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1. Motivation 

The modal mu-calculus, due to Pratt and Kozen [ 12,8], is a natural extension of 

dynamic logic. It is also one method of obtaining a branching time temporal logic 

from a modal logic [3]. Furthermore, it extends Hennessy-Milner logic, thereby 

offering a natural temporal logic for Milner’s CCS, and process systems in general. 

(Discussion of the uses of the mu-calculus for CCS can be found in [4,6,9,13,15].) 

Within this context we are especially interested in whether or not a particular state, 

or process, in a finite model satisfies a mu-calculus formula. This is a different 

enterprise from that addressed by Emerson and Lei [3] who ask if a given formula 

is satisfiable in a given finite model. Their model checker appeals to standard 

approximation techniques for computing the set of states which satisfy a fixpoint 

formula. But then one has to compute all the states or processes in the model which 

satisfy that formula. 

In this paper we present a local model checker for the mu-calculus, as a tableau 

system. It checks whether or not a particular state satisfies a formula. Instead of 

using approximation techniques there is an implicit use of fixpoint induction 

(inspired by [9]). A maximal fixpoint formula, in effect, expresses a safety property. 

One shows that the assumption that a state has such a property leads to no unforeseen 

consequences. In contrast, a minimal fixpoint formula expresses a liveness property. 

Therefore one has to establish that the property holds of a particular state. Formulae 

involving alternating fixpoints [3] introduce subtleties. However the resulting 

tableau system is natural and an equivalent version of it has been implemented by 

Cleaveland [ 11. 

In Section 2 we describe the syntax and semantics of the modal mu-calculus. A 

small extension to the calculus, the addition of propositional constants, is detailed 

in Section 3. The model checker, presented as a tableau system, is given in Section 

4, while the proofs of its soundness, completeness and decidability are the topic 

of Section 6. Finally, in Section 5 we use the model checker to analyse a mutual 

exclusion algorithm when translated into CCS. 
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2. The modal mu-calculus 

The set of formulae of the modal mu-calculus is defined by 

A ::= 2 1 Q IlA 1 AAA 1 [a]A 1 vZ.A 

where 2 ranges over propositional variables, Q over atomic propositions, and a 

over a set of (action) labels. One restriction on vZ. A is that each free occurrence 

of 2 in A lies within the scope of an even number of negations. Derived operators 

are defined in the familiar way: Av B is ~(TAA 1B); (a)A is l[a]lA; and PZ. 

A is 1vZ. lA[Z := lZ], where A[Z := lZ] is the result of substituting 1Z for 

each free occurrence of Z in A. 

The mu-calculus, with action labels drawn from a set Act, is interpreted on labelled 

transition systems Y which are pairs of the form Y= (S, {+lla E Act}). S (or S,) 

is a nonempty set of states, and for each a E Act, + is a transition relation on states. 

We write s a s’ instead of (s, s’) E 5. Labelled transition systems are popular 

structures for modelling concurrent systems, [ 10,111, including process algebras 

such as CCS. S is then a set (or algebra) of processes and s % s’ means that process 

s may become s’ by performing the action a. In this context the mu-calculus can 

be viewed as a branching time temporal logic for CCS, a natural extension of the 

modal logic in [5]. 

A model ~2 for the mu-calculus is a pair Jtl = (5, V) where 9 (or Y&) is a 

transition system and V (or V,) is a valuation assigning sets of states to atomic 

propositions and variables: V(Q) s S, and V(Z) G SF. We assume the customary 

updating notation: V[S’/Z] is the valuation V’ which agrees with V except that 

V’(Z) = S’. Finally the set of states satisfying A in a model JII = (9, V) is inductively 

defined as [[All T (where for ease of notation we drop the index 9 which is assumed 

to be fixed) 

IIZII” = V(Z), IlOll” = v(Q); 

II~4lv=~~-llAllv, II~~~llv=lI~llv~ll~IIv~ 
~~[u]A]]v={s~S~~~s’.ifs~s’thens’~~]A]~v}, 

II vz. All v = U {S’s %I S’E llAllv~s~,z,I. 
The expected clause for the derived operator +Z. is 

~~IL~AllV=ns’~s~lIIAllV[S’/ZlCS’} 

A simple example is the model Ju = (9, V) where Y is 

s“ fb u 

‘9” 

and V(Q) = 0 for all atomic Q. Let R be the formula (b) true. Let A and B be 
the formulae 

A= vZ. py. (u)((R A Z) v Y), B=pY. z’Z.(u)((Rv Y)AZ). 

Now 

llAll?= {s, t), IIBII?=0. 
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The formula A expresses that on some uw path R holds infinitely often, while B 

expresses that on some uw path R holds almost always. In CCS, where states are 

processes, u represents the process 0 (Nil) which can perform no actions, while s 

and t are the processes 

s=fixZ a. (b.O+a.Z), t=fixZ. b.O+u. a. Z. 

Hence both processes s and t have the property expressed by A. 
A model is Jinite if its set of states is finite. Our interest is in the particular 

question: does state, or process, s have the property expressed by the formula A in 

the finite model -44 = ( y, V), i.e. is s E 11 AlI c? A natural technique is to compute the 

set llA[lv, [3], using approximation techniques when A contains fixpoint subfor- 

mulae. For instance, using semantic approximants, if V is a valuation let V,= 
V[S,/Z] and V,,, = &[jlAll “,/Z]. Then because the model is finite we know that 

II VZ All v = f-o K/i(Z) .> 

Also by finiteness we know that there is i 3 0 such that Vi(Z) = Vi+,(Z), and for 

such an i, V,(Z) = II uZ. AlI “. Finally one just needs to check whether or not the 

required state s is in this set. (A minimal fixpoint formula ~vZ. A can be dealt with 

by computing either ST - II vZ. AlI v or (JiaO V,(Z) where V,= V[@/Z] and Vi+1 = 
V,[ IIlA[Z := lZ]ll “,/Z].) But this technique is not intended to be sensitive to the 

fact that we are interested only in whether or not the particular state s lies in /A!( v. 
An apparent localisation is to appeal, instead, to syntactic approximants. Let 

(vZ.A)‘=trueand(vZ.A)‘+‘= A[Z := (vZ. A)‘]. Then again because of finiteness 

we know that 

SE II~Z.Allv iff Vi~O.sEj(vZ.A)‘(Iv. 

But again it is necessary to compute the complete fixpoint set, i.e. the set S’= 

1) ( vZ. A)i II v where II ( vZ. A)j 11 v = I( ( vZ. A) ‘+’ I( “. For there is no guarantee that 

if for somej, s E II( vZ. A)‘11 v n II( vZ. A) j+‘ll y then also s E II vZ. AlI “. 

An alternative, more local, approach to model checking (which does not depend 

on computing complete fixpoint sets) is to appeal to fixpoint induction. The idea 

is that s E ]I vZ. AlI v if the assumption that s E I] vZ. AlI v implies s E llA[Z := vZ. A] II v ; 
and in the case of a minimal fixpoint formula, s E 11~ Y. A([ v if the assumption that 

s& IlpY. Al( v implies s E llA[ Y := pY. A]11 “. This technique is used by Larsen [9] 

for a logic which disallows alternating fixpoints: each formula contains only maximal 

fixpoints or only minimal fixpoints. The major problem here, especially in the 

presence of formulae containing alternating fixpoints, is that of logically understand- 

ing assumptions of the form s E Ijv.Z. AlI v and s g 11~ Y AlI v as well as the notion 

of implication. The simple local tableau technique which we offer below not only 

caters for the full modal mu-calculus but also has a natural logical interpretation. 

There is, however, a small cost: a need to extend the mu-calculus to include 

propositional constants and definition lists. 
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3. Adding constants and definition lists 

The syntax of the mu-calculus is extended to embrace a family of propositional 

constant symbols. Associated with a constant U is a declaration of the form U = A 

where A is a closed formula, possibly containing previously declared constant 

symbols. A definition list is a sequence A of declarations U, = A,, . . . , U,, = A, such 

that lJi # Uj whenever i Zj and such that each constant occurring in Ai is one of 

U,,..., U,_l. This means that a prefix of a definition list is itself a definition list. 

When A as above is such a list we let dom( A) = { U1, . . . , U,,} and A ( Ui) = Ai. 

Moreover, if A is a definition list, U CZ dam(A) and each constant occurring in A is 

in dam(A), then A * U = A is the definition list which is the result of appending 

U = A to A. A definition list A is admissible for B if every constant occurring in B 

is declared in A. In this circumstance we let Bd be the formula B in the “environment” 

A (see Definition 1). The interpretation of formulae is now extended to formulae 

relative to admissible definition lists by, in effect, treating constants as variables. 

Definition 1. If A: U1 = A,, . . . , U,, = A,, is admissible for B then 11 Ba 11 v =df 11 B II “,, 
where V,= V and Vi+l= V;[I/Ar+,II./fJi+,I. 

This interpretation accords with the expected meaning of Bd in terms of syntactic 

substitution. 

Lemma 2. \IBd.U=AIjV= ll(BIU:=A]),IIv. 

Proof. By induction on the structure of B. 0 

A corollary, invoked later, is that if U does not occur in B then Bd.“=* has the 

same meaning as Ba. 

4. The model checker 

The model checker is a tableau system for testing whether or not a state s has 

the property expressed by a closed formula A in a finite model JII. As is common 

in tableau systems, the rules are inverse natural deduction type rules. Here they are 

built from “sequents” of the form s k-d A A, proof-theoretic analogues of s E IlAd II T. 

Each rule is of the form 

where k > 0, possibly with side conditions. The premise sequent s F;I” A is the goal 

to be achieved while the consequents are the subgoals, which are determined by 

the structure of the model “near s”, the definition list A and the structure of A. 
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Often, in the sequel, the index JU is dropped from the sequents. The intermediate 

use of definition lists is essential, as they keep track of the “dynamically changing” 

subformulae as fixpoints are unrolled. This is the key to the technique. Condition 

%‘, the side-condition on the constant rules, is explained later as it is a condition 

on proof trees, rather than on the particular sequents of the premises. 

s~-~T(AAB) st,l(A~B) 

stdlA ’ st,lB ’ 

s k-d [alA 
s, kd A.. . s, kd A 

iSI, ‘. . , s,}={s’~scs’}, 

s kd l[ a]A 

S’E, 1A 
s f+ s’, 

s t-A vZ. A 
__ A’is A. U=vZ.A, 

st,lvZ.A 

Sk,. u 
A’is A. U=lvZ.A, 

St, u 

s t, A[Z := U] 
%‘andA(U)=vZ.A, 

st,U 

s t, lA[Z := 1 U] 
%‘and A(U)=lvZ.A. 

A tableau for stM A is a maximal proof tree whose root is labelled with the 

sequent s t&A (where we omit the definition list when, as here, it is empty). The 

sequents labelling the immediate successors of a node labelled s tf A are deter- 

mined by an application of one of the rules, dependent on the structure of A. For 

simplicity we have allowed nondeterminism in the result sequents in the cases of 

l(A A B) and l[a]A, rather than entangling proof trees with or-branching as well 

as and-branching. Maximality means that no rule applies to a sequent labelling a 

leaf of a tableau. The rules for booleans and modal operators are straightforward. 

New constants are introduced in the case of fixpoint formulae, while the rules for 

constants unroll the fixpoints they abbreviate when condition ‘% holds. This condition 

is just that no node above the current premise, s t f U, in the proof tree is labelled 

s of) U for some A’. So failure of the condition, when there is a sequent s tf( U 

above s kf U, enforces termination. In fact the presence of condition Ce guarantees 

that when Ju is finite any tableau for s +A A is of finite depth. Notice that all the 

rules are backwards sound. For example, in the case of the rule for maximal fixpoints, 

if A’ is A. U = vZ. A and s E 11 U,)llv, then by Lemma 2, s E 11 vZ. Ad [Iv. Hence if the 
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leaves of a (finite) tableau 

then so is the root. 

A successful tableau for 
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are true, i.e. if whenever s t, A labels a leaf, s E ((Ad [Iv, 

s k"' A is a finite tableau in which every leaf is labelled 

by a sequent t t$ B fulfilling one of the following requirements: 

(i) B = Q and t E V,(Q), 
(ii) B=lQand tG V,(Q), 

(iii) B = [a]C, 

(iv) B= UandA(U)=vZ. C. 

A successful tableau contains only true leaves. This is clear for leaves fulfilling (i) 

and (ii). Maximality of a tableau guarantees it for leaves satisfying (iii), because 

then { t’[ t + t’} = 0. Of more interest is (iv): if t of, U labels a node in a tableau 

above a node labelled t Ff U where A ( U) = vZ. A, then indeed t E (( U, 1) ,,# (pro- 

vided that the other leaves beneath t ä 5 U are also true). An unsuccessful tableau 

has at least one false leaf, such as a leaf labelled t k,” Q where t g l/,(Q). Again, 

the most interesting failure is when a leaf is labelled t tf U where A ( U) = 1 vZ. A 

and above it is a node labelled t EZ, U. 

Tableau rules for the derived operators are just reformulations of some of the 

negation rules, 

st,AvB st,AvB 

st,A ’ st,B ’ 

s I-, (a)A 
s’kdA 

s: SI 

SF~/_LZ.A 

St,, u 
A’isA. U=pZ.A, 

s t-.d u 

s t-‘, A[Z := U] 
%andA(U)=pZ.A. 

If these operators were also taken as primitive (as in the case of normal forms) then 

the definition of successful tableau would be changed accordingly. 

The two important theorems follow. Their proofs are given in Section 6. For both 

we assume that Ju is finite. Theorem 4 affirms soundness and completeness, while 

Theorem 3 amounts to decidability (since there can be only a finite number of 

tableaux for s +.& A, up to renaming of constants). 

Theorem 3. Every tableau for s k”’ A is$nite. 

Theorem 4. s t.” A has a successful tableau if and only ifs E llAllv, . 

By employing more complex sequents the side condition %’ on the two constant 

rules can be replaced with a condition on sequents. Let an extended sequent have 

the form 

a--+s~~A 
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where (Y is a finite set of sequents, each of which is of the form t t-As U: the idea 

is that (Y contains all sequents above s +A A whose formula is a constant. The rules 

earlier can be trivially expanded to extended sequents. Two sample examples are 

Now the side condition %’ is replaced by s ~~~ Ug (Y for any A’. This simple 

reformulation of the rules is akin to the formalisation of sequent calculi from natural 

deduction systems. Recently Winskel [ 171 has discovered an alternative formulation 

of the tableau system which allows a clear semantic account to be given. We give 

a brief description of it and, by reformulating it using constants and definition lists, 

show the equivalence of the two approaches. 

Rather than extending the language with constants, given a model _& = (.Y, V) 

with S=(S,{ a 1 + a E Act}), Winskel introduces a family of operators vZ{.C}., one 

for each finite subset {St} of S. The interpretation is as follows: 

The crucial property of this family of operators is the following. 

Fact 5 (Winskel [17]). Suppose that no variable other than Z occurs free in A and 

that t & {g}. Then 

tEllvZ{.?}.Al(v iff tEIIA[Z:= vZ{s’}u{t}.A]II.. 

Winskel gives a set of reduction rules for determining whether or not a state s 

satisfies a closed formula A. We reformulate these rules as a tableau system using 

constants. 

Fix a model J4 as above. We modify the notion of definition list introduced in 

Section 3 as follows: A definition list is of the form 

A=(U1=(A,,JJ,..., K=C%,.LH 

where U, # Uj if if j, each A, is a closed formula of the form vZ. B or 1vZ. B 

which may contain U, , . . . , Ui_, , and each J, E S. As before A is admissible for B 

if every constant occurring in B is declared in A. If A is admissible for B then 

]I BA II v = II B II v, 

where V, = V and for i -=c n, V,+, = V,[(I(A,+, , Ji+l)ll v,/ Ui+,] where 

ll(vz. ~,J~IIv=u~~‘I~‘~J~II~IIv~,~,,,~, 

ll(bVz. c,J)Il.=s-Il(vz. G-QII”. 
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The modified tableau system has the same rules for boolean and modal operators 

as the original system. In place of the constant introduction and unfolding rules it 

has the following rules: 

s F‘, ~2. A 

s Ed’ u 
A’isA. U=(vZ.A,@), 

s~,luZ.A 

St--,* u 
A’isA. U=(lvZ.A,@), 

Sk, u 

s t--as A[Z := U] 
A(U)~=~Z.A,S&A(U)~, 

St--,, u 

s kn. lA[Z := 1 U] 
d(U),=lz~Z.A,s&d(U)~, 

where in the last two rules A’ is A[(A( U), , A( U),u {s})/ U]. 

The analogues of Theorems 3 and 4 above hold for this modified system. The 

proof of Theorem 3 goes over unchanged, while the crucial observation in the proof 

of Theorem 4 is the Fact above which shows that the two constant unfolding rules 

are both forwards and backwards sound. Completeness of the tableau system then 

follows by an easy simplification of the proof for the original system given in Section 

6, while soundness follows immediately from the fact that if s kd U is a leaf and 

A(U)=(vZ.A,J), then sEJ and so s~I(U~l]v. 

Cleaveland [l] has given another formulation of the tableau system which dis- 

penses with the use of constants but at the cost of a complex subformula test. His 

proofs also rely on an observation similar to Fact 5 above. 

5. Applications 

We begin with two examples to illustrate the tableau method. Suppose Ju = (5, V) 

is the model where Y may be pictured as 

so f 
‘Y3 

a 

and V(Q) = {t}. Consider the formulae 

A=vZ.~.Y.[U]((QAZ)V Y), B=pY vZ.[a]((Qv Y)AZ), 

which in Ju express, respectively, that on all paths Q holds infinitely often, and 

that on all paths Q holds almost always. We present a successful tableau for s +“u A 

and show that every tableau for t t;lc B is unsuccessful. 

In the following successful tableau for s t.M A, 

A,=(U,=A), A2=Al. (&=A,), A3=A2.(U3=A,), 

where A,=pY.[a]((Qr\ Ul)v Y). 
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s kA3 [al((Q A u,) V u,) 
t+-d3 (QA u,)V u, 

t FA, Q A u, 
tt-AiQ t FA3 u, 

In the following unsuccessful tableau for s t--& B, 

A,=(U1=B), A,=A,.(U,=B,), A,=A,*(U,=B,), 

where B1 = ~2. [a]((Q v U,) A 2). 

t +A, u, 
t tA, 4 
t kA, h 

t +A> [al((Q v u,) A 6) 
st,,(QV UI)A u, 

s kA, Q V u, s tA, & 
s tA, u, 
s tA2 B, 
s FA, 6 

s tA, [al((Q V u,) A ud 
tEA,(QV u,)A u, 

t FA3 Q V UI t kA3 u3 

t FA, Q t +A3 Cal((Q V u,) A u3) 

S~A,(QV UI)A u3 

s +A, Q V u, s FA3 u3 

s +A, u, 
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An important area of application of the model checker is to Milner’s CCS [lo]. 

An equivalent version of the checker has been implemented by Cleaveland [l] in 

the Concurrency Workbench (a joint UK SERC venture between Sussex and 

Edinburgh Universities [2]). The operational semantics of CCS is given in terms of 

labelled transition systems. However, there is more than one transition system 

associated with CCS according to whether or not the T action is observable. This 

distinction is marked by the differing transition relations 3 and 3 for a E Act. In 

fact, the action sets differ too: there is the relation 4 but not 3; and there is the 

relation 3, meaning zero or more silent moves, but not %. Thus, there are two 

different Hennessy-Milner logics for CCS [S], each characterising the appropriate 

(strong or weak) bisimulation equivalence. Their extension to include fixpoints 

preserves this characterisation [15]. These are sublanguages of the modal mu- 

calculus-for their sole atomic sentence is the constant true. 

We now offer a more substantial example: an analysis of Knuth’s mutual exclusion 

algorithm [7] when translated into CCS. Knuth’s algorithm is given by the concurrent 

composition of the two programs when i = 1 and i = 2, and where j is the index of 

the other program: 

while true do 

begin 

(noncritical section); 

L,: ci:= 1; 

L,:ifk=ithengoto Lz; 

if cj # 0 then goto L, ; 

L,: c,:=2; 

if CT, = 2 then goto Lo ; 
k:=i; 

(critical section); 
k:=j; 

ci := 0; 

end; 

The variable c1 (c2) of program one (two) may take the values 0, 1 or 2; initially 

its value is 0. When translated into CCS [lo, 161, the algorithm, assuming the initial 

value of k to be 1, becomes the agent Knuth below. For the example we let capital 

letters range over CCS processes (states of the CCS transition system). Here we are 

assuming that T is not observable (so the transition relations are of the form 2). 

Each program variable is represented as a family of agents. Thus the variable k 

with current value 1 is represented as an agent Kl which may perform actions 

corresponding to the reading of the value 1 and the writing of the values 1 and 2 

by the two programs. The agents are 

Knuth =df(P1 1 P2 1 Kl 1 C,O ( C,O)\L 
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L is the union of the sorts of the variables and 

Kl =,,-kwl. Kl+kw2. K2+krl. Kl, 

K2 =df kwl. K1-t kw2. K2-t kr2. K2, 

C,O=~fC,WO. cro+c,w1. c,1+c,w2. c,2+c,ro. c,o, 

C,l =&-C,WO. c,o+c,w1. c,1+c,w2. c,2+c,r1. Cl, 

C,2 =df~,~O. C,O+c,wl. C,l+c,w2. C,2+c,r2. C,2, 

C,O =df~Z~O. C,O+c,wl. C21+c2w2. C,2+c,rO. C,O, 

Czl =df~Z~O. CzO+czwl. Czl+c2w2. C,2+c,rl. C,l, 

C,2 =dfcZwO. C,O+c,wl. C,l+c,w2. C,2+c,r2. C,2, 

P, =dfr. Pllf?-.o, 

pII =df clwl. re%. pl2y 

P,* =df krl. PL4+ kr2. P,3, 

P,, =dfcZrO. P,,+czrl. P,,+c,r2. P,2, 

PM =df cIw2. plS, 

PI5 =dfc,rO. P,,+c,rl. P,,+c,r2. P,,, 

PI6 = df kw 1. enter,. exit, . kw2. a. P, , 

p,, =df c,wl. pl2, 

p2 =df 7. P2, + 7.0, 

p21 =dfC2W1. req2- p22T 

Pz2 = &- kr2. Pz4 + kr 1. Pz3, 

P23 =dfclrO. P2,+c,rl. P22iclr2. P22, 

p24 =df ‘%w2. p25, 

P25 =dfclrO. P26+clrl. P2,+clr2. P27, 

P26 = df kw2. enter,. exit,. kwl. c,wO. Pz, 

p27 =df c2wl. p22, 

Some remarks on this representation may be helpful. The critical section of process 

Pi, where i = 1 or 2, is modelled as a pair of actions enter, and exit, representing, 

respectively, entry to and exit from the critical section. The noncritical section of 

each process is modelled as a summation, one summand of which represents the 

possibility that the process may halt, the other that it may proceed to request 

execution of its critical section. An action req, appears in the definition of Pi. Its 

occurrence indicates that process P, has “just” indicated that it wishes to execute 

its critical section (by setting ci to true). The reason for including these “probes” 

will become clear below. Note also the presence of the agents P,, and the way in 

which the statement goto L,, is represented. The reason for this choice is that only 

the first ciwl action (setting ci to 1) is considered as signifying the initiation of an 

attempt by process i to execute its critical section. 

The agent Knuth has sort K = {enter,, exit,, reqi 1 i = 1,2}. We introduce two derived 

modal operators 

[KM- Aat~ [alA, W)A = V 0s~ (a)A. 
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We consider two questions. Firstly, does the algorithm preserve mutual exclusion? 

And secondly, is the algorithm live (in the sense that if a process requests execution 

of its critical section it will eventually enter its critical section)? We express these 

questions as follows: 

(1) We say that Knuth’s algorithm preserves mutual exclusion iff 

Knuth i= PME 

where PME (“preserves mutual exclusion”) is the following formula: 

~2. ((l((exit,)true A (exit,)true)) A [K&Z). 

(2) We say that Knuth’s algorithm is live iff 

Knuth b IL 

where IL is the formula 

~2. ([ req,]EICSl A [ reqJEICS2) A [ K]Z, 

where for i = 1,2, EICSi (“eventually in critical section i”) is the formula 

Some clarifying remarks may be helpful. 

(i) Process i is “in its critical section” if Pi reaches a state in which it may 

perform the action exit,. The formula PME is satisfied by an agent P of sort K iff 

for any s E K* and agent P’, if P > P’ then P’p(exit,)true A (exit,)true. Thus 

KnuthbPhE iff it never reaches a state with both P, and Pz in their critical sections. 

(ii) PI= EICSi iff there is no sequence ( uj ]j < w) E K w and no sequence ( Qj Ij < w) 

of agents such that QO= Q and for all j, Qj 2 Q,,, and Qj# (exit,)true. Thus 

Knuth b IL iff for i = 1,2, there is no path on which occur infinitely many visible 

actions and on which there is a “probe” req, (indicating that Pi has requested 

execution of its critical section) which is not followed by a corresponding action 

enter,. 

Using the concurrency workbench we have verified that Knuth’s algorithm preser- 

ves mutual exclusion and is live (for more details see [16]). The process Knuth 

consists of a number of agents in parallel. A more enterprising model checker would 

try to verify liveness and safety properties of Knuth by verifying appropriate 

subproperties of its components. Proof rules for structured model checking for the 

modal sublanguage of the mu-calculus are presented in [19]. We hope that these 

rules can be extended to the full mu-calculus. 

6. Proofs of termination, soundness and completeness 

We now prove the main results, Theorems 3 and 4. First a little notation. 

If B is a formula then Z(B) is the set of constants occurring in B. Recall from 

Section 4 that a tableau is a maximal proof tree with root labelled SE& A. Given 
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two nodes n and n’ in a tableau with n’ an immediate successor of n, we say that 

the sequent s’t,, B’ labelling n’ succeeds the sequent s kd B labelling n. Also, given 

two nodes n and n’ in a tableau labelled ~t-~ U and SF,, U’ respectively, we say 

that s’F~, U’ %-succeeds s kd U iff there is a sequence (n, , . . . , nk) of nodes such 

that n, = n, nk = n’, for 1 s iC k, ni+l is an immediate successor of ni, and for 

I< i < k, the formula of the sequent labelling ni is not a constant. 

Next we define a useful nonnegative integer measure, the degree, d(B), of a closed 

formula B. 

d(Q)=O, d(lQ) =O, d(U)=O, d(llB)= l+d(B), 

d(B~C)=l+max{d(B),d(C)}, d(l(B A C) = 1 +max{d(lB), d(lC)}, 

d([a]B)=l+d(B), d(l([a]B)=l+d(lB), 

d(vZ.B)=l+d(B[Z:= U]), d(lvZ.B)=l+d(lB[Z:=lU]). 

We extend this definition to sequents as follows: 

d(s+‘, B) = 
d(B) if B is not a constant, 

d(A(B)) otherwise. 

Lemma3.1. (i) Ifsl~~, B’ succeedssE, Band B’ isnota constant, then d(s’CdS B’) < 

d(sk, B). 

(ii) If s’E~, U’ %-succeeds st, U, then either U’E %?(A( U)) u { U}, or 

d(s’t-df U’)<d(s+, U) and ‘+Z(A(U’))c %?(A(U))u{U}. 

(iii) Suppose A is a prejx of A’ and U E dam(A). Then for any s, s’, d(s +A U) = 

d(s’kd, U). 

Proof. (i) By inspection of the tableau rules and the definition of degree. 

(ii) Suppose A( U) = vZ. B. Then either U’ is a subformula of B[Z := U], when 

U’ E %‘(A ( U)) u { U}, or U’ is introduced as vZ’. C (1 vZ’. C) which is a subformula 

of B[Z := U], in which case d( vZ’. C) < d(s t, U) and %(vZ’. C) G %‘(A( U)) u 

{U} (and similarly for ~vZ’. C). 

(iii) Immediate from the definition. 0 

We now prove the termination theorem. 

Theorem 3. Every tableau for s t& A is Jinite. 

Proof. We omit the index Jll. 

Suppose there is an infinite tableau T for s+A. Since T is finite-branching, there 

is an infinite path rr through T. Let u = (si t,, Ai 1 i < w) be the sequence of sequents 

labelling the nodes of n. Since for each i, St+, kdi+l Ai+1 succeeds si I--~, Ai, from 

Lemma 3.1(i) it follows that for infinitely many i, Ai is a constant. Also, since JU 

is finite, no one constant appears infinitely often on rr. 
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Consider the subsequence u’ = (si t- d: Ui ( i < w) of u consisting of those sequents 

whose formulae are constants. Note that for each i, sI+i E,;+~ U,,, %-succeeds 

si +-d: UP Suppose i. is the largest i with U, = U,. Then since %‘(A;( U,,)) = 0, by 

Lemma 3.l(ii), 

d($,+, +A;“+, uh+,) < d(si, +A:” &) and ~(AI,+,(u,+,)) c {%I-. 

Now suppose i, is the largest i with Uj = Ui,+i. Then again by Lemma 3.l(ii) 

d(s:,+, +A:,+, U,,+,) < d(sj, FA:, ui,+,) and %(A!,+,( u;,+,)) E { uo, U~,+L). 

By Lemma 3.l(iii), 

d(s:,+i tA:,+, &,+I) < d(sio+L tA:u+l u:o+l) < d(sh EAA us). 

By repeating this argument sufficiently often we obtain a contradiction since d is 

a nonnegative integer measure. 0 

Now we come to the proofs of soundness and completeness. 

Theorem 4. s kA A has a successful tableau if and only ifs E l/All “, . 

Proof. First some notation and a standard lemma. 

l If B = vZ. D then B” = true and Bit1 = D[Z := B’]. 

l If B = 1vZ. D then B” = false and B’+’ = lD[Z := TB’]. 

Lemma 4.1. (A jinite.) 

(i) 1f B= ~2. D and s$ IIBAIIv, then there exists an n <w such that s E 

II (B”)A II v - ll(B”“)A IIv. 
(ii) If C = 1vZ. D and s E IICA II”, then there exists an n <w such that s E 

Il(c”+‘)AIl.-II(C”)All”. 

We omit the indices & and V,. 

(+): Suppose SEA has a successful tableau T. If all the leaves of r are true (i.e. 

if whenever t EA B labels a leaf then t E 11 BA II), then all the nodes of r are true, for, 

as we noted earlier, the rules are backwards sound. So it suffices to show that all 

the leaves of T are true. 

If a leaf is labelled t tA B with B = Q, 10 or [a] C, then it is certainly true. Hence 

any false leaf must be labelled t kA U with A( U) = ~2. B. Suppose there is a false 

leaf. From amongst all false leaves choose one, labelled t tr U say, such that there 

is no constant U’ introduced before U in T for which there is a false leaf labelled 

t’ I--~, U’ for some t’, 2’. Consider the subtableau 7i of T whose root is the node, 

labelled s tA U say, at which U is introduced in T. For each of the false leaves of 

7 labelled t t, U for some t, 2, by Lemma 4.1(i) there is n <w such that 

t~Il(vZ.B)‘t_Il-Il(vZ.B)~+-+‘(l whereA(U)=vZ.B. 
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Choose such a leaf 1, labelled f t--= U say, such that the corresponding n is as small 

as possible. Note that since I is a leaf, there is above 1 in T, a node k, the companion 

node of Z, labelled t kzs U for some 2’. 

Now transform the tableau T, into a new tableau of by replacing each definition 

list A’ in a sequent of T, by A’[( ~2. B)“/ U]. A n examination of the rules shows 

that if the leaves of TT are true then all the nodes of TT are true: the only rule which 

could prevent this, namely 

s’ t,. vz. B 

s’ +A” u 
A”isA’. U=(vZ.B)” 

is not applied in r? since the root of T; is labelled s ~~~~~~~ BI~~,uI U. But the image 

of the successor of the companion node k of I under the transformation is false 

since it is labelled 

tt- Z’[(vZ. La)“/ U] B[Z := Ul 

and t E II( ~2. B)g?‘ll. Therefore some leaf of ~7 is false. 

Suppose t’ k-As? U’ labels such a false leaf where the corresponding leaf of 71 is 

labelled t’ t,. U’ so that A”= A’[( vZ. B)“/ U]. Then by the choice of n we have 
that U’# U. Moreover, U’ is not introduced before U in T, since otherwise, by the 

observation immediately following Lemma 2, the leaf of T labelled t’ t,, U’ would 

be false, contradicting the choice of U. Hence U’ is introduced after U in T. 

But now we may apply the entire argument above to the tableau ~7. And so on. 

But this contradicts Theorem 3, that every tableau is finite. 

(+): We build a pseudo-tableau with root st A. The rules for pseudo-tableaux 

differ from those for tableaux in just one case: the rule for constants defined as 

minimal fixpoints. The pseudo-tableau rule is 

tk*U 

t t,, 1B[Z:= 1 U] 
%‘,andA(U)=lvZ. Bor(lvZ. B)” 

whereA’=A[(lvZ. B)k/U]withksuchthatsEll(lvZ. B)~lll-/l(lvZ. B)$]].Note 

that by Lemma 4.l(ii), if t E II U, 11 then this rule is applicable (provided %Y holds), 

and in such a case, if A(U) = (1vZ. B)” and A’(U) = (1vZ. B)k, then k < n. We 

assume the same termination conditions for pseudo-tableaux as for tableaux. 

Moreover, defining the degree function as in the proof of Theorem 3 with d (A ( U)) = 

d (1 vZ. B) when A ( U) = (1 vZ. B)“, then by an argument similar to that in the proof 

of Theorem 3 we have that every pseudo-tableau for s t A is finite (provided Ju is 

finite). Finally we define the notion of a successful pseudo-tableau as for tableaux 

with the requirement that no leaf is labelled t kd U where A( U) = (1 vZ. B)“. 

A successful pseudo-tableau can be transformed into a successful tableau simply 

by updating the definition lists, changing A(U) from (~vZ. B)” to 1 vZ. B as 

necessary. Hence it suffices to show that there is a successful psuedo-tableau for 

s E A. Such a pseudo-tableau may be constructed as follows. 
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Its root is labelled s FA and is true. Suppose t +-d B labels a leaf of the partial 

pseudo-tableau and t E I] Bd (I. We define the successors of this node in the pseudo- 

tableau as follows depending on the structure of B. 

(1) B = Q or lQ, the node has no successors. 

(2) B = TTC, the node has single true successor labelled t t-A C. 

(3) B = C A D or l( C A D), if B = C A D then the node has two successors, one 

labelled t t, C, the other t Fd D. Since t E 11 Bd 11, the successors are true. If B = 

l( C A 0) there is one true successor labelled t t, 1C or t kd 1D. 

(4) B = [ a]C or l[ a]C, similar to (2) with the extra possibility that { t’l t A t’} = 0 

in which case the node has no successors. 

(5) B = ~2. C or 1 VZ C, if B = ~2. C then since t E )I Bd 11, r E (I U,,ll where A’ is 

A - U = v.2. C. Similarly for 1vZ. C. 

(6) B = U, if %’ holds and A(U) = 1vZ. C or (1vZ. C)” then by Lemma 4.1 there 

is k with TV I](lvZ. C)~“]] - ]](~vZ. C)ill, when TV IIICIZ:=lU]A,]] where A’= 

A[(lvZ. C)k/ U]. The case A(U) = ~2. C is simpler. 

By the remarks above we thus obtain a pseudo-tableau in which all the nodes 

are true. The only possible impediment to its success could be that t kA U labels 

a leaf where A(U) = (1~2. B)k. But by the choices of k in the construction this is 

impossible. 0 
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