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Abstract

In this paper we analyze a generalized Jackiw—Rebbi (JR) model in which a massive fermion is coupled
to the kink of the A¢4 model as a prescribed background field. We solve this massive JR model exactly and
analytically and obtain the whole spectrum of the fermion, including the bound and continuum states. The
mass term of the fermion makes the potential of the decoupled second order Schrodinger-like equations
asymmetric in a way that their asymptotic values at two spatial infinities are different. Therefore, we en-
counter the unusual problem in which two kinds of continuum states are possible for the fermion: reflecting
and scattering states. We then show the energies of all the states as a function of the parameters of the kink,
i.e. its value at spatial infinity (6p) and its slope at x = 0 (). The graph of the energies as a function of 6,
where the bound state energies and the two kinds of continuum states are depicted, shows peculiar features
including an energy gap in the form of a triangle where no bound states exist. That is, the zero mode exists
only for 6 larger than a critical value (98). This is in sharp contrast to the usual (massless) JR model where
the zero mode and hence the fermion number £1/2 for the ground state is ever present. This also makes
the origin of the zero mode very clear: It is formed from the union of the two threshold bound states at 6,
which is zero in the massless JR model.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

In 1976 Jackiw and Rebbi [1] introduced the important concept of the fractional fermion
number of the solitons, considering two different fermion-soliton models, one of them in one
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and the other in three spatial dimensions. In both models, the key observations that lead to the
fractional charge of the soliton are that the models possess charge conjugation symmetry and
also there is a nondegenerate zero-energy fermionic mode. They showed that in the presence
of the zero mode the prescribed soliton is a degenerate doublet carrying charge +1/2. In the
ensuing decades there has been a vast number of works confirming and elaborating on the JR
finding. This discovery has motivated much of the works on this subject and the concept of
the vacuum polarization by background fields has been investigated in many branches of physics
such as particle physics [1-12], cosmology [13—17], condensed-matter physics [18-21], polymer
physics [22—24] and atomic physics [25-27].

We now explain some of these works which are relevant to this paper. In 1981 Goldstone and
Wilczek [2] invented a powerful method, called the adiabatic method, for calculating the vacuum
polarization of fermions induced by the background solitons. In this method the final topological
background field, which is assumed to be slowly varying in space, is considered to be slowly
evolving from the topologically trivial configuration. Using their method, they investigated some
models which lack the symmetry in the energy spectrum of the fermion and showed that the
fermion number of the vacuum can be any real number and not just £1/2. Later on this method
was generalized by MacKenzie and Wilczek [3.4]. In their method the requirement of the slow
spatial variation of the background field was lifted and therefore they could consider models
including solitons with arbitrary variations in the space. Using their method, they concluded that
sharply varying solitons can never polarize the vacuum. Following these works, some authors
used these methods to investigate the vacuum polarization for different models. In one of these
papers, the authors [5] studied an exactly solvable model in which a fermion is coupled to a
background field with two adjustable parameters. By varying these parameters, one can have
different topological background fields with different topological charges and scale of variation.
Using this simple model, they were able to explore the effect of the scale of variations of the
solitons on the vacuum polarization.

In the JR model there is no explicit mass term for the Fermi field and the zero mode is always
present, regardless of the values of the parameters of the model. These parameters are the Yukawa
coupling constant, denoted by g, the values of the background field at spatial infinity, denoted by
6o, and its slope at zero, denoted by 1. In a previous paper we presented exact solutions for the JR
model and showed explicitly that there is a dynamically generated mass Mo = g6 [28]. We also
reasoned that as 6 increases and a mass gap appears in the spectrum, the two threshold bound
states which separated the continua at 8y = 0, join to form the ever present self-charge-conjugate
nondegenerate zero mode. In this paper we generalize the JR model by adding an explicit mass
term for the Fermi field, denoted by M, and solving the dynamical equations exactly, we find that
the system possesses some unusual properties. In particular the potentials appearing in the two
Schrodinger-like equations obtained from decoupling the Dirac equation have unequal values at
x — *oo. Therefore, we have, in addition to the usual bound and continuum states, reflecting
continuum states. Moreover, a schematic plot of the spectrum as a function of 6y reveals an
energy gap region in the form of a triangle where no bound states can exist. The end point of this
region is a critical value 65 = M/g. The zero mode is formed from the union of the threshold
bound states present at this point and this zero mode exists for 6y > 6. For the JR model 65 = 0.
Hence the vacuum polarization is zero for 6y < 93 and £+1/2 for 6y > 98.

In Section 2 we define the massive JR model which includes a massive fermion interacting
with a prescribed background field in the form of the familiar kink. We then briefly discuss
some important symmetries of our model which are the same as the original massless JR model.
In Section 3 we obtain the second order decoupled Schrodinger-like equations obtained from
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the first order Dirac equation. Then, we solve these decoupled differential equations analytically.
Depending on the range of energy, three kinds of states are possible for the fermion. We first find
the bound states in Section 3.1. The second kind of states which we call reflecting continuum
states are obtained in Section 3.2. The wave functions of these states vanish at x — 400 but are
a superposition of an incident wave and a reflecting one with equal amplitude at x — —oo. In
Section 3.3 we obtain and discuss the continuum scattering states. The wave functions of these
states are oscillatory at both spatial infinities. In Section 4 we plot the allowed energies of the
fermion as a function of the parameters of the kink, i.e. 6y and u. In these graphs we plot the
energy levels of the bound states and also show the region for the energies of the reflecting and
scattering states. We observe that the zero mode in the massive JR model is not always present
and there is an energy gap in the form of a triangle in the 8y graph in which no state is permitted.
In Section 5 we summarize the results and draw some conclusions.

2. The model

Consider a (1 4 1)-dimensional model including a Fermi field ¢ coupled to a pseudoscalar
field ¢.|, and defined by the following Lagrangian

L=y[if — M — gpa(x)]¥, (1)

where M is the mass of the free fermion, g is a positive coupling constant, and ¢ (x) is a pre-
scribed background field in the form of ¢¢(x) = (m/ \/X) tanh(mx/ «/E) which is the kink of
the ¢* theory. Notice that the Lagrangian has an explicit fermion mass term and the mass of
the fermion is nonzero even in the noninteracting case. However, the interaction term changes

. 2
the mass of the fermion at the tree level. We can define two parameters 6y = % and u = %,

which are the value of the kink at spatial infinity (¢ (c0)) and its slope at x =0 (% |x=0), respec-
tively. We choose the following representation for the Dirac matrices: y° = o7 and y! = io3.
This model possesses the charge conjugation symmetry. This operator relates the states with
positive energy to the ones with negative energy as V¢ , = 03}, and a zero-energy fermionic
mode, if it exists, is self charge conjugate, i.e. ¥ = 037 = 0. One can easily check that
this system also possesses the particle conjugation symmetry whose operation is ¥_g = o3Y'E.
Therefore, for every state with energy E, there is a corresponding state with energy — E and the
fermion spectrum is completely symmetric with respect to the line £ = 0. This model is not in-
variant under the parity, since the background field is the kink which is an odd function in space.
Hence, this model does not preserve the CP and consequently it is not invariant under the time
reversal. Notice that all the symmetries of this massive model are the same as the massless one
(M =0).

In the following section we solve the equations of this model exactly and find the whole
spectrum of the fermion, including the bound and continuum states.

3. Spectrum of the fermion in the presence of the background field

The presence of the background filed can in general cause essential changes in the spectrum
of the fermion. To find the spectrum of the fermion in our model, we solve the Dirac equation

of the Lagrangian (1). Choosing v (x, 1) = e ™' £’ (f:g; ) the Dirac equation in the presence of
the background field ¢ (x) is as follows
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Vi(x)

(M+g€/0)2

Fig. 1. The graphical representation of the potentials V4 (x) as a function of x. Solid and dashed lines show V4 (x),
respectively. For this figure the parameters of the model are chosentobe M =1.3, g =3.6,6p =1.5and u =2.

<_3x — M — g¢a(x) E ) (Wr(X)) —0 @)
E O =M —gga(x) ) \ ¥~ (x) '

This equation consists of two coupled first order differential equations. In order to find the
fermion spectrum, it is easier to first obtain the two decoupled second order equations obtained
from Eq. (2). Then, we can construct the solutions to the original Dirac equation (2). The second
order equations are two Schrodinger-like equations which can be written as

d>yE(x)
dx?

where e = (E*)? and the potentials V4 (x) are as follows

2
Vi(x) = |:M + g6 tanh(eﬁx>:| T ou sechz(eﬁx). (4)
0 0

Fig. 1 shows these potentials as a function of the spatial variable x for a particular choice of
the parameters of the model. For energies less than the asymptotic values of the potentials at
x =—00 (M — gb)?) and greater than the minima of the potentials, which are different for
Vi(x), some bound states with discrete energies are possible. Also, all energies higher than
(M — gbp)? are allowed. However, as we shall see, the continuum states with energies in the
range (M — 800)% < €+ < (M + gbp)?* are different from the continuum states with energies
higher than (M + g6p)?. From now on we use the redefinitions x — %Ox, g— e%g, E — é‘—OE
0

+[ex = Ve@]yF () =0, 3)

and M — eﬁM , for the brevity of the notation. Applying these redefinitions, Eq. (3) remains the
same and the potentials V1 (x) change as follows

Vi(x) = [M + gtanh(x)]* g sech?(x). (5)

The solutions to Eq. (3), are well known [29,30]. Here we present a very short derivation of the
solutions mainly for the purpose of setting up our notation. We choose the following form for

YEW)
¥E(x) = e % sech?™ (x) Fi (x). (6)
Substituting this ansatz into Eq. (3), we obtain

d?Fi (x)
dx2

dFy(x)

- 2[a:|: + by tanh(x)] &

e %% gech? (x) {
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+[ad + b1 - g? + (EX) = M2
+2(asbs — gM) tanh(x) + (g £ g — be(bs + 1)) sechz(x)]Fi(x)} =0. (7)
We choose the following conditions

atby —gM =0, (3)
a} + b3 — g%+ (E)’ — M* =0, ©)

which are equivalent to

as = 3 [Vig+ M2 = (B2) — g~ M7 — ()] = S 1 k), (10)
b= 3 [Vig 4 M2 — (55 + g — M2 — (%) ] = S0 +02). (an

Using these conditions and an appropriate change of variables, i.e. u = %[1 — tanh(x)], which
maps x € (—o0, +00) to u € (1, 0), the differential equation of Fi (x) turns into a hypergeomet-
ric equation. Therefore, the solution of Eq. (7) can be written as follows

1 1 1
A2F1<bi+§—g3F bi+2+g:|:2 1+a:t+b:t§u>
by 1 1 1 1
+ Bu 2 I —ai+§—g$§,—ai+§+gi§,l—ai—bi;u , (12)

where 2 F1 (¢, B, y; u) is the hypergeometric function, and A and B are the expansion coef-
ficients. These coefficients should be determined by the use of the asymptotic behavior and
normalization of the wave functions.

3.1. Bound states

We devote this subsection to finding the bound state wave functions of the fermion and their
associated discrete energies. As we stated before, when e+ < (M — g)z, some bound states are
possible for the fermion and the equations of motion would have solutions vanishing at spatial
infinities. To find such solutions in which limy_s 4o lpi(x) =0, we set b+ > a4 > 0 to turn
exp(—xa-) sech’® (x) into a damping factor. The hypergeometric function is finite for 0 < u < 1.
However, since both b4 and a4 are positive, lim,_, u—%~b+ — 50 and therefore the second term
in the solution (12) diverges. Setting B = 0, the solution for our equations would be as follows

UE(x) = e % sech’ (x) Fi (x)
Nie ¥+
- (e* + efx)bi

1 1 1 e ¥
X2F1<bi+2_g:|: bi+2+gi2 1+ai+bi;m>, (13)

where N4 are the normalization factors for the upper and lower components of the bound state
wave functions, respectively. These solutions have the proper behavior when x — +o0, i.e.
limy_s 400 ¥ ox e~ *@=+b%)  However, their behavior near x = —oo is as follows
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[(ax + by + DI (by — ay)e¥ @705

Pbst 3-8 FPlbe+5+8+73)
T(at +bs + D (ay — by)e*bx—aw)
Fas+3-gFPlaz+5+g+5)

Since by > a+ > 0, the first term in this equation diverges unless the argument of one of the

gamma functions in the denominator of this term is a semi-negative integer. Therefore, for the
bound states we have the following constraint
1 1
bits—gFz=-n (13)
where n is a semi-positive integer. Using this constraint along with the constraints in Egs. (8),
(9), the allowed discrete energies of the system are obtained. These energies can be expressed in
terms of the original parameters of the Lagrangian, i.e. 6y and p, as follows

lim ¥ (x) =

(14)

B M2 T /'L2
ENV=|1- —— <2 n——nz),
( n) i (g6o — %ny- s 95
6
n=0,1,2,... < 2(g — /Mgby), (16)
I
r 2T 2
\2 M 1% 2)
E ) =|1-———F—||2gun — —=n" ),
( n) i (gg _%n)2_< 81 9(%
0
n=1,2,... < 2(g6) — v/ Mgbo). (17)
n
Notice that for the nth bound state to exist the parameters of the kink, i.e. 6y and w, should satisfy

2 3
the inequality (% —n)? > Mjf 0 obtained from the condition b1 > ay and Eq. (15). Also, the

upper bounds on the integer n have been obtained using this relation. The corresponding wave
functions are

14

N+e—a%x
v () =
Lx —Ly %%,
(e"o +e % ) r
62 Mg b 62 i
% e
X2Fl(—n,2g—0—n+l, Ay +g—0—n+1;ﬁ>, (18)
128 % —n 127 e%x —+ e_%x
n
Niefa%x
¥, (x) = 2
o 8%
(e90 +e % ) H n
2 93 2 —Ex
g9, Mgg g9, e %
xoFi| —n+1,2=— —n, — +——n+1l;, 54—, 19)
* % —n M e fe n"
4 N
where a = e L__ One can easily check that the solution v, (x) = e /£’ (i”_z;) with n =
8%, n
"
0, 1,2, ... satisfies the coupled first order Eq. (2), provided we set N_ /N4 = (;g—gn(l Em——

80— g;n
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Notice that 1//2‘ (x) and ¥, (x) in this doublet are the solutions to the second order equations,
with the same energy E, = E;” = E,, .

Now we focus our attention on the zero-energy mode (n = 0). Notice that the energy of the
lowest mode of the first Schrodinger-like equation (the upper sign in Eq. (3)) is zero. However,
the second equation (the lower sign in Eq. (3)) does not have a zero-energy mode. Hence, for
the zero mode only 1//0+ (x) is nonzero; and we can easily obtain the explicit form of the spinor
from Eq. (18). However, it is useful to find it directly using the first order Dirac equation (2).
Setting £ = 0 in this equation, we obtain two decoupled first-order equations which easily yield
the following solutions

s ¢%
Y () =cpe M [cosh(gﬁoxﬂ ! Yo (x) =c_eM [cosh(eﬂxﬂ Y o0

0
where ¢ and c_ are constant. Since ¥, (x) makes the fermion wave function for the zero-energy
mode unnormalizable, we set c_ = 0. Therefore, the wave function for this mode is as follows

g9§
e~Mx [cosh(%x)] [0

0
One can easily see that we should have 6y > 65 = M/g to have a normalizable bound state.
Notice that at 6 = 6 there exist two half-bound states, whose wave functions approach nonzero

constants at spatial infinities, and just after that the zero-energy bound state is formed from the
union of these threshold bound states and continues to exist for 6y > 95’.

Yolx) =cy 1)

3.2. Continuum reflecting states

Suppose that the energy ey is greater than (M — gfp)> but smaller than (M + gbp)>
(see Fig. 1). In this range the quantity x| = %\/(g@o + M)2 — (E1)? is real but the quantity
Ky = %‘\/(g@o — M)? — (E+)? = —iky is imaginary (see Egs. (10), (11)). As we know, contin-
uum states are possible in this range of energy. The wave functions of these states vanish when

x — +o00. However, they are oscillatory at x — —o0. Since when x — 400, the first solution
—(ax+bs) 5~
0

in Eq. (12) behaves as e , a+ + by = 2k should be positive. However, the second
solution in Eq. (12) does not have the proper behavior when x — +o00 and we should set again
B = 0. Thus, the wave functions of these solutions are as follows

_1 ikr) L
Nirse 2(K1+1k2) 90)6

vE ) = —

(e%x + e_%")%(fq —ika)

e%x + ef%x
(22)

1 . 1 1 . 1 e %t
x 2 F1 E(Kl —lk2)+§ —C+t, 5(/(1 —iko) + 3 +ir. 1+ 1 ——mm— |,

03 o
where {4 = 870 + % and N§® are the normalization factors for these states. We can eas-
ily check that these wave functions satisfy Eq. (2) if we set N°°/N{® = (—%K] + g6 +

e
M)/\/—g—ilcf + (g6p + M)2. These solutions behave as e “1%”" when x — +o0o and their
0

asymptotic behavior at the other boundary, i.e. x — —o00, is as follows
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I(—iky) &2

VYors (x > —00) = N$*T'(1 +K1)[

PG+ + 5 =BG — e+ 9 - 5)
[(iky) e %"
+ 1 K1 ( liz 1 K1 iky i| (23)
FG+ia+3+3 G-+ +73+73)
ey AL
The first term represents an incident wave at x = —o00, traveling in the positive direction (el k2 90 ),
and the second term a reflected wave at x = —oo, traveling in the negative direction (¢ ko * ).

3.3. Continuum scattering states

Now, we focus our attention on the states with energies greater than (M + g90)2. In this range
both the quantities k1 = —ik; and kp = —ikp are imaginary. All the energies of this range are
permitted and we have continuum states. The wave functions of these states should be oscillatory
in both of the spatial infinities, i.e. x — 300, and are as follows

CcSsS e%(kl_kZ)%x
+,L _ +,L
w (x) - ﬁx —ix —i
(e +e % )7(k1+k2)

—1 1
X 2F1<—(k1 +k2)+ ==y, = (kl + ko) + 3 + ¢4, 1 —iky;

e W
E,  _&y ) (24)
" +e %

CcSS %(kl_kZ)%x
+,R
Ve () = —

I3 —i
(et +e H)7 kithk)

—I 1 —I 1
Fi| — (& k — — 4, —(k k — 1 —iky;
><21<2(1+ 2)+2 lx 2(1+ 2)+2+§i iky

sy
e’
ﬁ) 25)
eh” +e %

where N} and NI} are the normalization factors for the continuum scattering states. These

solutions satisfy Eq. (2), when N} /N$} = (i § ok + 860 + M)/\/“ k? + (g60 + M)? and

Nfsj{/fo = (—i “ kz — g6 + M)/\/’g—;k% + (g60 + M)2. The asymptotic behavior of these
0

wave functions at the spatial infinities is as follows

. iky “
css[ F(1—ik)T (—iky) e
ELlrd+ea- 5 -Brd- J"—lfﬁ)
+L_
css TC(1—ik)T (iky) e 290 (26)

as x — —o&©0
F(%+Ci—’kl+lk2)r( Zi_lk1+lk2):| ’

NCSS ikl%x
+L¢€ s as x = +o00,
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wredo

M-gf,

-M—gf),

Fig. 2. The left graph shows the energies of the fermion as a function of 6y at i =2 and the right graph shows the
energies as a function of p at 6y = 1.5 for n < 30. In both graphs M = 1.3 and g = 3.6. In these graphs we show the
zero-energy fermionic mode with two bold lines. For this mode n = 0.

e I
css —th%x

N:t,R e s as x —> —oo,
X . iky éix
+R _ css [ T(1—ik)T(ik) e ' % @7
css T ik ik ik ik
FRLP Gt B =M G-t 5 -2

. . —iky fx

C'(1—ikp)T'(—iky) e 0

1 IR Tk > as X —> +o0.
FGHa—5 - N G5 =)

The asymptotic behavior of wcﬁszg]“(x) (Eq. (24)), shown in Eq. (26), corresponds to an incident
)
wave at x — —o0 moving to the right (elk2 %™), a reflected wave at x — —o0o moving back to the

ik iy A
left (e k2 %) and a transmitted wave at x — +00 moving to the right (elk1 %™). We can refer
to this as a left-scattering process. Analogously, the asymptotic behavior of wcing (x) (Eq. (29)),
shown in Eq. (27), describes a right-scattering process.

4. Graphical representation of the fermion spectrum

In this section we show the energies of the fermion in some graphs. In the left and right
graphs of Fig. 2 we depict the bound state energies as a function of the parameters 6y and .,
respectively. This figure also shows the energies of the continuum reflecting and scattering states,
denoted by ‘crs’ and ‘css’, respectively. The zero-energy bound state is shown with a bold line
in these graphs. As is well known, the zero-energy mode in the JR model, which is the origin of
the fractional fermion number 41/2 for the ground state, is always present, independent of the
parameters of the model. The free fermion in this model has no explicit mass term. Therefore,
there is no mass gap for the free Dirac field and the two threshold half-bound states present for
the free case in (1 + 1) dimensions have both zero energy in JR model. However, by turning
up the potential, a mass gap appears and the two zero-energy half-bound states merge to form
the single zero-energy bound state. However, the situation is different for the massive JR model.
As can be seen in the left graph of Fig. 2, there exists a mass gap for the free fermion of the
massive JR model and the energies of the two threshold half-bound states in the zero strength of
the potential are =M. By increasing the value of 6, these two states continue being threshold
bound states with energies =Mf = +=(M — g6p) until the lines of =My cross each other and
become zero at ; = M/g. After this point the two threshold bound states form a zero-energy
bound state. This zero mode is present for 6y greater than M /g and therefore from this point on
the fermion number of the vacuum becomes £1/2 as in the JR model. In addition to this mode,
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Yi(x) (%)
0.04

0.02/

‘ X ‘ X
1 2 3 I 2 3
L ~0.02 -
L ~0.04 -
. _
lpcrs(x) ll’crs(X)
0.04 0.04
A).oz N 0.02 f
‘ ‘ ‘ ‘ ‘ - ‘ ‘ ‘ ‘ N
-3 ) -1 1 2 3 3 -2 1 1 2 3
—0. F - ‘02 |-
~0.04 ~0.04 |

Fig. 3. The upper two graphs show the upper and lower components of the fermion wave function for the bound state
with n =1 as a function of the spatial variable x. The lower graphs show the upper and lower components of a sample
of the reflecting continuum states. The parameters of the model in all graphs are M = 1.3, g =3.6, u =2 and 6y = 1.5.

some other fermionic bound states separate from the lines +M; for 6y > M /g. Notice that no
bound states exist in the triangular region. In Fig. 3 we show some samples of the wave functions
of the bound states and the continuum reflecting states. As can be seen, all these graphs have the
proper asymptotic behavior.

5. Conclusion

In this paper we introduce and thoroughly investigate a massive Jackiw—Rebbi model con-
taining a massive fermion coupled to a prescribed background field in the form of the kink. The
only difference between this model and the original JR model is that in the present model the
fermion has a mass term even in the zero strength of the potential. We solve the equations of this
model exactly and analytically, for arbitrary choice of the parameters of the kink, and find the
whole spectrum of the interacting fermion. We show the energies of all the states of the fermion,
including the discrete bound states, the continuum reflecting states and the continuum scatter-
ing states and some samples of the wave functions in some graphs. We find that the mechanism
of dynamical mass generation is common to both models. In the graph of the energies of the
fermion as a function of 6y we see an energy region in the form of a triangle, in which no bound
state for the fermion is allowed including the zero mode. The zero-energy bound state exists only
for 6y > 65 = M /g and this is in sharp contrast to the original JR model where the zero mode is
always present, regardless of the values of the parameters of the model. Consequently, the kink
in the massive JR model does not always polarize the vacuum and vacuum polarization jumps
between the value zero and +1/2 at 6y = 6.
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