
Theoretical Computer Science 89 (1991) 161-177

Elsevier

161

Local model checking in the modal
mu-calculus

Colin Stirling and David Walker*
Department of Computer Science, University of Edinburgh, Edinburgh EH9352, UK

1. Motivation

The modal mu-calculus, due to Pratt and Kozen [12,8], is a natural extension of

dynamic logic. It is also one method of obtaining a branching time temporal logic

from a modal logic [3]. Furthermore, it extends Hennessy-Milner logic, thereby

offering a natural temporal logic for Milner’s CCS, and process systems in general.

(Discussion of the uses of the mu-calculus for CCS can be found in [4,6,9,13,15].)

Within this context we are especially interested in whether or not a particular state,

or process, in a finite model satisfies a mu-calculus formula. This is a different

enterprise from that addressed by Emerson and Lei [3] who ask if a given formula

is satisfiable in a given finite model. Their model checker appeals to standard

approximation techniques for computing the set of states which satisfy a fixpoint

formula. But then one has to compute all the states or processes in the model which

satisfy that formula.

In this paper we present a local model checker for the mu-calculus, as a tableau

system. It checks whether or not a particular state satisfies a formula. Instead of

using approximation techniques there is an implicit use of fixpoint induction

(inspired by [9]). A maximal fixpoint formula, in effect, expresses a safety property.

One shows that the assumption that a state has such a property leads to no unforeseen

consequences. In contrast, a minimal fixpoint formula expresses a liveness property.

Therefore one has to establish that the property holds of a particular state. Formulae

involving alternating fixpoints [3] introduce subtleties. However the resulting

tableau system is natural and an equivalent version of it has been implemented by

Cleaveland [11.

In Section 2 we describe the syntax and semantics of the modal mu-calculus. A

small extension to the calculus, the addition of propositional constants, is detailed

in Section 3. The model checker, presented as a tableau system, is given in Section

4, while the proofs of its soundness, completeness and decidability are the topic

of Section 6. Finally, in Section 5 we use the model checker to analyse a mutual

exclusion algorithm when translated into CCS.

* Supported by a grant from the Venture Research Unit of BP.

0304-3975/91/$03.50 0 1991-Elsevier Science Publishers B.V. All rights reserved

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82412052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

162 C. Stirling, D. Walker

2. The modal mu-calculus

The set of formulae of the modal mu-calculus is defined by

A ::= 2 1 Q IlA 1 AAA 1 [a]A 1 vZ.A

where 2 ranges over propositional variables, Q over atomic propositions, and a

over a set of (action) labels. One restriction on vZ. A is that each free occurrence

of 2 in A lies within the scope of an even number of negations. Derived operators

are defined in the familiar way: Av B is ~(TAA 1B); (a)A is l[a]lA; and PZ.

A is 1vZ. lA[Z := lZ], where A[Z := lZ] is the result of substituting 1Z for

each free occurrence of Z in A.

The mu-calculus, with action labels drawn from a set Act, is interpreted on labelled

transition systems Y which are pairs of the form Y= (S, {+lla E Act}). S (or S,)

is a nonempty set of states, and for each a E Act, + is a transition relation on states.

We write s a s’ instead of (s, s’) E 5. Labelled transition systems are popular

structures for modelling concurrent systems, [10,111, including process algebras

such as CCS. S is then a set (or algebra) of processes and s % s’ means that process

s may become s’ by performing the action a. In this context the mu-calculus can

be viewed as a branching time temporal logic for CCS, a natural extension of the

modal logic in [5].

A model ~2 for the mu-calculus is a pair Jtl = (5, V) where 9 (or Y&) is a

transition system and V (or V,) is a valuation assigning sets of states to atomic

propositions and variables: V(Q) s S, and V(Z) G SF. We assume the customary

updating notation: V[S’/Z] is the valuation V’ which agrees with V except that

V’(Z) = S’. Finally the set of states satisfying A in a model JII = (9, V) is inductively

defined as [[All T (where for ease of notation we drop the index 9 which is assumed

to be fixed)

IIZII” = V(Z), IlOll” = v(Q);

II~4lv=~~-llAllv, II~~~llv=lI~llv~ll~IIv~
~~[u]A]]v={s~S~~~s’.ifs~s’thens’~~]A]~v},

II vz. All v = U {S’s %I S’E llAllv~s~,z,I.
The expected clause for the derived operator +Z. is

~~IL~AllV=ns’~s~lIIAllV[S’/ZlCS’}

A simple example is the model Ju = (9, V) where Y is

s“ fb u

‘9”

and V(Q) = 0 for all atomic Q. Let R be the formula (b) true. Let A and B be
the formulae

A= vZ. py. (u)((R A Z) v Y), B=pY. z’Z.(u)((Rv Y)AZ).

Now

llAll?= {s, t), IIBII?=0.

Local model checking in the modal mu-calculus 163

The formula A expresses that on some uw path R holds infinitely often, while B

expresses that on some uw path R holds almost always. In CCS, where states are

processes, u represents the process 0 (Nil) which can perform no actions, while s

and t are the processes

s=fixZ a. (b.O+a.Z), t=fixZ. b.O+u. a. Z.

Hence both processes s and t have the property expressed by A.
A model is Jinite if its set of states is finite. Our interest is in the particular

question: does state, or process, s have the property expressed by the formula A in

the finite model -44 = (y, V), i.e. is s E 11 AlI c? A natural technique is to compute the

set llA[lv, [3], using approximation techniques when A contains fixpoint subfor-

mulae. For instance, using semantic approximants, if V is a valuation let V,=
V[S,/Z] and V,,, = &[jlAll “,/Z]. Then because the model is finite we know that

II VZ All v = f-o K/i(Z) .>

Also by finiteness we know that there is i 3 0 such that Vi(Z) = Vi+,(Z), and for

such an i, V,(Z) = II uZ. AlI “. Finally one just needs to check whether or not the

required state s is in this set. (A minimal fixpoint formula ~vZ. A can be dealt with

by computing either ST - II vZ. AlI v or (JiaO V,(Z) where V,= V[@/Z] and Vi+1 =
V,[IIlA[Z := lZ]ll “,/Z].) But this technique is not intended to be sensitive to the

fact that we are interested only in whether or not the particular state s lies in /A!(v.
An apparent localisation is to appeal, instead, to syntactic approximants. Let

(vZ.A)‘=trueand(vZ.A)‘+‘= A[Z := (vZ. A)‘]. Then again because of finiteness

we know that

SE II~Z.Allv iff Vi~O.sEj(vZ.A)‘(Iv.

But again it is necessary to compute the complete fixpoint set, i.e. the set S’=

1) (vZ. A)i II v where II (vZ. A)j 11 v = I((vZ. A) ‘+’ I(“. For there is no guarantee that

if for somej, s E II(vZ. A)‘11 v n II(vZ. A) j+‘ll y then also s E II vZ. AlI “.

An alternative, more local, approach to model checking (which does not depend

on computing complete fixpoint sets) is to appeal to fixpoint induction. The idea

is that s E]I vZ. AlI v if the assumption that s E I] vZ. AlI v implies s E llA[Z := vZ. A] II v ;
and in the case of a minimal fixpoint formula, s E 11~ Y. A([v if the assumption that

s& IlpY. Al(v implies s E llA[Y := pY. A]11 “. This technique is used by Larsen [9]

for a logic which disallows alternating fixpoints: each formula contains only maximal

fixpoints or only minimal fixpoints. The major problem here, especially in the

presence of formulae containing alternating fixpoints, is that of logically understand-

ing assumptions of the form s E Ijv.Z. AlI v and s g 11~ Y AlI v as well as the notion

of implication. The simple local tableau technique which we offer below not only

caters for the full modal mu-calculus but also has a natural logical interpretation.

There is, however, a small cost: a need to extend the mu-calculus to include

propositional constants and definition lists.

164 C. Stirling, D. Walker

3. Adding constants and definition lists

The syntax of the mu-calculus is extended to embrace a family of propositional

constant symbols. Associated with a constant U is a declaration of the form U = A

where A is a closed formula, possibly containing previously declared constant

symbols. A definition list is a sequence A of declarations U, = A,, . . . , U,, = A, such

that lJi # Uj whenever i Zj and such that each constant occurring in Ai is one of

U,,..., U,_l. This means that a prefix of a definition list is itself a definition list.

When A as above is such a list we let dom(A) = { U1, . . . , U,,} and A (Ui) = Ai.

Moreover, if A is a definition list, U CZ dam(A) and each constant occurring in A is

in dam(A), then A * U = A is the definition list which is the result of appending

U = A to A. A definition list A is admissible for B if every constant occurring in B

is declared in A. In this circumstance we let Bd be the formula B in the “environment”

A (see Definition 1). The interpretation of formulae is now extended to formulae

relative to admissible definition lists by, in effect, treating constants as variables.

Definition 1. If A: U1 = A,, . . . , U,, = A,, is admissible for B then 11 Ba 11 v =df 11 B II “,,
where V,= V and Vi+l= V;[I/Ar+,II./fJi+,I.

This interpretation accords with the expected meaning of Bd in terms of syntactic

substitution.

Lemma 2. \IBd.U=AIjV= ll(BIU:=A]),IIv.

Proof. By induction on the structure of B. 0

A corollary, invoked later, is that if U does not occur in B then Bd.“=* has the

same meaning as Ba.

4. The model checker

The model checker is a tableau system for testing whether or not a state s has

the property expressed by a closed formula A in a finite model JII. As is common

in tableau systems, the rules are inverse natural deduction type rules. Here they are

built from “sequents” of the form s k-d A A, proof-theoretic analogues of s E IlAd II T.

Each rule is of the form

where k > 0, possibly with side conditions. The premise sequent s F;I” A is the goal

to be achieved while the consequents are the subgoals, which are determined by

the structure of the model “near s”, the definition list A and the structure of A.

Local model checking in the modal mu-calculus 165

Often, in the sequel, the index JU is dropped from the sequents. The intermediate

use of definition lists is essential, as they keep track of the “dynamically changing”

subformulae as fixpoints are unrolled. This is the key to the technique. Condition

%‘, the side-condition on the constant rules, is explained later as it is a condition

on proof trees, rather than on the particular sequents of the premises.

s~-~T(AAB) st,l(A~B)

stdlA ’ st,lB ’

s k-d [alA
s, kd A.. . s, kd A

iSI, ‘. . , s,}={s’~scs’},

s kd l[a]A

S’E, 1A
s f+ s’,

s t-A vZ. A
__ A’is A. U=vZ.A,

st,lvZ.A

Sk,. u
A’is A. U=lvZ.A,

St, u

s t, A[Z := U]
%‘andA(U)=vZ.A,

st,U

s t, lA[Z := 1 U]
%‘and A(U)=lvZ.A.

A tableau for stM A is a maximal proof tree whose root is labelled with the

sequent s t&A (where we omit the definition list when, as here, it is empty). The

sequents labelling the immediate successors of a node labelled s tf A are deter-

mined by an application of one of the rules, dependent on the structure of A. For

simplicity we have allowed nondeterminism in the result sequents in the cases of

l(A A B) and l[a]A, rather than entangling proof trees with or-branching as well

as and-branching. Maximality means that no rule applies to a sequent labelling a

leaf of a tableau. The rules for booleans and modal operators are straightforward.

New constants are introduced in the case of fixpoint formulae, while the rules for

constants unroll the fixpoints they abbreviate when condition ‘% holds. This condition

is just that no node above the current premise, s t f U, in the proof tree is labelled

s of) U for some A’. So failure of the condition, when there is a sequent s tf(U

above s kf U, enforces termination. In fact the presence of condition Ce guarantees

that when Ju is finite any tableau for s +A A is of finite depth. Notice that all the

rules are backwards sound. For example, in the case of the rule for maximal fixpoints,

if A’ is A. U = vZ. A and s E 11 U,)llv, then by Lemma 2, s E 11 vZ. Ad [Iv. Hence if the

166

leaves of a (finite) tableau

then so is the root.

A successful tableau for

C. Stirling, D. Walker

are true, i.e. if whenever s t, A labels a leaf, s E ((Ad [Iv,

s k"' A is a finite tableau in which every leaf is labelled

by a sequent t t$ B fulfilling one of the following requirements:

(i) B = Q and t E V,(Q),
(ii) B=lQand tG V,(Q),

(iii) B = [a]C,

(iv) B= UandA(U)=vZ. C.

A successful tableau contains only true leaves. This is clear for leaves fulfilling (i)

and (ii). Maximality of a tableau guarantees it for leaves satisfying (iii), because

then { t’[t + t’} = 0. Of more interest is (iv): if t of, U labels a node in a tableau

above a node labelled t Ff U where A (U) = vZ. A, then indeed t E ((U, 1) ,,# (pro-

vided that the other leaves beneath t ä 5 U are also true). An unsuccessful tableau

has at least one false leaf, such as a leaf labelled t k,” Q where t g l/,(Q). Again,

the most interesting failure is when a leaf is labelled t tf U where A (U) = 1 vZ. A

and above it is a node labelled t EZ, U.

Tableau rules for the derived operators are just reformulations of some of the

negation rules,

st,AvB st,AvB

st,A ’ st,B ’

s I-, (a)A
s’kdA

s: SI

SF~/_LZ.A

St,, u
A’isA. U=pZ.A,

s t-.d u

s t-‘, A[Z := U]
%andA(U)=pZ.A.

If these operators were also taken as primitive (as in the case of normal forms) then

the definition of successful tableau would be changed accordingly.

The two important theorems follow. Their proofs are given in Section 6. For both

we assume that Ju is finite. Theorem 4 affirms soundness and completeness, while

Theorem 3 amounts to decidability (since there can be only a finite number of

tableaux for s +.& A, up to renaming of constants).

Theorem 3. Every tableau for s k”’ A is$nite.

Theorem 4. s t.” A has a successful tableau if and only ifs E llAllv, .

By employing more complex sequents the side condition %’ on the two constant

rules can be replaced with a condition on sequents. Let an extended sequent have

the form

a--+s~~A

Local model checking in the modal mu-calculus 167

where (Y is a finite set of sequents, each of which is of the form t t-As U: the idea

is that (Y contains all sequents above s +A A whose formula is a constant. The rules

earlier can be trivially expanded to extended sequents. Two sample examples are

Now the side condition %’ is replaced by s ~~~ Ug (Y for any A’. This simple

reformulation of the rules is akin to the formalisation of sequent calculi from natural

deduction systems. Recently Winskel [171 has discovered an alternative formulation

of the tableau system which allows a clear semantic account to be given. We give

a brief description of it and, by reformulating it using constants and definition lists,

show the equivalence of the two approaches.

Rather than extending the language with constants, given a model _& = (.Y, V)

with S=(S,{ a 1 + a E Act}), Winskel introduces a family of operators vZ{.C}., one

for each finite subset {St} of S. The interpretation is as follows:

The crucial property of this family of operators is the following.

Fact 5 (Winskel [17]). Suppose that no variable other than Z occurs free in A and

that t & {g}. Then

tEllvZ{.?}.Al(v iff tEIIA[Z:= vZ{s’}u{t}.A]II..

Winskel gives a set of reduction rules for determining whether or not a state s

satisfies a closed formula A. We reformulate these rules as a tableau system using

constants.

Fix a model J4 as above. We modify the notion of definition list introduced in

Section 3 as follows: A definition list is of the form

A=(U1=(A,,JJ,..., K=C%,.LH

where U, # Uj if if j, each A, is a closed formula of the form vZ. B or 1vZ. B

which may contain U, , . . . , Ui_, , and each J, E S. As before A is admissible for B

if every constant occurring in B is declared in A. If A is admissible for B then

]I BA II v = II B II v,

where V, = V and for i -=c n, V,+, = V,[(I(A,+, , Ji+l)ll v,/ Ui+,] where

ll(vz. ~,J~IIv=u~~‘I~‘~J~II~IIv~,~,,,~,

ll(bVz. c,J)Il.=s-Il(vz. G-QII”.

168 C. Stirling, D. Walker

The modified tableau system has the same rules for boolean and modal operators

as the original system. In place of the constant introduction and unfolding rules it

has the following rules:

s F‘, ~2. A

s Ed’ u
A’isA. U=(vZ.A,@),

s~,luZ.A

St--,* u
A’isA. U=(lvZ.A,@),

Sk, u

s t--as A[Z := U]
A(U)~=~Z.A,S&A(U)~,

St--,, u

s kn. lA[Z := 1 U]
d(U),=lz~Z.A,s&d(U)~,

where in the last two rules A’ is A[(A(U), , A(U),u {s})/ U].

The analogues of Theorems 3 and 4 above hold for this modified system. The

proof of Theorem 3 goes over unchanged, while the crucial observation in the proof

of Theorem 4 is the Fact above which shows that the two constant unfolding rules

are both forwards and backwards sound. Completeness of the tableau system then

follows by an easy simplification of the proof for the original system given in Section

6, while soundness follows immediately from the fact that if s kd U is a leaf and

A(U)=(vZ.A,J), then sEJ and so s~I(U~l]v.

Cleaveland [l] has given another formulation of the tableau system which dis-

penses with the use of constants but at the cost of a complex subformula test. His

proofs also rely on an observation similar to Fact 5 above.

5. Applications

We begin with two examples to illustrate the tableau method. Suppose Ju = (5, V)

is the model where Y may be pictured as

so f
‘Y3

a

and V(Q) = {t}. Consider the formulae

A=vZ.~.Y.[U]((QAZ)V Y), B=pY vZ.[a]((Qv Y)AZ),

which in Ju express, respectively, that on all paths Q holds infinitely often, and

that on all paths Q holds almost always. We present a successful tableau for s +“u A

and show that every tableau for t t;lc B is unsuccessful.

In the following successful tableau for s t.M A,

A,=(U,=A), A2=Al. (&=A,), A3=A2.(U3=A,),

where A,=pY.[a]((Qr\ Ul)v Y).

Local model checking in the modal mu-calculus 169

s kA3 [al((Q A u,) V u,)
t+-d3 (QA u,)V u,

t FA, Q A u,
tt-AiQ t FA3 u,

In the following unsuccessful tableau for s t--& B,

A,=(U1=B), A,=A,.(U,=B,), A,=A,*(U,=B,),

where B1 = ~2. [a]((Q v U,) A 2).

t +A, u,
t tA, 4
t kA, h

t +A> [al((Q v u,) A 6)
st,,(QV UI)A u,

s kA, Q V u, s tA, &
s tA, u,
s tA2 B,
s FA, 6

s tA, [al((Q V u,) A ud
tEA,(QV u,)A u,

t FA3 Q V UI t kA3 u3

t FA, Q t +A3 Cal((Q V u,) A u3)

S~A,(QV UI)A u3

s +A, Q V u, s FA3 u3

s +A, u,

Stirling, D. Walker

An important area of application of the model checker is to Milner’s CCS [lo].

An equivalent version of the checker has been implemented by Cleaveland [l] in

the Concurrency Workbench (a joint UK SERC venture between Sussex and

Edinburgh Universities [2]). The operational semantics of CCS is given in terms of

labelled transition systems. However, there is more than one transition system

associated with CCS according to whether or not the T action is observable. This

distinction is marked by the differing transition relations 3 and 3 for a E Act. In

fact, the action sets differ too: there is the relation 4 but not 3; and there is the

relation 3, meaning zero or more silent moves, but not %. Thus, there are two

different Hennessy-Milner logics for CCS [S], each characterising the appropriate

(strong or weak) bisimulation equivalence. Their extension to include fixpoints

preserves this characterisation [15]. These are sublanguages of the modal mu-

calculus-for their sole atomic sentence is the constant true.

We now offer a more substantial example: an analysis of Knuth’s mutual exclusion

algorithm [7] when translated into CCS. Knuth’s algorithm is given by the concurrent

composition of the two programs when i = 1 and i = 2, and where j is the index of

the other program:

while true do

begin

(noncritical section);

L,: ci:= 1;

L,:ifk=ithengoto Lz;

if cj # 0 then goto L, ;

L,: c,:=2;

if CT, = 2 then goto Lo ;
k:=i;

(critical section);
k:=j;

ci := 0;

end;

The variable c1 (c2) of program one (two) may take the values 0, 1 or 2; initially

its value is 0. When translated into CCS [lo, 161, the algorithm, assuming the initial

value of k to be 1, becomes the agent Knuth below. For the example we let capital

letters range over CCS processes (states of the CCS transition system). Here we are

assuming that T is not observable (so the transition relations are of the form 2).

Each program variable is represented as a family of agents. Thus the variable k

with current value 1 is represented as an agent Kl which may perform actions

corresponding to the reading of the value 1 and the writing of the values 1 and 2

by the two programs. The agents are

Knuth =df(P1 1 P2 1 Kl 1 C,O (C,O)\L

Local model checking in the modal mu-calculus 171

L is the union of the sorts of the variables and

Kl =,,-kwl. Kl+kw2. K2+krl. Kl,

K2 =df kwl. K1-t kw2. K2-t kr2. K2,

C,O=~fC,WO. cro+c,w1. c,1+c,w2. c,2+c,ro. c,o,

C,l =&-C,WO. c,o+c,w1. c,1+c,w2. c,2+c,r1. Cl,

C,2 =df~,~O. C,O+c,wl. C,l+c,w2. C,2+c,r2. C,2,

C,O =df~Z~O. C,O+c,wl. C21+c2w2. C,2+c,rO. C,O,

Czl =df~Z~O. CzO+czwl. Czl+c2w2. C,2+c,rl. C,l,

C,2 =dfcZwO. C,O+c,wl. C,l+c,w2. C,2+c,r2. C,2,

P, =dfr. Pllf?-.o,

pII =df clwl. re%. pl2y

P,* =df krl. PL4+ kr2. P,3,

P,, =dfcZrO. P,,+czrl. P,,+c,r2. P,2,

PM =df cIw2. plS,

PI5 =dfc,rO. P,,+c,rl. P,,+c,r2. P,,,

PI6 = df kw 1. enter,. exit, . kw2. a. P, ,

p,, =df c,wl. pl2,

p2 =df 7. P2, + 7.0,

p21 =dfC2W1. req2- p22T

Pz2 = &- kr2. Pz4 + kr 1. Pz3,

P23 =dfclrO. P2,+c,rl. P22iclr2. P22,

p24 =df ‘%w2. p25,

P25 =dfclrO. P26+clrl. P2,+clr2. P27,

P26 = df kw2. enter,. exit,. kwl. c,wO. Pz,

p27 =df c2wl. p22,

Some remarks on this representation may be helpful. The critical section of process

Pi, where i = 1 or 2, is modelled as a pair of actions enter, and exit, representing,

respectively, entry to and exit from the critical section. The noncritical section of

each process is modelled as a summation, one summand of which represents the

possibility that the process may halt, the other that it may proceed to request

execution of its critical section. An action req, appears in the definition of Pi. Its

occurrence indicates that process P, has “just” indicated that it wishes to execute

its critical section (by setting ci to true). The reason for including these “probes”

will become clear below. Note also the presence of the agents P,, and the way in

which the statement goto L,, is represented. The reason for this choice is that only

the first ciwl action (setting ci to 1) is considered as signifying the initiation of an

attempt by process i to execute its critical section.

The agent Knuth has sort K = {enter,, exit,, reqi 1 i = 1,2}. We introduce two derived

modal operators

[KM- Aat~ [alA, W)A = V 0s~ (a)A.

172 C. Stirling, D. Walker

We consider two questions. Firstly, does the algorithm preserve mutual exclusion?

And secondly, is the algorithm live (in the sense that if a process requests execution

of its critical section it will eventually enter its critical section)? We express these

questions as follows:

(1) We say that Knuth’s algorithm preserves mutual exclusion iff

Knuth i= PME

where PME (“preserves mutual exclusion”) is the following formula:

~2. ((l((exit,)true A (exit,)true)) A [K&Z).

(2) We say that Knuth’s algorithm is live iff

Knuth b IL

where IL is the formula

~2. ([req,]EICSl A [reqJEICS2) A [K]Z,

where for i = 1,2, EICSi (“eventually in critical section i”) is the formula

Some clarifying remarks may be helpful.

(i) Process i is “in its critical section” if Pi reaches a state in which it may

perform the action exit,. The formula PME is satisfied by an agent P of sort K iff

for any s E K* and agent P’, if P > P’ then P’p(exit,)true A (exit,)true. Thus

KnuthbPhE iff it never reaches a state with both P, and Pz in their critical sections.

(ii) PI= EICSi iff there is no sequence (uj]j < w) E K w and no sequence (Qj Ij < w)

of agents such that QO= Q and for all j, Qj 2 Q,,, and Qj# (exit,)true. Thus

Knuth b IL iff for i = 1,2, there is no path on which occur infinitely many visible

actions and on which there is a “probe” req, (indicating that Pi has requested

execution of its critical section) which is not followed by a corresponding action

enter,.

Using the concurrency workbench we have verified that Knuth’s algorithm preser-

ves mutual exclusion and is live (for more details see [16]). The process Knuth

consists of a number of agents in parallel. A more enterprising model checker would

try to verify liveness and safety properties of Knuth by verifying appropriate

subproperties of its components. Proof rules for structured model checking for the

modal sublanguage of the mu-calculus are presented in [19]. We hope that these

rules can be extended to the full mu-calculus.

6. Proofs of termination, soundness and completeness

We now prove the main results, Theorems 3 and 4. First a little notation.

If B is a formula then Z(B) is the set of constants occurring in B. Recall from

Section 4 that a tableau is a maximal proof tree with root labelled SE& A. Given

Local model checking in the modal mu-calculus 173

two nodes n and n’ in a tableau with n’ an immediate successor of n, we say that

the sequent s’t,, B’ labelling n’ succeeds the sequent s kd B labelling n. Also, given

two nodes n and n’ in a tableau labelled ~t-~ U and SF,, U’ respectively, we say

that s’F~, U’ %-succeeds s kd U iff there is a sequence (n, , . . . , nk) of nodes such

that n, = n, nk = n’, for 1 s iC k, ni+l is an immediate successor of ni, and for

I< i < k, the formula of the sequent labelling ni is not a constant.

Next we define a useful nonnegative integer measure, the degree, d(B), of a closed

formula B.

d(Q)=O, d(lQ) =O, d(U)=O, d(llB)= l+d(B),

d(B~C)=l+max{d(B),d(C)}, d(l(B A C) = 1 +max{d(lB), d(lC)},

d([a]B)=l+d(B), d(l([a]B)=l+d(lB),

d(vZ.B)=l+d(B[Z:= U]), d(lvZ.B)=l+d(lB[Z:=lU]).

We extend this definition to sequents as follows:

d(s+‘, B) =
d(B) if B is not a constant,

d(A(B)) otherwise.

Lemma3.1. (i) Ifsl~~, B’ succeedssE, Band B’ isnota constant, then d(s’CdS B’) <

d(sk, B).

(ii) If s’E~, U’ %-succeeds st, U, then either U’E %?(A(U)) u { U}, or

d(s’t-df U’)<d(s+, U) and ‘+Z(A(U’))c %?(A(U))u{U}.

(iii) Suppose A is a prejx of A’ and U E dam(A). Then for any s, s’, d(s +A U) =

d(s’kd, U).

Proof. (i) By inspection of the tableau rules and the definition of degree.

(ii) Suppose A(U) = vZ. B. Then either U’ is a subformula of B[Z := U], when

U’ E %‘(A (U)) u { U}, or U’ is introduced as vZ’. C (1 vZ’. C) which is a subformula

of B[Z := U], in which case d(vZ’. C) < d(s t, U) and %(vZ’. C) G %‘(A(U)) u

{U} (and similarly for ~vZ’. C).

(iii) Immediate from the definition. 0

We now prove the termination theorem.

Theorem 3. Every tableau for s t& A is Jinite.

Proof. We omit the index Jll.

Suppose there is an infinite tableau T for s+A. Since T is finite-branching, there

is an infinite path rr through T. Let u = (si t,, Ai 1 i < w) be the sequence of sequents

labelling the nodes of n. Since for each i, St+, kdi+l Ai+1 succeeds si I--~, Ai, from

Lemma 3.1(i) it follows that for infinitely many i, Ai is a constant. Also, since JU

is finite, no one constant appears infinitely often on rr.

174 C. Stirling, D. Walker

Consider the subsequence u’ = (si t- d: Ui (i < w) of u consisting of those sequents

whose formulae are constants. Note that for each i, sI+i E,;+~ U,,, %-succeeds

si +-d: UP Suppose i. is the largest i with U, = U,. Then since %‘(A;(U,,)) = 0, by

Lemma 3.l(ii),

d($,+, +A;“+, uh+,) < d(si, +A:” &) and ~(AI,+,(u,+,)) c {%I-.

Now suppose i, is the largest i with Uj = Ui,+i. Then again by Lemma 3.l(ii)

d(s:,+, +A:,+, U,,+,) < d(sj, FA:, ui,+,) and %(A!,+,(u;,+,)) E { uo, U~,+L).

By Lemma 3.l(iii),

d(s:,+i tA:,+, &,+I) < d(sio+L tA:u+l u:o+l) < d(sh EAA us).

By repeating this argument sufficiently often we obtain a contradiction since d is

a nonnegative integer measure. 0

Now we come to the proofs of soundness and completeness.

Theorem 4. s kA A has a successful tableau if and only ifs E l/All “, .

Proof. First some notation and a standard lemma.

l If B = vZ. D then B” = true and Bit1 = D[Z := B’].

l If B = 1vZ. D then B” = false and B’+’ = lD[Z := TB’].

Lemma 4.1. (A jinite.)

(i) 1f B= ~2. D and s$ IIBAIIv, then there exists an n <w such that s E

II (B”)A II v - ll(B”“)A IIv.
(ii) If C = 1vZ. D and s E IICA II”, then there exists an n <w such that s E

Il(c”+‘)AIl.-II(C”)All”.

We omit the indices & and V,.

(+): Suppose SEA has a successful tableau T. If all the leaves of r are true (i.e.

if whenever t EA B labels a leaf then t E 11 BA II), then all the nodes of r are true, for,

as we noted earlier, the rules are backwards sound. So it suffices to show that all

the leaves of T are true.

If a leaf is labelled t tA B with B = Q, 10 or [a] C, then it is certainly true. Hence

any false leaf must be labelled t kA U with A(U) = ~2. B. Suppose there is a false

leaf. From amongst all false leaves choose one, labelled t tr U say, such that there

is no constant U’ introduced before U in T for which there is a false leaf labelled

t’ I--~, U’ for some t’, 2’. Consider the subtableau 7i of T whose root is the node,

labelled s tA U say, at which U is introduced in T. For each of the false leaves of

7 labelled t t, U for some t, 2, by Lemma 4.1(i) there is n <w such that

t~Il(vZ.B)‘t_Il-Il(vZ.B)~+-+‘(l whereA(U)=vZ.B.

Local model checking in the modal mu-calculus 175

Choose such a leaf 1, labelled f t--= U say, such that the corresponding n is as small

as possible. Note that since I is a leaf, there is above 1 in T, a node k, the companion

node of Z, labelled t kzs U for some 2’.

Now transform the tableau T, into a new tableau of by replacing each definition

list A’ in a sequent of T, by A’[(~2. B)“/ U]. A n examination of the rules shows

that if the leaves of TT are true then all the nodes of TT are true: the only rule which

could prevent this, namely

s’ t,. vz. B

s’ +A” u
A”isA’. U=(vZ.B)”

is not applied in r? since the root of T; is labelled s ~~~~~~~ BI~~,uI U. But the image

of the successor of the companion node k of I under the transformation is false

since it is labelled

tt- Z’[(vZ. La)“/ U] B[Z := Ul

and t E II(~2. B)g?‘ll. Therefore some leaf of ~7 is false.

Suppose t’ k-As? U’ labels such a false leaf where the corresponding leaf of 71 is

labelled t’ t,. U’ so that A”= A’[(vZ. B)“/ U]. Then by the choice of n we have
that U’# U. Moreover, U’ is not introduced before U in T, since otherwise, by the

observation immediately following Lemma 2, the leaf of T labelled t’ t,, U’ would

be false, contradicting the choice of U. Hence U’ is introduced after U in T.

But now we may apply the entire argument above to the tableau ~7. And so on.

But this contradicts Theorem 3, that every tableau is finite.

(+): We build a pseudo-tableau with root st A. The rules for pseudo-tableaux

differ from those for tableaux in just one case: the rule for constants defined as

minimal fixpoints. The pseudo-tableau rule is

tk*U

t t,, 1B[Z:= 1 U]
%‘,andA(U)=lvZ. Bor(lvZ. B)”

whereA’=A[(lvZ. B)k/U]withksuchthatsEll(lvZ. B)~lll-/l(lvZ. B)$]].Note

that by Lemma 4.l(ii), if t E II U, 11 then this rule is applicable (provided %Y holds),

and in such a case, if A(U) = (1vZ. B)” and A’(U) = (1vZ. B)k, then k < n. We

assume the same termination conditions for pseudo-tableaux as for tableaux.

Moreover, defining the degree function as in the proof of Theorem 3 with d (A (U)) =

d (1 vZ. B) when A (U) = (1 vZ. B)“, then by an argument similar to that in the proof

of Theorem 3 we have that every pseudo-tableau for s t A is finite (provided Ju is

finite). Finally we define the notion of a successful pseudo-tableau as for tableaux

with the requirement that no leaf is labelled t kd U where A(U) = (1 vZ. B)“.

A successful pseudo-tableau can be transformed into a successful tableau simply

by updating the definition lists, changing A(U) from (~vZ. B)” to 1 vZ. B as

necessary. Hence it suffices to show that there is a successful psuedo-tableau for

s E A. Such a pseudo-tableau may be constructed as follows.

176 C. Stirling, D. Walker

Its root is labelled s FA and is true. Suppose t +-d B labels a leaf of the partial

pseudo-tableau and t E I] Bd (I. We define the successors of this node in the pseudo-

tableau as follows depending on the structure of B.

(1) B = Q or lQ, the node has no successors.

(2) B = TTC, the node has single true successor labelled t t-A C.

(3) B = C A D or l(C A D), if B = C A D then the node has two successors, one

labelled t t, C, the other t Fd D. Since t E 11 Bd 11, the successors are true. If B =

l(C A 0) there is one true successor labelled t t, 1C or t kd 1D.

(4) B = [a]C or l[a]C, similar to (2) with the extra possibility that { t’l t A t’} = 0

in which case the node has no successors.

(5) B = ~2. C or 1 VZ C, if B = ~2. C then since t E)I Bd 11, r E (I U,,ll where A’ is

A - U = v.2. C. Similarly for 1vZ. C.

(6) B = U, if %’ holds and A(U) = 1vZ. C or (1vZ. C)” then by Lemma 4.1 there

is k with TV I](lvZ. C)~“]] -]](~vZ. C)ill, when TV IIICIZ:=lU]A,]] where A’=

A[(lvZ. C)k/ U]. The case A(U) = ~2. C is simpler.

By the remarks above we thus obtain a pseudo-tableau in which all the nodes

are true. The only possible impediment to its success could be that t kA U labels

a leaf where A(U) = (1~2. B)k. But by the choices of k in the construction this is

impossible. 0

Acknowledgment

We would like to thank Rance Cleaveland, Rim Larsen and Bernhard Steffen for

comments and discussions about model checking.

References

[l] R. Cleaveland, Tableau-based model checking in the propositional mu-calculus, Acta Inform. 27

(1990) 725-747.

[2] R. Cleaveland, J. Parrow and B. Steffen, The concurrency workbench, in: Proc. IFIP (1989).

[3] E. Emerson and C. Lei, Efficient model checking in fragments of the propositional mu-calculus,

in: Froc. Symp. on Logic in Computer Science, Cambridge, MA (1986) 267-278.

[4] S. Graf and J. Sifakis, A modal characterization of observational congruence of finite terms of

CCS, Inform. and Control 68 (1986) 125-145.

[5] M. Hennessy and R. Milner, Algebraic laws for nondeterminism and concurrency, J. ACM 32

(1985) 137-161.

[6] S. Holmstriim, Hennessy-Milner logic with recursion as a specification language, and a refinement
calculus based on it, Formal Aspects Comput. 1 (1989) 242-272.

[7] D. Knuth, Additional comments on a problem in concurrent programming control, Comm. ACM

9 (5) (1966).

[8] D. Kozen, Results on the propositional mu-calculus, Theoret. Comput. Sci. 27 (1983) 333-354.

[9] K. Larsen, Proof systems for satisfiability in Hennessy-Milner logic with recursion, Theoret.
Comput. Sci. 72 (1990) 265-288.

[lo] R. Milner, Communication and Concurrency (Prentice-Hall, Englewood Cliffs, 1989).
[ll] A Pnueli, Specification and development of reactive systems, Information Processing ‘86 (North-

Holland, Amsterdam, 1986) 54-58.

Local model checking in the modal mu-calculus 177

[12] V. Pratt, A decidable p-calculus, in: Proc. 22nd. FOCS (1981) 421-27.

[13] B. Steffen, Characteristic formulae, in: Proc. ICALP (1989).

[14] C. Stirling, Modal logics for communicating systems, Theoret. Comput. Sci. 49 (1987) 311-347.

[15] C. Stirling, Temporal logics for CCS, in: Proc. of REX Workshop (1988).

[16] D. Walker, Automated analysis of mutual exclusion algorithms using CCS, Formal Aspects Comput.
1 (1989) 273-292.

[17] G. Winskel, Model checking the modal nu-calculus, in: Proc. SCALP (1989).

