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a b s t r a c t

Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide
were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The
Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Areni-
cola marina on the rates and sources of benthic alkalinity generation was examined by comparing
measurements in intact and defaunated sediment cores before and after the addition of A. marina in
summer and fall 2011. Higher organic matter remineralization rates, shallower O2 penetration, and
greater sediment-water solute fluxes were observed in summer, consistent with higher sediment
community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange
(5.1 � in summer, 1.9 � in fall), organic matter remineralization (6.2 � in summer, 1.9 � in fall), aerobic
respiration (2.4 � in summer, 2.1 � in fall), alkalinity release (4.7 � in summer, 4.0 � in fall), nutrient
regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar
but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic
carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in
summer, indicating the importance of other processes in this season. By enhancing organic matter
remineralization and the reoxidation of reduced metabolites by the sediment microbial community,
lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which
in turn enhanced metabolic CaCO3 dissolution efficiency. In summer, evidence of microbial long distance
electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net
carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Oceans are an important sink for the excess CO2 released by
human activities including fossil fuel burning, land use change,
industrialization and deforestation, which have resulted in a >30%
rise in atmospheric CO2 during the industrial era (Sabine et al.,
2004; Forster et al., 2007). In this time, the oceans have absorbed
approximately 30% of anthropogenic CO2 emissions by air-sea gas
exchange, resulting in a decline in surface ocean pH of about 0.1
(Feely et al., 2010). In the last century, ocean acidification has had a
significant negative effect on calcification, survival, growth, devel-
opment, and abundance among corals, mollusks, echinoderms,
sit�e du Qu�ebec �a Rimouski,
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coccolithophores, and other taxonomic groups (Kroeker et al.,
2013). With an additional expected decline of 0.3e0.4 pH by the
end of this century, ocean uptake of anthropogenic CO2 will likely
have strong adverse effects on calcareous and noncalcareous ma-
rine organisms alike (Gazeau et al., 2007; Guinotte and Fabry, 2008;
Hutchins et al., 2009).

In coastal waters, the accumulation of anthropogenic CO2 can
exacerbate low pH conditions resulting from natural respiration
processes (Feely et al., 2008; Bates and Mathis, 2009; Feely et al.,
2010), thereby compounding the stress exerted on coastal eco-
systems. While sediments represent an important site of organic
matter remineralization in nearshore environments, recent
studies suggest that coastal sediments are also a source of alka-
linity to the overlying water, favoring the role of the coastal ocean
as a potential sink for atmospheric CO2 (Thomas et al., 2009; Faber
et al., 2012). During early diagenesis, alkalinity can be produced by
several different processes, including CaCO3 dissolution, denitri-
fication, and iron and sulfate reduction coupled to the subsequent
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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burial of iron sulfide minerals such as iron monosulfide (FeS) and
pyrite (FeS2) (Stumm and Morgan, 1996). It is crucial to better
understand the actual mechanisms and rates of benthic alkalinity
generation.

In the North Sea, it has been estimated that as much as one-
quarter of the overall CO2 uptake may be driven by alkalinity pro-
duction in the intertidal flats of the southern North Sea (Thomas
et al., 2009). These deposits support rich macrofaunal commu-
nities (Reise et al., 1994; Seys et al., 1994) and high sediment
community metabolic rates (de Beer et al., 2005; Werner et al.,
2006; Roy et al., 2008). The macrofaunal activity in these sedi-
ments exerts an important influence on carbon and nutrient cycling
and fluxes of solutes across the sediment-water interface by
altering the balance between solute transport and reaction rates in
sediments (Kristensen, 2001). An understanding of the influence of
benthic macrofauna in regulating alkalinity production may
therefore help to elucidate the rates, controls, and spatiotemporal
variability in alkalinity sources and CO2 uptake in ocean margin
environments. Experimental and modeling studies have shown
that biological particlemixing (bioturbation) exerts a strong control
on the permeability, stability, composition, and metabolic rates in
sediments, and that bioirrigation flushes out reduced metabolites
and supplies terminal electron acceptors and organic substrates for
microbial metabolism (Banta et al., 1999; Kristensen, 2001;
Volkenborn et al., 2007; D'Andrea and DeWitt, 2009; Volkenborn
et al., 2010; Kristensen et al., 2012). However, the influence of
benthic macrofaunal activity on alkalinity generation has so far
received little attention.

To better understand the role of macrofaunal activity (particle
mixing and porewater bioirrigation) on alkalinity production in
coastal sediments, we investigated the impact of the deep-
burrowing lugworm Arenicola marina on interfacial fluxes and
porewater profiles of oxygen, nutrients, pH, calcium, alkalinity,
and sulfide in sediment cores from an intertidal sandflat in the
Oosterschelde (The Netherlands). The effect of season was inves-
tigated by comparing experiments conducted in summer and in
autumn.

A. marina is the dominant bioirrigator in intertidal sediments in
the southern North Sea, and at densities that can exceed
50 individuals per m�2, it often dominates the polychaete biomass
in this region (Reise et al., 1994; Coosen et al., 1994; Kristensen,
2001). The lugworm is a head-down deposit feeder residing in L-
shaped burrows that can conspicuously transform its habitat
(Huettel, 1990; Volkenborn et al., 2007). Sediment ingestion in the
lower part of the burrow causes sediment to sink into the feeding
pocket, and the resulting surface depression traps detritus. The
lugworm periodically retreats to the surface and excretes sediment
particles around the opening of the tail shaft, producing distinctive
faecal casts. This ingestioneegestion behavior reworks the sedi-
ments surrounding the burrow structures, and translocates surface
sediments with recently deposited labile organic material and solid
phase electron acceptors, such as iron and manganese (hydr)ox-
ides, downward into subsurface suboxic or anoxic layers of sedi-
ment. At the same time, aged, refractory organic particles and
reduced iron sulfide minerals are transported upward to the oxic
surface layer. The peristaltic motions of A. marina result in the
irrigation of burrow water with oxygenated bottom water in a
rhythmic fashion and the percolation of suboxic or anoxic pore-
water surrounding the feeding pocket upward into the overlying
water, although flow reversals do occur (Kristensen, 2001;
Volkenborn et al., 2010). The bioturbation and bioirrigation activ-
ities of lugworms enhance aerobic and anaerobic mineralization of
organic carbon and nitrogen in sandy coastal sediments
(Kristensen, 1988; Huettel, 1990; Banta et al., 1999; Kristensen,
2001).
2. Materials and methods

2.1. Sampling

Sediment cores were collected by hand at low tide at Tholseinde
(51� 260 5200 N, 04� 050 4700 E, Fig. 1), an intertidal region in the inner
part of the Oosterschelde (Delta area, SW Netherlands). The Oos-
terschelde is an euhaline mesotidal basin with extensive intertidal
sandflats, which cover about one-third of its surface area (de Jong
et al., 1994). Hydrodynamic forces and sediment transport in this
coastal embayment have been modified by a storm-surge barrier
and two auxiliary dams, completed in 1987 (ten Brinke et al., 1994;
de Jong et al., 1994; Nienhuis and Smaal, 1994). The Oosterschelde
sandflats are home to a rich macrofaunal community of bivalves,
gastropods, and polychaetes, most notably the lugworm Arenicola
marina (Coosen et al., 1994).

2.2. Core incubations

Sediment cores were collected in July and November 2011, and
brought to the Royal Netherlands Institute for Sea Research (NIOZ)
in Yerseke, NL for ex situ incubations. Plexiglas (PMMA) coreliners,
15 cm inner diameter and 35 cm in length, were used for collection
and subsequent incubations. Cores typically contained about 20 cm
of sediment and 15 cm of overlying water. Cores were incubated in
a darkened water bath, continuously aerated and replaced daily
with Oosterschelde seawater, kept in a temperature-controlled
room at 16 �C in July and 12 �C in November.

In July, eight cores were collected and immediately sealed with
polyoxymethylene lids with gas-tight O-ring seals after collection
for a ten day period of defaunation by asphyxia. Cores were then
opened and any macrofauna that had migrated to the surface were
carefully removed with minimal disturbance to the sediment-
water interface. The open cores were then placed in the aerated
water bath for a reequilibration period of eight days. Subsequently,
O2, pH and H2S microsensor profiles were measured in triplicate in
each of three cores, as described in Section 2.4, and solute fluxes
were determined in all eight cores as described in Section 2.3. Two
adult Arenicola specimens were introduced in each core, and it was
verified that the lugworms burrowed into the sediment. Two days
after lugworm addition, flux measurements were repeated in all
cores and microprofiles were measured in two cores, both in areas
that appeared undisturbed by lugworm activity (n ¼ 3 replicate
profiles of each solute per core) and in areas covered with Arenicola
faecal casts (n ¼ 2 replicate profiles of each solute per core).

In November, ten cores were collected and brought into the
laboratory for incubation. The incubation procedure was largely
similar to the July experiment, but in addition to the measurements
made in defaunated cores before and after lugworm addition, the
initial conditions were also characterized in cores shortly after
collection (hereafter referred to as “intact cores”). To this end,
porewater O2, pH and H2S microprofiles (n ¼ 5 replicate profiles of
each solute) were measured after one day of reequilibration in two
intact cores, P1 and P2, which were dedicated for microprofile
measurements throughout the entire experiment. After two days of
reequilibration, solute flux measurements (Section 2.3) were made
in cores P1, P2, and three additional intact cores. Two of these intact
cores were then destructively sampled for solid phase and pore-
water analyses as described in Section 2.4. The remaining cores
were sealed for a twenty-five day defaunation period, reopened
and macrofauna that had surfaced were carefully removed. Cores
were then kept open in the aerated water bath for a nine day
reequilibration period. Subsequently, porewater O2, pH and H2S
microprofiles (n ¼ 3 replicate profiles of each solute) were
measured under defaunated conditions, and flux measurements



Fig. 1. The Oosterschelde embayment, with the location of the sampling site at Tholseinde marked with a square.
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were made in cores P1, P2, and three additional cores, which were
destructively sampled for solid phase and porewater analyses on
the following day. Two adult Arenicola specimens were introduced
in each of the five remaining cores. Five days after lugworm addi-
tion, porewater O2, pH and H2S microprofiles were measured, both
in areas that appeared undisturbed by lugworm activity (n ¼ 3
replicate profiles of each solute per core) and in areas covered with
Arenicola faecal casts (n ¼ 2 replicate profiles of each solute per
core). The following day, flux measurements were conducted in
cores P1, P2, and the remaining three cores, which were destruc-
tively sampled for solid phase and porewater analyses on the
following day. In the following sections, we compare measure-
ments in intact and defaunated cores before and after lugworm
addition.

2.3. Solute flux measurements

Solute fluxes across the sediment-water interface were
measured in closed core incubations. Each set of flux measure-
ments was begun by securing gas-tight lids on each core in a water
bath. Core lids contained two sampling ports on opposite sides and
a central stirrer to ensure that the overlying water remained well
mixed during incubation. Both ports were purged prior to the start
of each incubation, to ensure that no gas bubbles remained. An
oxygen optode (PreSens oxygen dipping probe or Pyroscience
robust oxygen probe OXROB10) was inserted into a third opening in
each lid and secured by a rubber stopper, for measurements of total
oxygen uptake (TOU). Optodeswere pre-calibrated on the same day
using a two-point calibration with Oosterschelde seawater at 0%
and 100% O2 saturation, bubbled with nitrogen gas and air,
respectively. Oxygen data from one defaunated core in July were
excluded from final analysis due to optode malfunction.

At the start of closed core incubations, a known volume of so-
dium bromide (NaBr) tracer solution was added to the overlying
water of each core, to a final concentration of 3e5 mmol L�1. The
initial spike solution was prepared at concentrations between 0.2
and 0.3 mol L�1 NaBr, such that its density matched that of the
overlying water at the start of incubations. Samples of about 30 mL
of overlying water were collected from each core in plastic syringes
approximately hourly for analysis of dissolved inorganic nutrients,
pH, total alkalinity (TA), calcium (Ca2þ) and bromide (Br�), as
described in Section 2.5.

The volume of overlying water and the rate of porewater ex-
change by bioirrigation were calculated from the dilution of Br�

tracer in the overlying water of each core. The effective overlying
water volume (Vow) was determined from the known volume
(Vspike) and concentration (Cspike) of Br� spike solution injected at
the start of incubations, and the initial overlying water concentra-
tion of Br� in excess of natural seawater Br� (C0

ow):

Vow ¼ VspikeCspike
C0
ow

(1)

The value of C0
ow was obtained by extrapolating the measured

excess Br� concentration in the overlying water to the start of the
incubation using linear regression (Berelson et al., 1998; Jahnke and
Jahnke, 2000). The flux of bromide into the sediment was calcu-
lated from the same regression as:

J ¼
�
DCow
Dt

�
Vow

A
(2)

where DCow/Dt is the slope of the excess Br� concentration in the
overlying water versus incubation time and A is the sediment
surface area.

The rate of porewater exchange (Q) represents the volume of
water that is exchanged per unit area per unit time, and is calcu-
lated as:

Q ¼ J
C0
ow

(3)

Therefore, the rate of porewater exchange by bioirrigation (I) is
calculated as the difference in porewater exchange rates in in-
cubations with and without macrofauna:

Itreatment ¼ Q treatment � Qdefaunated (4)

where “treatment” refers to intact cores or defaunated cores after
lugworm addition.
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In July, bioirrigation rates were determined as the difference
between measured porewater exchange rates in the same core
before and after lugworm addition. In November, it was not
possible to compare Q in the same core under different treatments
because of destructive sampling. Therefore, bioirrigation rates (I)
were calculated using the average exchange rate measured in
defaunated cores before (Qdefaunated) and after (Qtreatment) lugworm
addition. In November 2011, Br� fluxes were not measured in cores
P1 and P2 under intact conditions. Therefore, for these two in-
cubations, porewater exchange rates are not available and overlying
water volumewas estimated as the average of that calculated in the
other 3 cores, which varied only by 4% (CV).

Benthic fluxes of all other solutes were determined in a similar
fashion (Eq. (2)), based on the overlying water volume, the known
core cross-sectional area, and the slope of a linear regression of
overlying water concentration vs. incubation time. Solute fluxes
were corrected for dilution of the overlying water in each core with
fresh seawater at each sampling time point. As a result of undiluted
tracer solution remaining in the injection port, initial Ca2þ and Br�

concentrations were often anomalous and were not included in the
final analysis.
2.4. Porewater solute and solid phase distributions

In November 2011, replicate subcores (4 cm i.d.) were collected
after fluxmeasurements in two intact cores, three defaunated cores
before lugworm addition, and three defaunated cores after
lugworm addition. Subcores were extruded and sliced in an
anaerobic glove box at 2.5 mm intervals from 0 to 2 cm, 5 mm
intervals from 2 to 5 cm, and 1 cm intervals from 5 to 10 cm depth.
Porosity was determined on one subcore. Corresponding depth
sections from three additional replicate subcores were pooled in
centrifuge tubes with built-in Whatman glass fiber filters, and
centrifuged at 5000 rpm for 5 min. After centrifugation, centrifuge
tubes were opened one at a time and porewater was dispensed
through syringe filters (0.22 mm PVDF) into sample containers. The
remaining sediment was stored frozen for analysis of total and
organic carbon content.

Sediment microsensor profiling was performed using commer-
cial pH (100-mm tip diameter) and O2 and H2S microelectrodes (50-
mm tip diameter), operated with a motorized micromanipulator
(Unisense A.S., Denmark). Oxygen microprofiles were made at
100 mm resolution, with a 2-point calibration made in air-saturated
seawater (100% saturation) and at depth in anoxic sediment (0%
saturation). For H2S and pH, depth profiles were made at 200 mm
resolution in the oxic zone, and 200 or 400 mm resolution below.
Calibrations for pHwere madewith three NBS standards and a TRIS
buffer to correct for salinity effects (Dickson et al., 2007). pH is
reported on the total scale. For H2S, a 5-point calibration was made
using Na2S standards, which were prepared for each experiment,
stored in an anaerobic glove box, and verified spectrophotometri-
cally (Cline, 1969). SH2S was calculated from H2S based on pH
measured at the same depth using the R package AquaEnv
(Hofmann et al., 2010), with the relations of Millero (1995) for the
thermodynamic equilibrium constant of H2S.

Diffusive oxygen uptake (DOU) rates were calculated from
porewater O2 microprofiles using Fick's first law:

J ¼ �DO2
4
v½O2�
vz

(5)

where z is depth and [O2] denotes O2 concentration. The concen-
tration gradientv½O2�=vz was calculated as the linear slope in O2
concentration measured at the sediment-water interface, and
adjusted for porosity (4). The molecular diffusion coefficient (D0)
was calculated at measured salinity and temperature using the R
package marelac (Soetaert et al., 2012), and corrected for sediment
tortuosity (DO2

¼ D0/q2) according to Archie's Law (q2 ¼ 41�m, with
m ¼ 2 for sands; Boudreau, 1997). DOU is compared with total
oxygen uptake (TOU) rates derived from oxygen fluxes measured
directly in core incubations (Section 2.3).

2.5. Analytical methods

Sediment porosity was determined from water content and
solid phase density measurements. Water content was determined
by drying sediment samples to constant weight at 60 �C, and solid
phase density measurements were based on volume displacement
after adding a knownmass of dry sediment to a graduated cylinder.
Sediment grain size and sorting at the sampling site was measured
in August 2011 by laser diffraction on a Malvern Mastersizer 2000.

Sediment samples were freeze-dried and ground to a fine
powder for analysis of total carbon on a Thermo Scientific Delta V
Elemental Analyzer (±0.18%). Samples for total organic C were
acidified with 0.1 N HCl for inorganic C removal prior to analysis,
and total inorganic C was calculated by difference.

Overlying water samples were analyzed immediately upon
collection for pH using an Orion ROSS glass electrode calibrated
with NBS buffers and a seawater TRIS buffer prepared according to
Dickson et al. (2007). Samples for Br�, Ca2þ, TA, and nutrients were
0.2 mm-filtered and refrigerated until analysis. Phosphate
(PO4

3� ± 3.5%), silicate (Si(OH)4 ± 0.6%), nitrate (NO3
� ± 4.0%),

nitrite (NO2
� ± 1.7%) and ammonium (NH4

þ ± 2.3%) concentrations
in overlying water samples were measured using standard colori-
metric methods on a Seal QuAAtro autoanalyzer. Br� (±1.2%) was
analyzed colorimetrically following the method of Presley (1971).
TA (±0.2%) was measured by Gran titration and Ca2þ (±0.05%) in
selected flux chamber incubations (n ¼ 9 in July, n ¼ 11 in
November) by ethylene glycol tetraacetic acid (EGTA) titration
(Tsunogai et al., 1968) using manual, scaled-downmethods with an
ultraprecision micrometer burette (Roger Gilmont Instruments).
Replicate measurements of certified reference materials provided
by A. G. Dickson (Dickson et al., 2003) and IAPSO seawater standard
were used to validate the accuracy of TA and calcium
measurements.

Dissolved inorganic carbon (DIC) was calculated from pH, TA,
and nutrient concentrations at measured values of salinity and
temperature with the R package AquaEnv (Hofmann et al., 2010),
using the relations of Millero (2010) for the first and second
dissociation constants of carbonic acid, Dickson and Riley (1979) for
the dissociation constant of hydrogen fluoride, and Dickson (1990)
for the dissociation constant of hydrogen sulfate. Calculated DIC
concentrations in the overlying water of core incubations were
used to determine the total DIC flux, JDIC, using Equation (2). The net
CaCO3 dissolution rate (RCD) was calculated as:

RCD ¼ JTAðrCa:TAÞ (6)

where rCa:TA is the average ratio of Ca2þ:TA flux measured in each
treatment. Average values of rCa:TA were used because Ca2þ flux
measurements were not available for all incubations. The DIC
production due to organic matter remineralization (RMIN) was
determined by subtracting the net CaCO3 dissolution rate (RCD)
from the calculated total DIC flux.

RMIN ¼ JDIC � RCD (7)

The ratio of C:N associated with organic matter remineralization
was derived from RMIN and the sum of dissolved inorganic nitrogen
(DIN) fluxes in individual incubations. Finally, the efficiency of
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metabolic dissolution (εD) is defined as the ratio of RCD relative to
RMIN (Jahnke and Jahnke, 2004). As the portion of respiratory CO2
andmetabolic acidity contributing to CaCO3 dissolution varies from
0 to 1, εD is expected to vary between 0% and 100%.

Porewater samples collected in November 2011 were analyzed
for TA at 0.3% precision. Acidified porewater samples (10 mL of 6 N
HCl per 1 mL sample) were analyzed for total dissolved Fe (±1.1%)
using a scaled-down Ferrozine method (Viollier et al., 2000) and for
Ca2þ (±0.1%) on a PerkineElmer ICP-OES.

Results are reported as the mean ± 1 standard deviation (s.d.) of
n replicate measurements. Differences in solute fluxes and char-
acteristic depths across seasons and treatments were identified
using the ManneWhitney U test.

3. Results

3.1. Sediment properties

Sediments consisted of moderately sorted fine sand (median
grain size 3.0 4, sorting 0.7 4), composed of approximately 96%
sand, with most of the remainder consisting of silt. Dry density was
2.63 ± 0.14 g cm�3 (n ¼ 5), not significantly different from the
theoretical density of pure quartz sand (i.e., 2.65 g cm�3). Sediment
porosity was 0.47 in the top 0.5 cm, declined to 0.41 by 2 cm, and
was nearly constant at this level to 10 cm. Sediment organic
(0.23 ± 0.08% dry wt.) and inorganic carbon content (0.24 ± 0.04%
dry wt.) were relatively constant with depth.

3.2. Solute fluxes

Examples of time series results from defaunated core in-
cubations before and after lugworm addition in July 2011 are
shown in Fig. 2. Porewater exchange rates and solute fluxes
measured in core incubations are reported in Table 1. Porewater
exchange rates were lowest in defaunated cores and highest after
lugworm addition. The effect of lugworms on porewater exchange
was stronger in summer than in fall (U ¼ 33, n1 ¼ 8, n2 ¼ 5,
p ¼ 0.03). Rates of total oxygen uptake (TOU) were also greater in
summer than in fall (U ¼ 39 and U ¼ 38 in defaunated cores before
and after lugworm addition respectively, with n1 ¼ 8, n2 ¼ 5,
p < 0.01), and lowest in defaunated cores (July: U ¼ 63, n1 ¼ n2 ¼ 8,
p < 0.001; November: U ¼ 24, n1 ¼ n2 ¼ 5, p < 0.01).

Fluxes of NH4
þ and Si(OH)4 were directed into the overlying

water, while NO3
�
fluxes were generally directed into the sediment
Fig. 2. Example time series results from defaunated core incubations before (open symbols
2011. Solute concentrations are expressed in mmol L�1.
(Table 1). PO4
3�

fluxes were not different from zero in the absence
of lugworms. Nutrient fluxes were greater in summer than in fall
(UNH4

¼ 32 and 38, UPO4
¼ 34 and 38, USiðOHÞ4 ¼ 39.5 and 40 in

defaunated cores before and after lugworm addition respectively,
with n1 ¼ 8, n2 ¼ 5, p < 0.05), with the exception of NO3

�
fluxes

(UNO3
¼ 14 and p ¼ 0.22 in defaunated cores; UNO3

¼ 5 and p ¼ 0.01
after lugworm addition, with n1 ¼ 8 and n2 ¼ 5). Lugworm activity
significantly enhanced the efflux of NH4

þ (July: U ¼ 1, n1 ¼ n2 ¼ 8,
p < 0.001; November: U ¼ 0, n1 ¼ n2 ¼ 5, p < 0.01), PO4

3� (July:
U ¼ 0, n1 ¼ n2 ¼ 8, p < 0.0001; November: U ¼ 3, n1 ¼ n2 ¼ 5,
p ¼ 0.03) and Si(OH)4 (July: U ¼ 0, n1 ¼ n2 ¼ 8, p < 0.0001;
November: U ¼ 0, n1 ¼ n2 ¼ 5, p < 0.01) and the influx of NO3

- (July:
U ¼ 54, n1 ¼ n2 ¼ 8, p ¼ 0.01; November: U ¼ 25, n1 ¼ n2 ¼ 5,
p < 0.01), with a greater effect in July than in November
(UNH4

¼ UPO4
¼ 37 at p < 0.01; USi ¼ 40 at p < 0.001; UNO3

¼ 6 at
p¼ 0.02 with n1¼8 and n2¼ 5). NH4

þ and Si(OH)4 efflux and NO3
�

influx were also greater in intact cores than in defaunated cores in
November (UNH4

¼ 24, USiðOHÞ4 ¼ 25, UNO3
¼ 0 with n1 ¼ n2 ¼ 5,

p < 0.01).
Lugworm activity enhanced the efflux of alkalinity (U ¼ 64,

n1 ¼ n2 ¼ 8, p < 0.0001 in July, and U ¼ 25, n1 ¼ n2 ¼ 5, p < 0.01 in
November) and calcium (U ¼ 16, n1 ¼ n2 ¼ 8, p ¼ 0.01 in July, and
U ¼ 15, n1 ¼ n2 ¼ 5, p < 0.02 in November), with a greater effect in
July than in November (U ¼ 34 and p ¼ 0.02 for TA and U ¼ 12 and
p ¼ 0.03 for Ca2þ with n1 ¼ 8, n2 ¼ 5) as shown in Table 1. In
November, Ca2þ (U ¼ 15, n1 ¼ n2 ¼ 5, p ¼ 0.02) and TA effluxes
(U ¼ 25, n1 ¼ n2 ¼ 5, p < 0.01) in intact cores were greater than in
defaunated cores, and similar to fluxes measured in defaunated
cores after lugworm addition.

3.3. Porewater solute distributions

Examples of O2, H2S, and pHmicroprofiles in core incubations in
July and November 2011 are shown in Fig. 3, and a summary of
parameters derived from these measurements are reported in
Table 1. Oxygen penetrated deeper in sediments in fall than in
summer (U ¼ 0, n1 ¼ 9, n2 ¼ 6, p < 0.001 in defaunated cores before
lugworm addition and U ¼ 23, n1 ¼ 11, n2 ¼ 10, p ¼ 0.01 in defau-
nated cores after lugworm addition) and diffusive O2 uptake (DOU)
was lower in fall (U ¼ 54, n1 ¼ 9, n2 ¼ 6, p < 0.001 in defaunated
cores before lugworm addition and U¼ 38.5, n1 ¼6, n2 ¼ 7, p < 0.01
in undisturbed sediments in defaunated cores after lugworm
addition), except immediately over Arenicola marina faecal casts in
defaunated cores after lugworm addition (U ¼ 12, n1 ¼ n2 ¼ 4,
, O2: thin line) and after (filled symbols, O2: thick line) the addition of A. marina in July



Table 1
Summary of porewater profiling and flux measurements in intact and defaunated core incubations before and after lugworm addition. Porewater profiling results from
defaunated cores after lugworm addition are presented for undisturbed sediment patches (U) and microprofiles measured directly over A. marina fecal casts (F).

July 2011 November 2011

Defaunated þ Lugworms Intact Defaunated þ Lugworms

Porewater exchange rate L m�2 d�1

14.26 ± 13.95 73.07 ± 37.12 30.44 ± 5.06* 24.50 ± 13.57 45.67 ± 11.10

Measured fluxes mmol m�2 h�1

O2 �0.87 ± 0.18 �2.09 ± 1.06 �0.89 ± 0.21 �0.45 ± 0.11 �0.96 ± 0.39
NO3

- �0.01 ± 0.07 �0.09 ± 0.06 �0.04 ± 0.02 0.01 ± 0.00 �0.03 ± 0.02
NH4

þ 0.12 ± 0.08 0.94 ± 0.58 0.23 ± 0.10 0.08 ± 0.04 0.30 ± 0.15
PO4

3- 0.00 ± 0.00 0.05 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01
Si(OH)4 0.02 ± 0.00 0.32 ± 0.12 0.08 ± 0.02 0.01 ± 0.00 0.09 ± 0.03
TA 0.78 ± 0.55 3.63 ± 1.81 1.38 ± 0.41 0.31 ± 0.03 1.24 ± 0.52
Ca2þ 0.22 ± 0.07 1.10 ± 0.12 0.57 ± 0.41 0.14 ± 0.05 0.79 ± 0.06

Calculated fluxes mmol m�2 h�1

DIC 0.72 ± 0.25 4.56 ± 2.14 0.53 ± 0.17 1.35 ± 0.63
RMIN 0.58 ± 0.19 3.57 ± 1.67 0.38 ± 0.18 0.73 ± 0.38

Calculated quotients
RQ �0.61 ± 0.11 �1.79 ± 0.73 �0.86 ± 0.45 �0.73 ± 0.19
C:N 6.12 ± 3.79 4.58 ± 1.17 4.36 ± 1.52 2.78 ± 0.88
εD 22.27 ± 15.44 27.65 ± 5.94 54.54 ± 41.19 91.31 ± 18.08

Diffusive O2 uptake mmol m�2 h�1

�0.33 ± 0.07 U: �0.35 ± 0.08 �0.24 ± 0.25 �0.14 ± 0.03 U: �0.24 ± 0.05
F: �0.37 ± 0.05 F: �0.30 ± 0.15

O2 penetration depth mm
1.17 ± 0.30 U: 1.06 ± 0.18 1.80 ± 0.35 2.73 ± 0.40 U: 1.85 ± 0.74

F: 1.38 ± 0.22 F: 1.68 ± 0.57
H2S horizon depth mm

15.78 ± 9.19 U: 13.74 ± 6.66 16.56 ± 4.47 5.1 ± 2.3 U: 3.27 ± 2.27
F: 21.05 ± 1.28 F: 7.15 ± 3.71

Incidence of surface pH peaks
9 U: 4 1 1 U: 0

F: 0 F: 1
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p ¼ 0.17). In the fall, DOU and O2 penetration depth in defaunated
cores after lugworm addition approached those measured in intact
cores. Oxygen penetration depth was greater and DOU smaller in
defaunated cores relative to both intact cores (UOPD ¼ 2, n1 ¼ 10,
n2 ¼ 6, p < 0.01 and UDOU ¼ 2, n1 ¼10, n2 ¼ 6, p ¼ 0.001) as well as
cores with lugworms (UOPD ¼ 5.5, n1 ¼ 10, n2 ¼ 6, p < 0.01 and
UDOU ¼ 3.5, n1 ¼ 10, n2 ¼ 6, p ¼ 0.002). These differences were not
significant in July.

The sulfide horizon in sediments was shallower in fall than in
summer (U ¼ 42, n1 ¼ 9, n2 ¼ 6, p ¼ 0.04 and U ¼ 103.5, n1 ¼ 11,
n2 ¼ 10, p < 0.001 in defaunated cores before and after lugworm
addition, respectively). Porewater pH generally declined with
depth in the sediment, but replicate profiles in July revealed a
distinct vertical pH distribution, with a surface peak at the bot-
tom of the oxic zone and a strong sub-surface pH minimum
deeper in the sediment. These characteristic pH profiles were
observed in defaunated cores before lugworm addition and in
undisturbed patches of sediment after lugworm addition
(Table 1). This characteristic pH signature was not observed in
November, except in one out of several replicate profiles
measured in each treatment.

Total dissolved Fe distributions in porewater showed a subsur-
face maximum around 1 cm depth in the sediment in November
(Fig. 4). Peak concentrations in defaunated cores were lower than in
intact cores and in defaunated cores after lugworm addition.
Porewater Ca2þ profiles show a surface peak in all treatments
(Fig. 4). Alkalinity profiles in intact cores show a concomitant sur-
face maximum, followed by a broader maximum centered at about
5 cm depth (Fig. 4). Porewater TA distributions in defaunated cores
increase with depth to high values between 8 and 10 mEq L�1 at
about 5 cm depth, and decrease only slightly below. After lugworm
addition, porewater TA distributions at depth approach the values
observed in intact cores, with a subsurface peak between 1 and
2 cm depth.

4. Discussion

4.1. The impact of lugworm activity on porewater exchange

In this study, the activity of the lugworm Arenicola marina was
determined by comparing porewater exchange rates measured by
NaBr tracer fluxes in defaunated cores before and after lugworm
addition as well as intact cores. The importance of porewater ex-
change due to lugworm activity, or bioirrigation, was demonstrated
in summer and fall experiments, as exchange rates in defaunated
cores increased after lugworm addition (Table 1). The lugworm
bioirrigation rate (I) was 59 L m�2 d�1 in July and 21 L m�2 d�1 in
November. Bioirrigation was therefore stronger in summer, which
may be due to a metabolic response of A. marina to the higher
temperature associated with a higher O2 supply needed due to
stronger lugworm respiration, or due to more reducing conditions
in sediments associated with higher microbial community respi-
ration rates in sediments in summer, although this cannot be
confirmed with our data. Porewater exchange in intact cores was
also stronger than in defaunated cores in November (Table 1),
resulting in a bioirrigation rate of 6 L m�2 d�1 associated with the
natural macrofaunal community. The measured rates of bio-
irrigation are lower than previous estimates of lugworm bio-
irrigation rates (120e160 L m�2 d�1 at a population density of
50 individuals m�2, Kristensen, 2001). Low bioirrigation rates in
defaunated cores after lugworm addition may be due to an inhib-
itory effect of accumulated reduced metabolites such as sulfide in
sediment porewater on polychaete feeding and burrowing activ-
ities (Fuller, 1994). Alternately, this may be generally indicative of a



Fig. 3. Example porewater microprofiles from core incubations in July (top row) and November 2011 (bottom row), including measurements in intact (d) and defaunated cores
before (a, e) and after lugworm addition (b, c, f, g). In defaunated cores after lugworm addition, examples of microprofiles measured in relatively undisturbed patches of sediment (b,
f) and over A. marina fecal casts (c, g) are shown.
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wall effect, or a change in the activity of macrofauna in an enclosure
(e.g., Du Clos et al., 2013), which may also explain the low bio-
irrigation rates observed in intact cores. Measured porewater ex-
change rates are comparable to rates of porewater advection
induced in permeable sands by wave and tidal pumping or bottom
currents over sediment topography (0e100 L m�2 d�1, Precht and
Huettel, 2003; Janssen et al., 2005).

The bioirrigation rates measured in core incubations yield in-
dividual pumping rates of 0.52 and 0.19 L ind�1 d�1 in July and
November, respectively, given a sediment surface area of 177 cm2

per core and a polychaete density of 2 individuals per core
(~120 ind m�2). Individual pumping rates vary depending on the
size and activity of individuals, but measured rates are at the lower
end of previously reported values, which range from 0.4 to
3.2 L ind�1 d�1 (Riisgård et al., 1996; Kristensen, 2001; Kristensen
and Kostka 2005; Meysman et al., 2006; Na et al., 2008;
Volkenborn et al., 2010). If the lugworm feeding pockets are at
15 cm depth, then the flushing time for porewater above this ho-
rizon in the cores (1.09 L) was about 1.0 day in July and 2.9 days in
November. These estimates of porewater residence time provide an
indication of the rapid timescale for the flushing of accumulated
porewater metabolites in the defaunated cores after lugworm
addition.
4.2. The impact of lugworm activity on sediment community
metabolism and nutrient fluxes

In both experiments and in all treatments, TOU in core in-
cubations was greater than DOU as measured by microelectrode
profiling (Table 1). High O2 consumption in intact cores and
defaunated cores after the addition of Arenicola marina is likely a
combined effect of respiration by lugworms and a stimulation of
sediment community oxygen consumption by bioirrigation
(enhanced solute transport) and bioturbation (enhanced particle
mixing). By supplying dissolved O2 to deeper sediments (bio-
irrigation) and translocating reduced compounds from depth to the
surface (bioturbation), lugworm activities enhance the O2 exposure
of previously anoxic sediment and porewater and therefore in-
crease the reoxidation of reduced metabolites in sediments (Banta
et al., 1999; Forster et al., 1999; Kristensen, 2001). Polychaete bur-
rows also enhance sediment community oxygen consumption by
increasing sediment permeability, trapping labile organic material,
and intensifying microbial respiration associated with organic-rich
burrow linings (Wenzh€ofer and Glud, 2004; Glud, 2008).

In defaunated cores, TOU and DOU were expected to be nearly
equivalent, due to the absence of bioirrigation and bioturbation by
macrofauna. Nevertheless, TOU was significantly greater than DOU



Fig. 4. Replicate porewater profiles of total dissolved Fe, Ca2þ, and TA measured in November 2011 in (a) intact cores and defaunated cores (b) before and (c) after lugworm addition.
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in defaunated cores both in July (U ¼ 72, n1 ¼ 9, n2 ¼ 8, p < 0.001)
and November (U ¼ 30, n1 ¼ 6, n2 ¼ 5, p < 0.01). The observed
discrepancy between TOU and DOU in defaunated cores is likely
due to a combination of factors, including sediment topography
increasing interfacial surface area and residual bioturbation by
meiofauna resistant to low O2 conditions. Indeed, living copepods
were observed in November when opening cores after defaunation.
By convention, fauna-mediated O2 uptake is calculated by sub-
tracting DOU from TOU (Glud, 2008). Yet, the large discrepancy
between TOU and DOU in the defaunated cores suggests that
processes other than lugworm activity influenced the DOU/TOU
ratio. To estimate the lugworm-induced component of sediment O2
consumption, we therefore subtracted the TOU in defaunated cores
from the TOU measured after lugworm addition. In this way, lug-
worms contributed an additional O2 uptake of 1.22 and
0.51 mmol m�2 h�1 in July and November, representing 58% and
53% of TOU, respectively (Table 1). These estimates are on the low
end of previously reported rates of fauna-mediated O2 uptake,
which range widely from 0.3 to 7.7 mmol m�2 h�1, representing
10e80% of TOU (Forster and Graf, 1995; Kristensen, 2001; Webb
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and Eyre, 2004; Na et al., 2008; D'Andrea and DeWitt, 2009;
Volkenborn et al., 2010).

The shallower O2 penetration, greater TOU, DOU and nutrient
fluxes observed in July reflect a greater sediment community meta-
bolic activity than in November (Table 1). This seasonal difference in
benthic metabolism may be due to the higher ambient temperature
or a greater labile organic matter content in sediments in summer.
The effect of temperature alone can be approximated using an esti-
mate of the temperature dependence of microbial respiration in
sediments, represented by Q10, which designates the increase in
respiration associatedwith a 10 �C increase in temperature. In coastal
sediments, Q10 is typically in the range of 2e3 (Therkildsen and
Lomstein, 1993; Thamdrup and Fleischer, 1998; Hancke and Glud,
2004), so a temperature decrease of 4 �C from July to November
would result in a decrease in sediment community metabolism by
31e55%. However, the observed decreases in O2 uptake rates are
100% and greater, with the exception of DOU in defaunated cores
after lugworm addition, suggesting that other factors may also
contribute to the seasonal difference in sediment O2 uptake.

One possible explanation for the large seasonal difference in
sediment O2 uptake may be an increased availability of labile
organicmatter in July relative to November, although this cannot be
verified here. Another possible explanation is the transient oxida-
tion of a reservoir of reduced compounds such as iron sulfides. In
principle the respiratory quotient (RQ), which represents the ratio
of C remineralized (RMIN) to O2 consumed (TOU) by sediment
community respiration, can be used to examine the degree of
reoxidation of reduced compounds associated with anaerobic
remineralization (Therkildsen and Lomstein, 1993). For example,
the oxidation of Redfield organicmatter to CO2 andNO3

� will result
in a RQ of 0.77 (Paulmier et al., 2009). In principle, RQ will increase
with an increasing importance of suboxic and anaerobic respiratory
pathways, such as denitrification, iron oxide reduction, and sulfate
reduction, coupled to the burial of reduced metabolites in the form
of iron sulfide minerals.

Measured RQ values in November did not change significantly
after lugworm addition, and did not differ significantly from the
decomposition of Redfield organic matter (Table 1), suggesting that
reduced metabolites produced by anaerobic remineralization were
efficiently reoxidized without significant burial of iron sulfide
minerals. In defaunated cores in July, measured RQ was lower than
that observed in November (Table 1). Although this difference was
not significant (U ¼ 22.5, n1 ¼ 7, n2 ¼ 10, p ¼ 0.12), a higher O2
uptake relative to DIC release in July may be attributed to the
transient reoxidation of accumulated reduced compounds in sedi-
ments, associated with the activity of long distance electron
transport (LDET, Risgaard-Petersen et al., 2012; see discussion in
Section 4.5). After lugworm addition, higher and more variable
values of RQ were observed in July, suggesting an enhanced non-
steady-state flushing of DIC produced in deeper layers (Table 1),
released by bioirrigation. This accumulated DICwas likely produced
by anaerobic respiration, in general agreement with the large
accumulation of alkalinity in deeper sediments in defaunated cores
(Fig. 4). Therefore, the high RQ values observed in defaunated cores
after lugworm addition in Julymay be an artifact of the short period
(2 days) between lugworm addition and flux measurements, only
twice the flushing time calculated for these cores by bioirrigation
(see Section 4.1). In November, porewater solute distributions were
likely at or near steady state at the time solute fluxes were
measured in defaunated cores after lugworm addition due to lower
respiration rates, despite an equivalent delay between lugworm
addition and final flux measurements (6 days, equal to about twice
the calculated flushing time of 2.9 days). This can explain the lower
and less variable RQ values in defaunated cores after lugworm
addition in November (Table 1).
Presumably, greater benthic metabolic activity in summer is
expected to coincide with a shallower sulfide horizon due to higher
rates of oxygen consumption and sulfate reduction in sediments.
However in our experiments, the opposite was observed, with
sulfide oxidation occurring deeper in sediments in July than in
November (Table 1, Fig. 3). This may be due to the activity of LDET, a
process capable of creating a wide suboxic zone, in July, as dis-
cussed in Section 4.4.

Lugworm activity enhanced the efflux of NH4
þ, PO4

3�, and
Si(OH)4, in agreement with a positive effect on total benthic
metabolism (Huettel, 1990; Banta et al., 1999). In particular,
measured DIN effluxes exceeded predictions based on rates of
remineralization of Redfield ratio organic matter, resulting in C:N
ratios generally below Redfield (6.6, Table 1). This trend is due to
high NH4

þ efflux relative to RMIN, which may have resulted from the
delayed desorption of accumulated NH4

þ in sediments produced by
anaerobic respiration (Mackin and Aller, 1984).

Particle mixing by bioturbation also promotes the turnover of
oxidants in sediments, by transporting reoxidized metabolites such
as iron oxides to depth for reductive dissolution, and transporting
reduced compounds such as iron sulfide minerals upward into the
oxic surface layer for reoxidation. As such, sediment reworking
activities enhance the reactive Fe content in coastal sediments and
increase the relative importance of Fe(III) reduction in organic
matter remineralization (Canfield et al., 1993; Kostka et al., 2002).
The importance of bioturbation in maintaining an active Fe cycle in
sediments was confirmed by the lower porewater Fe(II) concen-
trations observed in defaunated sediments in November, indicative
of weaker Fe reduction rates, relative to intact sediments and
defaunated sediments after lugworm addition (Fig. 4).

4.3. Alkalinity production in sediments

Alkalinity generation in sediments, by denitrification and
anaerobic respiration, is thought to account for an important frac-
tion of CO2 uptake in the North Sea (Thomas et al., 2009). With the
high shellfish densities contributing biogenic CaCO3 to sediments
in the Oosterschelde (Coosen, 1986), one would expect that CaCO3
dissolution may also represent an important source of TA in these
sediments, which we evaluate here based on the ratio of Ca2þ to TA
efflux (rCa:TA). This ratio is expected to approach ½ if CaCO3 disso-
lution is the dominant source of TA in sediments, while lower ratios
indicate important alternative TA sources such as denitrification or
iron sulfide burial.

In November, the net TA release from sediments was almost
entirely due to CaCO3 dissolution (rCa:TA ¼ 0.52 ± 0.10 for defau-
nated cores before and after lugworm addition and 0.43 ± 0.15 for
intact cores). However, porewater profiles measured in November
suggested two separate TA sources in surface sediments and at
depth (Fig. 4). In intact cores, overlapping Ca2þ and TA maxima in
surface sediments signaled a TA source associated with carbonate
dissolution, while a second TA maximum between 3 and 6 cm
depth was produced by organic matter remineralization coupled to
iron and sulfate reduction. These anaerobic respiration pathways
produce TA, Fe(II) and HS� at depth, which combine to form
reduced sulfur minerals such as iron monosulfide (FeS) and pyrite
(FeS2). The accumulation of these minerals results in the net pro-
duction of TA at depth (Hu and Cai, 2011), which presumably
obscured the surface TA maximum associated with carbonate
dissolution in defaunated cores before and after lugworm addition
(Fig. 4). Reoxidation of these reduced iron and sulfide compounds
in the presence of O2 limits their accumulation and releases acidity,
thereby neutralizing TA produced by anaerobic respiration,
lowering porewater saturation state (U) with respect to carbonate
minerals, and promoting CaCO3 dissolution. Deeper O2 penetration
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in November due to lower sediment metabolic rates (Table 1, Fig. 3)
likely favored the reoxidation of reduced compounds, and therefore
net TA production by carbonate dissolution.

In July, CaCO3 dissolution represented between 23 and 69% of
the total TA flux from sediments (rCa:TA ¼ 0.22 ± 0.08), with the
exception of one core in which net calcification was observed. The
remaining TA production in July may be due to net suboxic or
anaerobic mineralization as discussed above, which should bemost
important in summer due to the greater benthic metabolic activity
(Table 1). However, other TA sources may also have been important
in July such as long distance electron transport, as will be discussed
further below (Section 4.4).

Alkalinity and Ca2þ efflux were enhanced by macrofaunal ac-
tivity (Table 1). To assess the potential role of this effect in natural
sediments, it is important to examine whether the enhanced TA
and Ca2þ fluxes measured in defaunated cores after lugworm
addition may have been experimental artifacts associated with a
transient release of solutes built up in sediment porewater during
defaunation (Fig. 4), or the non-steady-state reoxidation of reduced
metabolites that accumulated in sediments during defaunation,
resulting in the acidification of sediment porewater and enhanced
CaCO3 dissolution. An important obstacle in evaluating such tran-
sient effects in this study is that bioirrigation is inherently a non-
steady state process.

Here, an equilibration period equivalent to about 2 times the
residence time of porewater with respect to measured bioirrigation
rates (tres) was included in the experimental design, before the
measurement of solute fluxes and porewater solute distributions
after lugworm addition to defaunated cores, to permit porewater
solute distributions to re-equilibrate with bioirrigation. As
observed in the November experiment, porewater distributions of
Ca2þ, TA and Fe2þ measured after lugworm addition approach
those measured in intact cores (Fig. 4). This suggests that the
equilibration period was sufficient to re-establish equilibrium in
the porewater carbonate system, and the observed effect of bio-
irrigation on solute fluxes was not a transient one. This is consistent
with the observation that Ca2þ and TA fluxes measured in defau-
nated cores after lugworm addition in November approached those
measured in intact cores prior to defaunation, which were both
>3� higher than fluxes in defaunated cores. In July, solute fluxes in
intact cores and porewater Ca2þ, TA and Fe2þ distributions were not
measured. However, the effect of lugworm addition in July was
similar to that observed in November, resulting in a 4.7-and 4.0-
fold increase in TA flux in July and November, and a 5.0-fold and
5.6-fold increase in Ca2þ flux in July and November. Based on (1) the
similarity in the effect of lugworms on TA and Ca2þ fluxes in July
and November, (2) the similarity in the relative equilibration period
between lugworm addition in defaunated cores and the measure-
ment of solute fluxes in July and November (about 2 tres), and (3)
the similarity in porewater solute distributions in intact and
defaunated cores after lugworm addition in November, we infer
that the observed effect of lugworm activity on Ca2þ and alkalinity
flux was not likely an experimental artifact. This conclusion is
confirmed by the observation of transient TA fluxes for 2.8 days
immediately following lugworm addition to defaunated cores
collected in November 2011 (see Supplementary Material), only
slightly less than the 2.9 day tres calculated for the November
experiment (Section 4.1).

The release of Ca2þ and TA from Oosterschelde intertidal sedi-
ments is indicative of CaCO3 dissolution resulting from the pro-
duction of metabolic acidity in these sediments, since coastal
surface waters are supersaturated with respect to CaCO3. Lugworm
activity enhanced metabolic dissolution efficiency (Table 1),
although the effect was significant only in November (U ¼ 21,
n1 ¼ n2 ¼ 5, p ¼ 0.05). It is interesting to note that the response of
metabolic dissolution efficiency, εD, to lugworm activity runs
counter to the effect of porewater advection in biogenic carbonate
sands. Rao et al. (2012) reported a decrease in metabolic CaCO3
dissolution efficiency with increased porewater advection in reef
sands due to the reduced residence time of metabolic acidity in
porewater. In terrigenous sediments, however, carbonate cycling is
intimately linked to coupled Fe and S cycling (Thomas et al., 2009;
Faber et al., 2012). It is likely that both porewater flushing and
particle reworking by lugworms increase εD in Oosterschelde sands,
as observed in November, by favoring aerobic mineralization and
the reoxidation of reduced compounds in sediments as discussed
above (Banta et al., 1999), enhancing the production of acidity
relative to total benthic metabolism, and increasing the sediment
volume exposed to undersaturated conditions with respect to
CaCO3. The absence of a significant effect of lugworm activity on εD
in July may be attributed to a potentially confounding effect
resulting from the development of LDET in core incubations in July,
which will be discussed in the next section.

4.4. The development of long distance electron transport in core
incubations

It has recently been proposed that the pH distribution in coastal
sediments can be altered by long distance electron transport
(LDET), mediated by electrogenic filamentous bacteria, which
couples spatially separated redox half-reactions (Nielsen et al.,
2010). These newly discovered sulfur-oxidizing bacteria,
belonging to the Desulfobulbaceae family (Pfeffer et al., 2012), can
remove sulfide down to 1e2 cm depth in the sediment and reduce
O2 near the sediment-water interface, thus potentially creating a
large suboxic zone. The local proton production and consumption
associated with these oxidation and reduction half-reactions
generate distinctive porewater pH signatures, as observed in Oos-
terschelde core incubations in July. Sharp pH peaks in darkened,
oxic surface sediments overlying a thick suboxic zone are an
important indication of proton consumption associated with oxy-
gen uptake by LDET, since all other processes occurring in the oxic
zone are known to generate protons, with the exception of
photosynthesis (Nielsen et al., 2010). The pH minimum at depth
associated with sulfide oxidation by LDET has been observed to
stimulate the dissolution of carbonates and iron sulfides (Risgaard-
Petersen et al., 2012). The remobilized Ca2þ and Fe2þ subsequently
diffuse upward into the oxic zone, where they are deposited as high
Mg calcite and iron oxide minerals. In this way, LDET promotes
carbonate and iron cycling in coastal sediments, and therefore may
also play an important role in alkalinity generation, modulating
benthic fluxes of dissolved inorganic carbon and alkalinity.

We infer that LDET is active in July but negligible in November
based on porewater microprofiles measured in core incubations
(Table 1, Fig. 3). Porewater pH distributions with peaks at the base
of the oxic zone andminima in deeper suboxic layers, characteristic
of LDET, were predominantly observed in July, and only on rare
occasions in November. Other possible explanations for surface pH
maxima at the base of the oxic zone include 1) photosynthesis,
which we have excluded in this experiment by conducting in-
cubations in darkness, and 2) the aerobic oxidation of sulfide to
elemental sulfur, which can be excluded here given the absence of
sulfide in the upper 1e2 cm of H2S profiles measured in parallel.
Therefore, we consider that LDET is the most likely explanation for
these porewater pH profiles. Indeed, Nielsen et al. (2010) first
described this distinctive pH signature and concluded, based on
similar measurements in core incubations, that these observations
are an important indication of LDET in sediments.

The occurrence of LDET explains the higher TOU, DOU, and RQ,
shallower OPD and deeper sulfide horizons observed in defaunated
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cores in July relative to November. Note also that metabolic disso-
lution efficiency, εD, was generally lower in July relative to
November. One explanation for this may stem from the occurrence
of LDET in July. While low pH conditions induced by LDET in deeper
sediments stimulate CaCO3 dissolution, the high porewater pH and
U produced by LDET in surface sediments promotes interfacial
calcification (Risgaard-Petersen et al., 2012), and may thereby
reduce net metabolic carbonate dissolution and εD in summer. It is
not possible to determine the relative importance of LDET and
remineralization in controlling εD at this time, but the potential
importance of LDET in sediment TA generation warrants further
study.

In July, the porewater LDET signature described above was
strongest in defaunated cores prior to lugworm addition, with
weaker and less frequent signals observed after lugworm addi-
tion only between fecal casts. This observation confirms that
bioturbation by benthic fauna disrupts LDET, as discussed by
Malkin et al. (2014) and suggested by Nielsen et al. (2010). The
indication that LDET developed in summer but not in the fall also
suggests the potential importance of seasonality on LDET
development.

4.5. Conclusions

Our results confirm previous reports of enhanced benthic
metabolism and nutrient fluxes in the presence of burrowing
infauna such as Arenicola marina, and demonstrate for the first
time, the positive effect of biological mixing on alkalinity produc-
tion in intertidal sediments. Two ex situ experiments in July and
November 2011 revealed the importance of seasonality in the
biogeochemistry of Oosterschelde sediments. Greater benthic
metabolic activity in summer, likely due to higher temperatures,
led to higher remineralization and O2 consumption rates, shallower
O2 penetration, higher nutrient, Ca2þ and TA fluxes than in the fall.
Stronger bioirrigation in summer also resulted in a more pro-
nounced positive effect of A. marina on interfacial solute fluxes than
in the fall. An unexpected result was the indication of microbial
long distance electron transport in these sediments in summer.

Our measurements provide direct confirmation of a strong
alkalinity source in coastal North Sea sediments, which was pre-
viously suggested by extensive water column surveys (Thomas
et al., 2009). Assuming the observed TA production rates
measured in this study are representative, and integrating this
benthic TA production rate over the intertidal area of the southern
North Sea (approximately 5000 km2) implies an annual alkalinity
source of 53e160 Gmol. This corresponds reasonably well with the
estimate of Thomas et al. (2009) of 73 Gmol TA produced annually
in the Wadden Sea. On the ecosystem scale, benthic alkalinity
generation buffers CO2 release by autochthonous CaCO3 production
and organic matter decomposition in the water column and in
sediments, therefore facilitating a net CO2 drawdown from the at-
mosphere (Thomas et al., 2009). It is therefore critical to under-
stand the biogeochemical processes responsible for alkalinity
production in coastal sediments.

Alkalinity production in intertidal Oosterschelde sediments was
entirely due to carbonate dissolution in the fall, with other pro-
cesses, including anaerobic respiration and LDET, playing an
important role in summer. In agreement with previous studies,
sediment reworking enhanced Fe turnover in sediments. The effect
of lugwormmixing on Fe reoxidation and porewater O2 supply, and
the ensuing production of metabolic acidity in surface sediments
may also explain the observed increase in metabolic CaCO3 disso-
lution efficiency in the presence of biological mixing in the fall. A
similar response of dissolution efficiency, εD, was not observed in
summer, however, when εD was generally lower, either due to
greater net anaerobic respiration rates or to enhanced interfacial
calcification associated with LDET.

The importance of carbonate dissolution in fueling alkalinity
production in Oosterschelde sediments is noteworthy in view of
previous reports that anaerobic respiration and denitrification
represent the dominant alkalinity sources in sediments (Thomas
et al., 2009; Hu and Cai, 2011). Our results underscore the impor-
tance of sediment geochemical composition and the mode of
porewater and particle mixing, which are likely to account for
much variability in the relative importance of different benthic
alkalinity sources (Krumins et al., 2013).
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