, (b, f, j, and n) Aldh1a3,

(c, g, k, and o) Crabp2, and (d, h, l, and p) Rara in (a–d) anagen IIIb, (e–h) anagen IIIc, (i–l) anagen IV, and (m–p) anagen V hair follicles from C57BL/6J mice

that were wax-stripped to induce anagen. Bar¼10.1 mM. Yellow diamond, premedulla/precortex; black arrowhead, matrix; black arrow, dermal papilla.
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the precortex and premedulla during anagen IIIa–IV, with a
peak during anagen IIIb, and was seen in the medulla during
anagen IIIb and anagen VI/catagen I–III (Table S2, Figures 2a, e,
i and m, and 3e–h, yellow diamond). Rara and Rarg localized
to the premedulla/precotex and hair fiber in a gradient similar
to Aldh1a3 throughout anagen (Table S2, Figure 2d, h, l and p
and Figure 3q–t, yellow diamond). Crbp localized to the
precortex during anagen V and then expanded IR to also
include the premedulla and hair fiber during anagen VI/
catagen I (Table S2, Figure 3a–d, yellow diamond). Crabp2 IR
was faint or negative in the precortex/premedulla throughout
the hair cycle, but weak and strong in the more differentiated
medulla during anagen V and anagen VI/catagen I, respectively
(Table S2, Figures 2c, g, k, o, and 3m–p, yellow diamond).

RA biosynthesis enzymes, binding proteins, and receptors
localized to the sebaceous gland primarily during early-mid
anagen

Little is known about changes within the sebaceous gland
during the hair cycle, but by observation the size of this gland
changes and is the largest during early anagen (I–IIIa) and
smallest during late anagen and early catagen (Everts HB,
unpublished observation; Paus and Foitzik, 2004). Although
sebaceous gland size does not predict activity (Thody and
Shuster, 1989), different types of cells (undifferentiated,
maturing, mature) could only be distinguished in the larger
sebaceous glands. Undifferentiated cells occur on the entire
periphery of the sebaceous gland but only the ones on the
bottom are thought to differentiate as they migrate upward
(maturing). Mature sebocytes become completely filled with
lipid, die, rupture, and release their contents into the hair canal.
Localization of the RA biosynthesis and signaling pathway

varied in the sebaceous gland during the hair cycle. Throughout
the hair cycle, Dhrs9 IR was strong in the lower, undiffer-
entiated, and early maturing sebocytes with decreased IR as
sebocytes become more differentiated (Table S3, Figure 1b, S).
This gradient was less obvious in the smaller sebaceous glands
and IR was greatest during anagen I–V. The same gradient was
also seen for Aldh1a1, Aldh1a2, Aldh1a3, cytoplasmic Rara,
Rarb, and Rarg, but their IR level changed throughout the cycle
(Table S3, Figure 1e, h, n, and q, S). Aldh1a1 first appeared
during anagen I, peaked during anagen IIIb, and disappeared
during anagen VI/catagen I. Aldh1a2 and Aldh1a3 were only
seen weakly during anagen. Rars were seen in the sebaceous
gland throughout the hair cycle, but peaked during early
anagen. In contrast, Crbp and Crabp2 IR were greater in more
differentiated maturing and mature sebocytes (Table S3, Figure
1k, S). This gradient was present throughout the hair cycle
for Crabp2, but only during anagen I–V for Crbp. In addition,
Crabp2, Rara, and Rarg were localized to the nucleus in the
more-differentiated maturing and mature sebocytes in most
stages with a peak in early anagen and a drop during anagen
VI/catagen I (Table S3, Figure 1k and n, block arrow, Figure 3p
and t). This nuclear localization was highly variable between
hair follicles in the same stage, suggesting that it is a short event
that is not always captured. Crabp2, Rara, and Rarg localized
in both the cytoplasm and nucleus, whereas Rarb was only
localized in the cytoplasm throughout the hair follicle, but was
most obvious in the sebaceous gland.

RA biosynthesis enzymes, binding proteins, and receptors were
present in the epidermis

Throughout the hair cycle, Dhrs9, Aldh1a2, Crabp2, Rara,
Rarb, and Rarg were localized to the cytoplasm of the

a d e h i l
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Figure 3. Localization of RA biosynthesis and signaling pathway in anagen VI/Catagen I hair follicles. Expression of (a–d) Crbp, (e–h) Dhrs9, (i–l) Aldh1a3,

(m–p) Crabp2, and (q–t) Rara in anagen VI/catagen I hair follicles from C57BL/6J mice that were wax-stripped to induce anagen. For a, e, i, m, and q, bar¼45.8mM,

for b–d, f–h, j–l, n–p, and r–t, bar¼10.1mM. Black arrowhead, bulge; yellow diamond, hair fiber; yellow X, IRS; skinny arrow, CL; thick arrow, IRS cuticle.
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epidermis (Table S1, Figure 1a, d, g, j, m, and p, yellow
diamond). Weak Rara and Rarg IR was seen in the nuclei
of the epidermis throughout the hair cycle, whereas Crabp2
was nuclear localized in some follicles during anagen IIIa
and catagen V. Epidermis in mouse skin is thin, but when
two layers could be distinguished Aldh1a2 was stronger in
the basal/spinous layers, whereas Crabp2 was stronger in
the granulosum/corneum layers (Table S1, Figure 1g and j,
yellow diamond). The distinction between spinous and
granulosum layers is hard to make in the mouse.

DISCUSSION
In this report, we show that all components necessary for RA
biosynthesis and signaling are present throughout the hair
follicle in a hair cycle-dependent manner (Figure 4). During
telogen, Rars predominate in the cycling portion of the hair
follicle (Figure 4a, Rars alone¼purple). During anagen RA
synthesis, enzymes and Crabp2 increased (Figure 4b and c,
yellow¼Dhrs9 and Rars, Aldh1a1-3¼orange, Crabp2¼
blue), with the whole system necessary for RA synthesis
and signaling present in several sites (Figure 4b and c, red).
There was a temporary decrease in Aldh1a2 and Rars during
anagen VI/catagen I, which was restored by catagen IV
(Figure 4d and e, pink¼Dhrs9 without Rars, orange¼
Aldh1a3). Crbp IR increased during anagen VI/catagen I
and remained intense through catagen IV (Figure 4d and e,
green). By catagen VII, Dhrs9 and Rars decreased in most of
the cycling portion of the hair follicle (Figure 4f, decrease in
yellow, pink, and purple). On the basis of the assumption
that presence of enzymes, proteins, and receptors equates to
RA synthesis and signaling (see Introduction and Results), this
localization pattern suggests that RA plays many roles in the
cycling hair follicle.

One role of endogenous RA may be to regulate the telogen
to anagen transition. During telogen, the dermal papilla sits
adjacent to the bulge, and signaling between the dermal
papilla and stem cells triggers the initiation of anagen (Stenn
and Paus, 2001; Alonso and Fuchs, 2003; Cotsarelis, 2006).
As Rara can repress transcription in the absence of RA
(Privalsky, 2004), its intense presence in the dermal papilla
and cells outside the bulge along with reduced RA synthesis
enzymes at this site during telogen suggest that RA target
genes may be repressed during telogen, then activated during
anagen when RA synthesis is predicted to occur. As RA can
act by paracrine and/or autocrine mechanisms, it is unclear
whether RA signaling is occurring in the dermal papilla, stem
cells or those cells just outside the bulge (stem cell niche), or
all three as Rars localized to all three cell types. Note that
Crabp2 is not required for RA signaling, but makes it more
efficient when RA levels are low (Dong et al., 1999; Budhu
and Noy, 2002; Sessler and Noy, 2005). Crabp2 may also
be important when RA needs to be protected from degrading
enzymes. Cytochrome p450, family 26, subfamily b, poly-
peptide 1, which degrades RA, localized to the dermis
surrounding hair follicles in the embryo (Abu-Abed et al.,
2002). If the same localization pattern also occurs in the
adult, it suggests that Crabp2 is acting to facilitate RA
signaling in the niche cells during anagen, but not the rest

a Telogen

b Anagen II

c Anagen IVe Catagen IV

f Catagen VII

d Anagen VI/catagen I

Dhrs9, Rars

Crabp2

Dhrs9, Raldhs, Crabp2,
and Rars
Rars

Raldhs (Aldh1as)

Crbps

Dhrs9

Figure 4. Localization patterns of enzymes, binding proteins, and receptors

involved in RA synthesis and signaling throughout the hair cycle. (a) During

telogen, Rars (purple alone, yellow with Dhrs9) predominate with occasional

localization of Dhrs9 (yellow when with Rars, pink alone) and Raldhs (Aldh1as,

orange), whereas Crabp2 (dark blue) localized within the bulge, sebocytes, inner

layer of the outer root sheath, and stratum granulosum/cornium. Dashed and

dotted lines on top of or along with another color indicate that both of those

proteins were present in that layer. For example, the stripes of blue and orange

in the inner layer of the outer root sheath indicate that both Crabp2 and Raldhs

were seen in this layer and the orange highlights in the epidermis indicates

that Raldhs, Dhrs9, and Rars were present in the stratum basalis/spinosum.

(b) During anagen II, localization of Dhrs9 (yellow) and Raldhs (orange dots,

dashes, and highlights) increased. Crabp2 now localized to cells outside the

bulge, whereas Crbp (green dashes) and Raldhs (orange dashes) localized within

the bulge along with Dhrs9 and Rars (yellow). In the sebaceous gland the

complete system for RA synthesis and signaling (redþ green) localized to the

cytoplasm of differentiating cells, whereas Crabp2 and Rars were localized

within their nuclei. (c) By anagen IV the complete system without Crbp (red)

localized to the dermal papilla, lower companion layer, Henle’s layer of the

inner root sheath, as well as differentiating sebocytes. In addition to Crabp2 and

Rars, Raldhs now also localized to cells outside the bulge. (d) During anagen VI/

catagen I, localization of Rars dropped in the matrix, sebocytes, and connective

tissue sheath (pink is Dhrs9 only) and localization of both Rars and Dhrs9

dropped in the dermal papilla and precortex/premedulla, whereas localization

of Crbp and Crabp2 increased throughout the lower cycling hair follicle (green

and dark blue lines, dashes, highlights, and red and green line). Crabp2 now

localized to the outer edge of the bulge along with Dhrs9 and Rars. (e) During

catagen IV, the complete system with Crbp localized to the outer root sheath

and companion layer. The whole system without Rars was seen in the bulge,

whereas Rars localized to cells outside the bulge. IR of Rars increased within

the dermal papilla and sebaceous gland. Crabp2 and Rars also localized to

differentiating sebocyte nuclei. IR of Raldhs dropped in the inner root sheath and

hair fiber. (f) By catagen VII, IR of Dhrs9 and Rars dropped in many places and

Crbp was only localized to the sebaceous gland ducts. This suggests that RA

synthesis and signaling was most active during all of anagen and early catagen.

The increase of Crbp during early catagen may also suggest an increase in retinyl

ester formation (vitamin A storage), as Crbp is also involved in this process.
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of the connective tissue sheath. In other tissues, RA regulates
vitamin D receptor, bone morphogenic protein, and wingless
related mouse mammary tumor virus (Wnt)-signaling path-
ways, which are involved in anagen initiation (Botchkarev
et al., 2001; Merrill et al., 2001; Balmer and Blomhoff, 2002;
Botchkarev and Kishimoto, 2003; Van Mater et al., 2003;
Zhuang et al., 2003; Lo Celso et al., 2004; Morris et al., 2004;
Paus and Foitzik, 2004; Shibamoto et al., 2004; Shimizu and
Morgan, 2004; Tumbar et al., 2004; Lowry et al., 2005).

During early anagen, RA may regulate the proliferation and
migration of both epithelial and mesenchymal cells during
bulb formation. The localization pattern of RA synthesis and
signaling members throughout early anagen in proliferating/
migrating keratinocytes was similar to that of various Wnt-
signaling factors, as well as the Sonic hedgehog receptor
Patched homolog1 (Reddy et al., 2001; Oro and Higgins,
2003; Reddy et al., 2004). RA can have either antagonistic or
synergistic effects on Wnt signaling (Mulholland et al., 2005).
Thus, RA may regulate Wnt signaling during epithelial cell
migration and bulb formation as we suggested from Aldh1a2
localization (Everts et al., 2004). In the connective tissue
sheath Rara may either receive epithelial cell-produced RA or
repress transcription in the absence of RA (Privalsky, 2004).
The lack of Crabp2 and potential presence of cytochrome
p450, family 26, subfamily b, polypeptide 1 (Abu-Abed et al.,
2002, see above) in these cells favors the hypothesis that Rara
represes gene expression. Future studies are needed to
examine the localization patterns of RA-degradative enzymes
and Crabp type 1 throughout the hair cycle, as well as
determine what genes are repressed by unliganded Rara.

Later in anagen, endogenous RA may regulate the
differentiation of all layers of the hair follicle. Matrix cells
are believed to differentiate into the hair fiber as well as the
inner root sheath and companion layer, which enclose and
support the hair fiber (Langbein and Schweizer, 2005, Legue
and Nicolas, 2005). This process is regulated by signaling
between the matrix cells and the mesenchymal dermal
papilla, as well as signaling within these differentiating cells
(Botchkarev and Kishimoto, 2003; Paus and Foitzik, 2004;
Cotsarelis, 2006). The presence of RA synthesis and signaling
molecules in more differentiated layers of the hair follicle,
as well as the bulb, is consistent with a role for RA in
differentiation of three of these layers. RA may be acting in an
autocrine manner in the dermal papilla during anagen IIIc
and IV as the whole system is present (Figure 4c, red), or
during other stages retinal may remain in these matrix cells as
they differentiate and move upward to be converted into RA
by Aldh1a3 later during differentiation. Alternatively, retinal
may be synthesized in the epithelial matrix cells, move to the
mesenchymal dermal papilla to form RA, which then acts
back in the epithelial matrix cell. We found a similar type
of RA biosynthesis and signaling sequence in the rat uterus
(Li et al., 2004). In addition, RA appears to act only in a
paracrine manner during eye development (Molotkov et al.,
2006). Differences in Aldh1a2 and Aldh1a3 localization
between this study and our previous report (Everts et al.,
2004) are due, in part, to the fact that we examined more hair
follicles in this report. In addition, we used a different, more

sensitive, antibody against Aldh1a3 in this study (see
Materials and Methods). Formation of these layers involves
several factors regulated by RA in other tissues, including
Wnt and bone morphogenic protein pathways, and keratins
6a and keratin 75 (also known as K6hf) (Rosenthal et al.,
1992; Millar et al., 1999; Balmer and Blomhoff, 2002;
DasGupta et al., 2002; Li et al., 2003; Paus and Foitzik, 2004;
Smyth et al., 2004; Baron et al., 2005). In addition, Aldh1a3
expression in the hair fiber medulla was reduced in
dominant-negative fibroblast growth factor 7 and fibroblast
growth factor 10 receptor Fgfr2 mice (Schlake, 2005), further
supporting a role for RA in hair medulla differentiation.

In contrast to the differentiation of the companion layer,
inner root sheath, and hair fiber, recent data suggest that the
outer root sheath develops during each cycle by differentia-
tion directly from the bulge stem cells and scattered apoptosis
(Langbein and Schweizer, 2005; Legue and Nicolas, 2005).
The downward gradient of RA synthesis and Rarb from the
bulge region is consistent with a role for endogenous RA
in outer root sheath differentiation. Crabp2-facilitated RA
signaling may regulate this scattered apoptosis, as Crabp2 has
been implicated in apoptosis regulation in mammary cells
(Donato and Noy, 2005).

Another role of endogenous RA may be to regulate
catagen, as there were several changes in the RA synthesis
and signaling localization pattern during the anagen to
catagen transition. These include a switch in Crabp2
localization from the cells outside the bulge (stem cell niche)
to cells within the bulge (stem cells); a decrease in Rara in
the dermal papilla and connective tissue sheath, except those
outside the bulge (stem cell niche); and an increase in Crbp
and Crabp2 within the lower, regressing, follicle. In addition,
exogenous RA given to anagen hair follicles in culture
induced premature catagen via transforming growth factor
b 2 (Foitzik et al., 2005). The switch in Crabp2 localization
may reduce RA signaling in the stem cell niche, whereas
increasing RA signaling within the stem cells. Transforming
growth factor b 2 may be among the stem cell genes altered
by this switch (Morris et al., 2004; Tumbar et al., 2004).
When exogenous RA is given during anagen, it may disrupt
the balance of RA and binding protein in the bulge stem cells
allowing gene expression to occur in the absence of control
by Crabp2, leading to premature catagen. During anagen,
Rara may act to repress transcription within the connec-
tive tissue sheath (see above). The decrease of Rara in the
connective tissue sheath during anagen VI/catagen I would
remove this inhibition and trigger catagen. In addition to
the reported transforming growth factor b2 involvement,
intracellular adhesion molecule 1 may also be involved.
Intracellular adhesion molecule 1 localization was opposite
that of Rara; it activates catagen, it contains a functional
retinoic acid response element, and RA regulates intracellular
adhesion molecule 1 in normal human epidermal keratino-
cytes in culture (Aoudjit et al., 1995; Janssens et al., 1999;
Muller-Rover et al., 2000). When exogenous RA is given
during anagen, it would disrupt the balance of liganded
to unliganded Rara and activate transcription of RA target
genes such as transforming growth factor b 2 and intracellular

www.jidonline.org 1599

HB Everts et al.
IHC of RA Synthesis/Signaling in Hair Cycle



adhesion molecule 1 to induce premature catagen. Crbp
facilitates the conversion of retinol into both RA and retinyl
esters (Napoli, 1999; Ong, 1994). Both RA and retinyl ester
synthesis may be occurring during catagen, as RA synthesis
enzymes are still present, but have not increased. RA and
Crabp2 may be regulating apoptosis (Donato and Noy, 2005),
whereas the excess retinol is diverted to storage. Later in
catagen, RA synthesis and signaling decreased, which may
inhibit cell growth and limit apoptosis.

As retinoids dose dependently regulate sebocyte prolifera-
tion and lipogenesis, and are one of the major forms of
treatment for acne vulgaris, it was not surprising to see the RA
synthesis and signaling pathway localized there (Zouboulis,
2001, 2004). What is novel is the localization pattern, which
suggests that RA synthesis occurs in the less differentiated
sebocytes, but activation of gene expression in the nucleus
occurs in more differentiated sebocytes where little to no RA
synthesis is occurring. These observations have two implica-
tions. The first implication is that RA regulates sebocyte
proliferation from the more differentiated cells. RA may
regulate proliferation via Indian hedgehog, as Indian hedgehog
expression was changed by altered levels of RA in other tissues
and Indian hedgehog is expressed in differentiated sebocytes
but acts on undifferentiated sebocytes (Yoshida et al., 2001;
Wu et al., 2002; Niemann et al., 2003; Bohnsack et al., 2004).

The second implication of this localization pattern is that
translocation of Crabp2 and Rars to the nucleus is a regulated
process. In cultured cells, Crabp2 translocates to the nucleus
within minutes of RA addition and binding of RA to Crabp2
reveals a nuclear localization signal (Dong et al., 1999;
Budhu and Noy, 2002; Sessler and Noy, 2005). Crabp2 can
also bind Rara, channeling RA from Crabp2 to Rara, and
increase the efficiency of RA-induced transcription (Delva
et al., 1999; Budhu and Noy, 2002; Donato and Noy, 2005).
Our study confirms the nuclear localization of Crabp2 in a
whole animal, but more importantly suggests that in the
whole animal Crabp2 requires more than just RA for nuclear
localization. What keeps Crabp2 and Rars from the nucleus
in less differentiated sebocytes as RA is presumably present?
What then triggers nuclear translocation in differentiated
sebocytes? In the testis, nuclear localization of Rara and
activation of a retinoic acid response element reporter gene
were inhibited by follicle-stimulating hormone, via protein
kinase A, and peroxisome proliferators, and stimulated by
protein kinase C (Dufour and Kim, 1999; Braun et al., 2000,
2002; Dufour et al., 2003). In addition, using green fluores-
cent protein labeling, several other nuclear steroid receptors
were found to shuttle between the nucleus and cytoplasm
(Kawata, 2001). RA and Rars may also act in the cytoplasm
(Everts and Berdanier, 2002; Canon et al., 2004; Rochette-
Egly, 2005). Additional studies are required to determine
what regulates the nuclear localization of Crabp2 and Rars in
the hair follicle and sebaceous gland and what role, if any,
RA and Rars have within the cytoplasm.

Endogenous RA may also regulate epidermal differentiation
and epidermal permeability barrier function. RA regu-
lates several genes in keratinocytes including the differentia-
tion markers transglutaminase, involucrin, filaggrin, keratin 6a,

and keratin 13 (Baron et al., 2005; Rosenthal et al., 1992).
But, in the suprabasal epidermal layer targeted mutations
revealed an essential role for unliganded Rarg/Rxra and
liganded peroxisome proliferators activator-receptor d/Rxra
in lamellar granule regulation and epidermal permeability
barrier function (Calleja et al., 2006). Yet, we saw Rarb in the
cytoplasm throughout the epidermis. As Rarb is upregulated
by RA (Haq et al., 1991), it suggests that active RA signaling
is occurring throughout the epidermis. Studies in cultured
primary keratinocytes also suggest that active RA signaling
may occur in the suprabasal layer with induction of
differentiation (Vettermann et al., 1997; Chatellard-Gruaz
et al., 1998). How could Rarg remain unliganded when RA
synthesis is occurring within this layer? We propose that
Crabp2 binds some of the synthesized RA and directs it to
Rara, whereas the rest of the RA is degraded. Crabp2 directs
RA to Rara and transcriptional activation (Noy, 2000), but
Crabp2 binding to Rarb and Rarg have not yet been tested
and may not occur. During lung development, Rara is
required to maintain Rarb, whereas Rarb regulates fibroblast
growth factor 10 expression and lung morphogenesis (Desai
et al., 2006), suggesting that different Rars regulate different
sets of genes. In addition, the cytochrome p450, family 2,
subfamily S, polypeptide 1 localized throughout the epider-
mis except the cornified layer in human skin, is upregulated
by RA and degrades RA (Smith et al., 2003; Saarikoski et al.,
2005), suggesting that any excess RA not protein-bound in the
epidermis could be degraded. Thus, endogenous RA may
activate Rara-specific genes, like Rarb, whereas Rarg remains
unliganded. The cytoplasmic Rarb may also limit the delivery
of RA to Rarg. Exogenous RA would alter this balance of
Crabp2-directed transcription and activate Rarg target genes
resulting in hyperproliferation and skin fragility.

In summary, this localization pattern suggests that RA
regulates epithelial–mesenchymal interactions in the stem
cell niche and bulb, anagen induction, and differentiation
of all layers of the pilosebaceous unit during anagen. RA
synthesis may occur in less differentiated cells, but signaling
occurs only with differentiation. RA may induce catagen
by reduced unliganded Rara in the connective tissue sheath
and localization of RA signaling within the bulge, as well
as activate apoptosis throughout the regressing follicle. The
localization of endogenous RA synthesis and signaling also
revealed sites where exogenous RA could disrupt the balance
of liganded versus unliganded Rara and Crabp2 leading to
the reported toxic effects including hyperproliferation of the
epidermis, skin fragility, and hair loss. This highlights the
need for a better understanding of endogenous RA function
and the regulation of endogenous RA synthesis, which could
lead to better treatments without unwanted side effects.
Additional functional studies should examine the function of
endogenous RA and the consequences of altered RA synthesis
and signaling in the pilosebaceous unit.

MATERIALS AND METHODS
Tissue acquisition

Twenty-four female C57BL/6J mice were wax stripped to induce

anagen, as described previously (Muller-Rover et al., 2001). Mice
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were anesthetized with 2% tribromoethanol solution (IP, 0.2 ml/10 g;

Sigma-Aldrich, Milwaukee, WI) and all dorsal skin follicles in

telogen, as indicated by pink color, were painted with warm wax

(Surgi-wax; Ardell International, Los Angeles, CA) that was peeled off

after hardening, thus depilating all dorsal skin hair fibers. Skin

samples were harvested from two C57BL/6J wax stripped mice at

each of the following time points: 0, 3, 6, 9, 12, 15, 18, 21, 24, 27,

30, and 32 days after depilation. Skin for both routine histology and

immunohistochemistry (IHC) was fixed overnight in Feketes acid–-

alcohol–formalin solution (61% ethanol, 3.2% formaldehyde, 0.75 N

acetic acid), transferred to 70% ethanol, processed routinely,

embedded in paraffin, sectioned at 5–6 mm, placed on microscope

slides (Superfrost/Plus Fisherbrand, Pittsburgh, PA) and stained with

hematoxylin and eosin for routine histopathologic analysis. All

mouse studies were approved by The Jackson Laboratory Institu-

tional Animal Care and Use Committee and were performed in

compliance with stipulations of that body.

Antibodies

All rabbit studies were approved by The Vanderbilt University

Medical Center Institutional Animal Care and Use Committee and

were performed in compliance with stipulations of that body.

Antibodies against Crbp, eRoldh/Dhrs9, Aldh1a2, and Aldh1a3

were all produced within our laboratory and their specificity was

established previously (Zheng and Ong, 1998; Rexer and Ong, 2002;

Everts et al., 2004). The antibody used against Aldh1a3 in this study

was from a different rabbit raised at the same time as the antibody

described previously (Everts et al., 2004). This antibody proved to

be more sensitive for IHC, whereas the specificity based on dot-blot

analysis against bacterially expressed proteins was the same.

Antibodies raised against different epitopes of eRoldh/Dhrs9 and

Crabp2 were examined and produced similar results. The first of

these two antibodies has been described previously (Wardlaw et al.,

1997; Rexer and Ong, 2002). The second antibody raised against a

different epitope of Crabp2 was produced as described previously

(Everts et al., 2004) using the peptide CEQRLLKGEGPKTS from the

rat sequence. Two additional antibodies raised against different

epitopes of eRoldh/Dhrs9 were produced as described previously

(Rexer and Ong, 2002) using the peptide CGFLWTRKGKLKIED from

the human sequence and DPIKTTEKKLA from the rat sequence.

Specificity of the antibodies against Crbp, eRoldh/Dhrs9, Aldh1a2,

Aldh1a3, and Crabp2 were also confirmed by obtaining similar

localization patterns between IHC, Western blot analysis, and

reverse transcription-PCR in sites that have been previously shown

to be sensitive to dietary vitamin A (Everts et al., 2005). In that study,

we also found eRoldh/Dhrs9 and Crabp2 to be negative in rat

liver and kidney by all three methods. The Aldh1a1 antibody was

also produced as described previously (Everts et al., 2004) using the

peptide CGGGRWGNKGFFVQP from the rat sequence. Protein

levels of Aldh1a1 (Raldh1) by both Western blots analysis and IHC

are greater in the uterus with this antibody during diestrus than estrus

(unpublished observation), which is the same localization pattern as

we reported for the mRNA (Li et al., 2004). Specificity for antibodies

against Crbp, eRoldh/Dhrs9, Aldh1a1-3, and Crabp2 was also

confirmed by running IHC with equivalent amounts of IgG

(determined by absorption at 280 nm) from the IgG flow through

from the respective affinity columns. Except for the antibody against

eRoldh/Dhrs9 (whose specificity was confirmed by several other

methods, see above) there was no IR seen in sites where the affinity-

purified antibody was seen, and some IgG fractions were completely

negative (data not shown). Antibodies against Rara, b, and g were

purchased from Santa Cruz Biotech (Santa Cruz, CA). To confirm

their specificity, these antibodies were preabsorbed for 2 hours at

room temperature with five times their respective blocking peptide

(Santa Cruz Biotech). The expression seen for both Rara and Rarb

was completely lost in the control that was preabsorbed with

blocking peptide. But there was still some background signal seen

after preabsorption with the Rarg antibody. This background signal

was subtracted from the signal seen without the peptide to determine

the expression level of Rarg, although some sites were not scorable

with the Rarg antibody because of this background. Controls that

used just blocking solution (no primary antibody) were also run.

Occasionally background signal was seen in sebaceous glands in the

no primary control sections.

IHC

Sections were pretreated with 3% hydrogen peroxide, blocked with

3% BSA plus 1.28% normal goat serum, incubated with affinity-

purified rabbit polyclonal antibodies against Crbp, eRoldh/Dhrs9,

Aldh1a1, 2, or 3, Crabp2, Rara, b, or g (described above) overnight

at 41C. Tissue was then incubated with a biotin-conjugated

secondary antibody, an anti-biotin IgG-conjugated with horseradish

peroxidase, and then stained with AECþ (Dako, Carpinteria, CA;

Bucco et al., 1997). Hydrogen peroxide and BSA were obtained from

Sigma . Normal goat serum, secondary, and tertiary antibodies were

obtained from Jackson ImmunoResearch Laboratories, Inc. (West

Grove, PA). Hair follicles were classified by stage (Muller-Rover

et al., 2001) and IR scored on a scale of 0–4, blinded by the

knowledge of days after depilation. For most stages, three to nine

hair follicles were scored per stage. During anagen VI/catagen I and

late catagen through early anagen, 11–24 hair follicles were scored

per stage, but only one or two follicles in catagen II and III were seen

and scored. Mean and SD was performed to highlight variability, but

no statistics were run as this study was intended to point out

qualitative localization patterns.
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