
Information and Computation 152, 188�204 (1999)

Proper Learning Algorithm for Functions of k
Terms under Smooth Distributions

Yoshifumi Sakai*

Department of Information and Computer Sciences, Faculty of Engineering, Toyo University,
2100 Kujirai, Kawagoe 350-8585, Japan

E-mail: sakai�cs.toyo.ac.jp

and

Eiji Takimoto and Akira Maruoka

Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
E-mail: t2�ecei.tohoku.ac.jp, maruoka�ecei.tohoku.ac.jp

In this paper, we introduce a probabilistic distribution, called a smooth
distribution, which is a generalization of variants of the uniform distribu-
tion such as q-bounded distribution and product distribution. Then, we
give an algorithm that, under the smooth distribution, properly learns the
class of functions of k terms given as Fk b Tn

k=[g(f1(v), ..., fk(v)) | g #
Fk , f1 , ..., fk # Tn] in polynomial time for constant k, where Fk is the class
of all Boolean functions of k variables and Tn is the class of terms over
n variables. Although class Fk b Tn

k was shown by Blum and Singh to be
learned using DNF as the hypothesis class, it has remained open whether
it is properly learnable under a distribution-free setting.] 1999 Academic Press

1. INTRODUCTION

Since Valiant introduced the PAC learning model (Valiant, 1984), much effort
has been devoted to characterize learnable classes of concepts in this model. Among
such classes are the ones represented by some restricted Boolean formulas such as
DNF, CNF, k-DNF, k-CNF, k-term DNF, and k-clause CNF, as well as the ones,
such as threshold functions, given by describing Boolean functions in terms of
positive vectors for the functions. In this paper, as opposed to learning these simple
functions, we explore how to learn functions expressed as functions of simple func-
tions, that is, compositions g b f of two simple functions g and f. It turns out that
the difficulty of learning such a composition g b f without knowing the output of the
function f is overcome by means of monotone-based expansion of the function g,
which is introduced in this paper. More specifically, let G and F denote classes
of k variable Boolean functions and n variable Boolean functions, respectively.

Article ID inco.1998.2785, available online at http:��www.idealibrary.com on

1880890-5401�99 �30.00

Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.

* Corresponding author.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82412024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A target function to be learned is written as g b (f1 , ..., fk), where g # G, f1 , ..., fk # F,
and b denotes the composition of functions. The target function g b (f1 , ..., fk) takes
the value g(f1(v), ..., fk(v)) for a vector v in [0, 1]n. To learn a target function given
as g b (f1 , ..., fk), a learning algorithm is assumed to use examples of the form
(v, g(f1(v), ..., fk(v))), but it cannot use examples of the form (v, fi (v)) for 1�i�k.
So, even if both G and F are learnable, it is hard to learn G b Fk in general. For
example, let GOR consist of an OR function of k variables, and let Tn be the class
of all monomials of n variables. In the distribution-free setting, it is known that
GOR b Tn

k, denoted usually k-term DNF, is not properly learnable unless RP=NP
(Kearns et al., 1987; Pitt and Valiant 1988), whereas both GOR and Tn are learnable.

Blum and Singh (1990) studied the learnability of the class Gk b Tn
k, denoted

usually Fk-term , where Gk denotes the class of all Boolean functions of k variables,
and they showed that, for constant k, Fk-term is learnable by hypothesis class
O(nk+1)-term DNF in the distribution-free setting. Furthermore, they showed that,
for any symmetric function g other than AND, NAND, TRUE, and FALSE, it is
NP-hard to learn [g] b Tk

n properly.
In this paper, we first introduce a class of probabilistic distributions, called

smooth distributions, which is a generalization of the uniform distribution and
includes both q-bounded distributions (Flammini et al., 1992) and product distribu-
tions (Kucera et al., 1994) which have been dealt with in literature as variants of
the uniform distribution. The main result of this paper says that there exists an
algorithm that properly learns Fk-term under the smooth distribution in polynomial
time for constant k.

Before proceeding to the next section, it would be helpful to give an intuitive
idea behind our algorithm which is based on two lemmas. These two lemmas will
be referred to as the Expansion Lemma (Lemma 2) and the Selection Lemma
(Lemma 4) in Section 3. For the purpose of explanation we take a target function
f in Fk-term given as f =g(t1 , t2 , t3 , t4), where g= y1 y3 6 y2 y4 6 y1 y� 4 , and
t1=x1 , t2=x1 x2x� 3 , t3=x3 x� 4 , t4=x� 5 . Note that to get the target function we may
substitute x1 , x1x2 x� 3 , x3x� 4 , x� 5 to y1 , y2 , y3 , y4 , respectively. If we put, as
illustrated in Fig. 1, g1= y1 6 y2y4 , g2= y1 y4 , and g3= y1 y2 y4 6 y1 y3 y4 , it
turns out that g is expressed as g1 �g2 �g3 . This is the crucial observation on
which our algorithm relies. In fact, as the Expansion Lemma says, any function g
can be expressed as g1 �g2 � } } } �gd for appropriately chosen monotone func-
tions g1 , ..., gd that satisfy g1>g2> } } } >gd under the usual inclusion relation >.
In general, given monotone functions g1 , g2 , ..., gd such that g1>g2> } } } >gd , it is
natural to consider layers Li that consist of vectors w such that g1(w)= } } } =
gi (w)=1 and gi+1(w)= } } } =gd (w)=0, where 0�i�d. Then the whole set
[0, 1]k is partitioned into layers L0 , L1 , ..., Ld .

We shall actually take as the domain of g the set of vectors w that satisfy, as well
as some technical ones, the condition that (t1(v), ..., tk(v))=w holds with not too
small probability when v is drawn according to a variant of the uniform distribu-
tion, called a smooth distribution. But for the sake of simplicity, we consider
[0, 1]k as the domain of g for the time being. In our case we have L0=[(0, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (0, 1, 1, 0), (0, 0, 1, 1)], L1=[(1, 0, 0, 0),
(1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 0, 1), (1, 1, 1, 0), (0, 1, 1, 1)], L2=[(1, 0, 0, 1)], and

189LEARNING PROPERLY FUNCTIONS OF k TERMS

FIG. 1. The target function g is expressed as g= g1 �g2 �g3 , where g1= y1 6 y2 y4 , g2= y1y4 ,
and g3= y1 y2 y4 6 y1 y3 y4 . Open circles in the Boolean cube represent the points where the function
g takes value 1, whereas solid circles represent the points where g takes value 0. Double circles indicate
that the corresponding points are the minimal points in the layers.

L3=[(1, 1, 0, 1), (1, 0, 1, 1), (1, 1, 1, 1)]. By definition it is clear to see that the
function g changes its value when we go across the boundaries between layers: The
function g takes value 1 for vectors in L1 _ L3 , while it takes value 0 for vectors
in L0 _ L2 . Note that vectors in L1 _ L3 are represented as open circles, whereas
those in L0 _ L2 are represented as solid circles. Furthermore, each layer is com-
pletely specified by the minimal vectors in the layer. Denoting by Min(Li) the set
of such minimal vectors in layer Li , we have Min(L1)=[(1, 0, 0, 0), (0, 1, 0, 1)],
Min(L2)=[(1, 0, 0, 1)], and Min(L3)=[(1, 1, 0, 1), (1, 0, 1, 1)]. Let Mg denote
the collection of all the minimal vectors; that is, Mg=Min(L1) _ Min(L2) _

Min(L3). In Fig. 1, the minimal vectors are represented as double circles.
What makes it difficult to learn the target function is that our learning algorithm

cannot observe the vector (t1(v), t2(v), ..., tk(v)) for examples v, where (t1(v),
t2(v), ..., tk(v)) # [0, 1]k. All the information the algorithm can make use of is
whether the examples are positive or negative. In other words, instead of the vector
(t1(v), t2(v), ..., tk(v)) the algorithm can only have the value g(t1(v), t2(v), ..., tk(v)),
for example v. So, we give up searching for T=(t1 , ..., tk). Instead we try to search
for terms t~ 1 , ..., t~ k such that g b (t~ 1 , ..., t~ k) behaves as the target function g b (t1 , ..., tk)
does. To do so, for each minimal vector w of the layers we try to get the term that
is the conjunction of the ti 's such that w(i)=1, where w(i) denotes the i th compo-

190 SAKAI, TAKIMOTO, AND MARUOKA

nent of w. Such a term will be denoted by {w(T). For example, we have {w(T)=
x1 x2 x� 3x� 5 for w=(1, 1, 0, 1) and T=(x1 , x1 x2 x� 3 , x3x� 4 , x� 5). To infer terms {w(T)
for the minimal vectors w is the most crucial part of our algorithm. Such terms
{w(T) will be computed from bottom to top in the Boolean cube. Suppose that we
have computed {(1, 0, 0, 0)(T) (=x1) for the minimal vector (1, 0, 0, 0) in L1 and we
are about to compute {(1, 0, 0, 1)(T) (=x1x� 5) for the minimal vector (1, 0, 0, 1) in
layer L2 which corresponds to the negative vectors. Taking the conditions (by
exhaustive search) that make sure t2(v)=0 and t3(v)=0, say, x2(v)=0 and
x� 4(v)=0, we collect a sufficiently large number of negative examples v such that
{(1, 0, 0, 0)(T)(v)=1, x2(v)=0, and x� 4(v)=0, namely, negative examples v such that
v(1)=1, v(2)=0, and v(4)=1. It is easy to see that, since vector v is a negative
vector, (t1(v), t2(v), t3(v), t4(v)) belongs to L2 , provided that v(1)=1, v(2)=0, and
v(4)=1 (hence, t1(v)=1, t2(v)=0, and t3(v)=0) hold. We therefore have that
t4(v)=1. Lemma 7 in Section 3 gives the statement that is obtained by generalizing
the arguments above. In order to get {(1, 0, 0, 1)(T), all we have to do is to observe
components that take the same value of all of these negative examples v such that
v(1)=1, v(2)=0, v(4)=1 and to discard the components v (2) and v(4) which are used
to make the irrelevant terms take the value 0. If the number of such negative examples
is large enough, we can conclude that {(1, 0, 0, 1)(T)=x1x� 5 by the standard argument.

We now proceed to explaining how to get an hypothesis by using the terms
obtained this way which are written as {w(T) for w in Mg . As mentioned above, our
algorithm tries to obtain terms t~ 1 , ..., t~ k such that g b (t~ 1 , ..., t~ k) behaves like
g b (t1 , ..., tk). The Selection Lemma in Section 3 shows how to compute such
t~ 1 , ..., t~ k from terms {w(T)'s. The lemma simply says that, for 1�i�k, the term t~ i
consists of the literals that appear in all the {w(T)'s such that w # Mg and w(i)=1.

Actually, in our algorithm we compute a collection of candidates for such terms
which includes all of the terms t~ 1 , ..., t~ k . Once such candidates are obtained, all we
have to do is to search exhaustively for t~ 1 , ..., t~ k and g~ from the candidates and from
all of the k variable functions, respectively, until the hypothesis g~ b (t~ 1 , ..., t~ k)
approximates the target function g b (t1 , ..., tk) with sufficient accuracy. Note that,
since the parameter k is assumed to be constant, we can search for g~ by exhaustive
search.

2. PRELIMINARIES

In this paper we follow the standard terminologies in the PAC learning model
unless otherwise stated. Let D be a probability distribution on 7n, where 7 denotes
[0, 1]. For a vector v in 7n, D(v) denotes the probability assigned to v and, for
V�7n, D(V) denotes �v # V D(v). A target function, denoted f, and an hypothesis,
denoted h, are assumed to be Boolean functions of n variables x1 , ..., xn . A Boolean
function f is thought of as representing the set of vectors v as well, such that
f (v)=1. So D(f) represents D([v | f (v)=1]) and f�f $ means [v | f (v)=1]�
[v | f $(v)=1]. Furthermore, we adopt the notation D(f | f $) that denotes
D(f 7 f $)�D(f $). A function h is said to =-approximate f under D if and only if
D(f�g)<= holds. Let f be a function of n variables and let D be a distribution on

191LEARNING PROPERLY FUNCTIONS OF k TERMS

7n. If D(f) (=D([v | f (v)=1])) {0, then D+
f is defined as D+

f (v)=D(v)�D(f) for
v in f. Similarly, if D(f�){0, then D&

f is defined as D&
f (v)=D(v)�D(f�) for v in f� .

When f is clear from the context, D+
f and D&

f will be denoted simply by D+ and
D&, respectively. The size of a Boolean function f is the number of symbols appear-
ing in the shortest description of f under some reasonable encoding. Given a class
of Boolean functions F, Fn, s denotes the set of Boolean functions in F that have
n variables and size at most s. In the following, we often identify a Boolean formula
with the Boolean function that it represents.

Definition 1. Let F be a class of Boolean functions, and let D be a class of
distributions. An algorithm L learns F under D if and only if for any positive
integers n, s, any target function f in Fn, s , any real numbers =, $ with 0<=, $<1,
and any distribution D on 7n in D, when L is given as input n, s, =, and $ as well
as access to POS() and NEG() that generate positive and negative examples
independently according to D+ and D&, respectively, L halts in time at most some
polynomial in n, s, 1�=, and 1�$, and outputs, with probability at least 1&$, an
hypothesis h in Fn that =-approximates f under D. Furthermore, if there exists a
learning algorithm for F under D, then F is said to be learnable under D.

For a vector v in 7n and an integer 1�i�n, let v(i) denote the i th component
of v. For a vector v, let true(v) and false(v) denote [i | v(i)=1] and [i | v(i)=0],
respectively. Let 0n and 1n denote vectors (0, 0, ..., 0) and (1, 1, ..., 1) in 7n, respec-
tively. For v and v$ in 7n, let v�v$ mean that v(i)�(v$) (i) for any 1�i�n, and let
v<v$ mean that v�v$ and v{v$. For any subset V of 7n, let Min(V) denote the
set of the minimal vectors in V, that is,

Min(V)=[v # V | \v$ # V v$<3 v],

and let mon(V) denote the monotone Boolean function of n variables defined as

mon(V)(v)={1,
0,

_v$ # V, v$�v;
otherwise.

Note that mon(V)=mon(Min(V)) for any subset V of 7n. Let Xn denote the set
of Boolean variables x1 , ..., xn , and let cXn denote the set [x� i | xi # Xn]. Let Gn

denote the set of all Boolean functions of variables in Xn . TRUE and FALSE
denote constant functions that take identically 1 and 0, respectively. A conjunction
of literals is called a term or a monomial. For a term t, lit(t) denotes the set of
literals that appear in t. A literal y is said to be irrelevant with a term t if y � lit(t)
and y� � lit(t), where y� means x for y=x� . Let Tn denote the set of all terms of literals
in Xn _ cXn . For a positive integer k, Tn, �k denotes the set of t's in Tn such that
|lit(t)|�k. For any vector v in 7n, {v denotes the term of n variables defined as

{v= �
i # true(v)

xi .

We adopt the convention that {0 n=TRUE.

192 SAKAI, TAKIMOTO, AND MARUOKA

For a Boolean function g of k variables and k-tuple T=(t1 , ..., tk) of terms, g(T)
denotes the Boolean function of n variables that takes value g(t1(v), ..., tk(v)) for a
vector v in 7n. A Boolean function that can be represented as g(T) for some g in
Gk and for some T=(t1 , ..., tk) in Tn

k is called a function of k terms, and the class
of functions of k terms is denoted by Fk-term . For example, the class F2-term includes
the function (x1 7 x� 2)� (x� 1 7 x3 7 x4), where � denotes the exclusive OR func-
tion. Since T is considered to be a function from 7n to 7k, a function g(T) in Fk-term

can be thought of as the composition of g and T which will also be denoted by
g b T. Similarly, in the following, we use notations such as {v(T) and {v b T.

In this paper we introduce a variant of the uniform distribution, called a smooth
distribution, which is a generalization of all the distributions, such as q-bounded
and product distributions (Flammini et al., 1992; Kucera et al., 1994) that have
been dealt with in literature so far as variants of the uniform distribution.

Definition 2. For a positive integer n and a real number 0<p�1, a probability
distribution D on 7n is p-smooth if, for any vectors v and v$ in 7n with Hamming
distance 1, D(v)�D(v$)�p holds.

Before closing this section, we give a lemma due to Chernoff that will be used in
the following sections.

Lemma 1 (Kearns et al., 1987). For any real number 0�p�1, positive integer m
and real number 0�b�1, let LE(p, m, b) denote the probability of having at most
(1&b) mp successes in m independent trials with probability of success at least p, and
let GE(p, m, b) denote the probability of having at least (1+b) mp successes in m
independent trials with probability of success at most p. Then we have

LE(p, m, b)�e&b 2mp�2,

GE(p, m, b)�e&b 2mp�3.

3. LEARNING ALGORITHM

Before proceeding to our learning algorithm for functions of k terms, we give two
lemmas, called the Expansion Lemma and the Selection Lemma, on which the
learning algorithm is based. Let g be an arbitrary Boolean function of k variables
which is defined on a subset, denoted W, of 7k. The domain W will be fixed later
appropriately so that our algorithm works well. The expansion lemma simply says
that any Boolean function of k variables on domain W can be expanded as the
XOR of at most k+1 monotone Boolean functions on W.

Lemma 2 (Expansion Lemma). Let g be any Boolean function of k variables,
whose domain is given by W�7k. Define the sequences of Boolean functions g i and
hi defined on W for 1�i�k inductively as follows. Let h0= g and for 1�i�k,
define

gi=mon(hi&1)

193LEARNING PROPERLY FUNCTIONS OF k TERMS

and

hi=mon(hi&1) 7 h� i&1 .

Let d be the least integer i such that hi=FALSE. Then, g= g1 � } } } �gd ,
g1> } } } >gd , and d�k+1 hold.

Proof. Since the general case is verified in a similar way, we assume that
W=7k. First we show that g=�1�i�d gi . Since mon(hi&1)�hi&1 , we have
mon(hi&1) 7 hi&1=FALSE. So h i can be equivalently represented as h i=
mon(hi&1)�hi&1= g i �h i&1 . Applying these equalities inductively, we have
hi=g�g1 � } } } �g i . Since hd=FALSE, we have g��1�i�d g i=FALSE, or
equivalently g=�1�i�d gi .

Next we show that gi>gi+1 for 1�i<d. Fix 1�i<d arbitrarily. Since gi+1=
mon(hi)=mon(mon(hi&1) 7 h� i&1)�mon(h i&1) 7 mon(h� i&1)=gi 7 mon(h� i&1), we
have gi�gi+1 . On the other hand, since hi=mon(h i&1) 7 h� i&1 {FALSE, there
exists w such that mon(hi&1)(w)=1 and hi&1(w)=0. Let w be the minimal among
such vectors. Then there exists w$ such that hi&1(w$)=1 and w$<w. Clearly g i (w$)
=mon(hi&1)(w$)=1. On the other hand, since w is the minimal over the vector
that makes both mon(hi&1) and h� i&1 take value 1, that is, that makes h i take
value 1, it follows that gi+1(w$)=mon(hi)(w$)=0 in view of w$<w. Thus, together
with gi�gi+1 , we have gi>gi+1 .

Finally we verify that d�k+1 by showing that there exist d vectors v0<v1

< } } } <vd&1 , which immediately implies d�k+1. Since hd&1 {FALSE we can
choose a vector vd&1 such that hd&1(vd&1)=1. Then, since hi=mon(hi&1) 7 h� i&1 ,
there exists a vector vi&1<vi such that hi&1(vi&1)=0 for 1�i�d&1. K

In what follows we simply refer to an XOR-expansion based on monotone DNF
formulas as an �MDNF formula. From the Expansion Lemma it is easy to derive
the uniqueness of the �MDNF expansion. In what follows, the domain W�7k

is assumed to contain the vector 0k. Furthermore, g, gi , and h i are supposed to be
functions defined on the domain W.

Let g=�1�i�d gi be an �MDNF formula. Then, for any w in W�7k, there
exists an 0�i�d such that g1(w)= } } } =gi (w)=1 and gi+1(w)= } } } =gd (w)=0
because g1> } } } >gd . Note that the value g(w) is determined by the parity of such
i. The collection of such vectors is called the i th layer of g, which is denoted by
Lg, i . That is, Lg, i= gi& gi+1 for 1�i�d and Lg, 0=W& g1 , where gd+1 is
assumed to be FALSE, which takes value 0 for any vector. When no confusion
arises, Lg, i is simply written as Li . It is clear that the domain W�7k can be parti-
tioned into d+1 layers L0 , ..., Ld so that g takes the same value, which is given by
the parity of i, in each layer and the opposite value in any neighboring layers. It
is also clear that the set Min(Li) consists of the vectors w such that {w is a prime
implicant of gi . So, using the minimal vectors in Li , the function gi is written as

gi= �
w # Min(Li)

{w .

194 SAKAI, TAKIMOTO, AND MARUOKA

Since g's domain W is assumed to contain the vector 0k, Min(L0)=[0k] if
g(0k)=0 and L0=< otherwise. In the latter case, Min(L1)=[0k] and g1=TRUE.

Let U be a set, and A1 , ..., Ak be subsets of U. Let M be a subset of 7k. For w
in 7k, let �w (A1 , ..., Ak) denote subset � [A i | w(i)=1], namely, the union of sub-
sets Ai such that the ith component of vector w is 1. The problem we consider is
how to construct a collection of subsets [B1 , ..., Bk] such that �w (A1 , ..., Ak)=
�w (B1 , ..., Bk) holds for any w in M, provided that all the information we get is
subsets written as �w (A1 , ..., Ak) for any w in M. Note that, if all of the k unit vec-
tors belong to M, then the problem becomes trivial, because for 1�i�k, we can
put Bi=�ei

(A1 , ..., Ak) (=Ai), where ei is the unit vector with the i th component
being 1. The next Selection Lemma gives us an answer to the problem for M given
arbitrarily.

Lemma 3 (Selection Lemma). Let U be a set and A1 , ..., Ak be subsets of U. Let
M be a subset of 7k. Put

Bi=, {.
w$

(A1 , ..., Ak) }w$ # M and (w$) (i)=1=
for 1�i�k:

(i) For any 1�i�k,

Ai �Bi .

(ii) For any w in M,

.
w

(A1 , ..., Ak)=.
w

(B1 , ..., Bk).

Proof. By the definition of Bi , it is easy to see that Ai �Bi holds for any
1�i�k, completing the proof of (i).

For the proof of (ii), since �w (A1 , ..., Ak)=�w (B1 , ..., Bk)=< for w=(0, ..., 0),
we assume w{(0, ..., 0). By (i), we have �w (A1 , ..., Ak)��w (B1 , ..., Bk) for any w
in M. On the other hand, for any w in M and any 1�i�k such that w(i)=1,
we have Bi=�[�w$ (A1 , ..., Ak) | w$ # M and (w$)(i)=1]��w (A1 , ..., Ak), which
implies �w (B1 , ..., Bk)��w (A1 , ..., Ak). This completes the proof of (ii). K

Let g b T denote a target function we want to learn. Putting T=(t1 , ..., tk), the
value of T for an example v is given as T(v)=(t1(v), ..., tk(v)). Instead of seeking for
T=(t1 , ..., tk), we will compute T� =(t~ 1 , ..., t~ k) such that T(v) and T� (v) take the
same value with large probability when an example v is taken from 7n according
to a smooth probability distribution D. So (g b T)(v) and (g b T�)(v) take the same
value with large probability.

Let

W$=[w # T(7n) | D([v | T(v)=w])�=�2k+1],

195LEARNING PROPERLY FUNCTIONS OF k TERMS

where T(7n) denotes the set [w # 7k | _v # 7n T(v)=w]. Furthermore, W is defined
to be the minimum downward closed set of W$, that is,

W=[w # T(7n) | _w$ # W$ w�w$].

We will see later that the condition that W is downward closed is assumed just for
some technical reason. In what follows we take W as the domain of the function
g. That is, we consider g as the function from W to [0, 1] unless stated otherwise.
Let the function g with the domain W have the �MDNF expansion g=
�1�i�d gi . Furthermore, let Mg=�1�i�d Min(Li), where Li denotes the i th layer
of the function g. In the next lemma, the term made up of literals in
� [lit({w(T)) | w # Mg and w(i)=1] is written as � [{w(T) | w # Mg and w(i)=1] for
simplicity. We adopt the convention that the term corresponding to the empty set
denotes FALSE. Taking Mg and lit(t i) as M and Ai in the Selection Lemma, the
lemma can be restated as follows.

Lemma 4 (Selection Lemma). Let T=(t1 , ..., tk) and Mg be defined as Mg=
�1�i�d Min(Li). Put

t~ i=, [{w$(T) | w$ # Mg and (w$) (i)=1]

for 1�i�k and

T� =(t~ 1 , ..., t~ k):

(i) For any 1�i�k,

lit(ti)�lit(t~ i).

(ii) For any w in Mg ,

{w(T)={w(T�).

We are now ready to explain the rough idea of our algorithm which is given in
Fig. 2. Put g= y1 y3 6 y2 y4 6 y1 y� 4 as in the previous example and let T=
(t1 , t2 , t3 , t4) be such that t1=x1 , t2=x1x2x� 3 , t3=x3x� 4 , and t4=x� 5 . Putting g
and T in this way, we take g(T) as the target function. It was shown in the previous
example that Mg=�4

i=1 Min(Li)=[(1, 0, 0, 0), (0, 1, 0, 1), (1, 0, 0, 1), (1, 1, 0, 1),
(1, 0, 1, 1)]. Then by applying Lemma 4 to terms t1 , t2 , t3 , t4 , and Mg , which is
not known to the algorithm, we have, for instance,

lit(t~ 4)=, [{(0, 1, 0, 1) , {(1, 0, 0, 1) , {(1, 1, 0, 1) , {(1, 0, 1, 1)]

=[x1 , x2 , x� 3 , x� 5] & [x1 , x� 5] & [x1 , x2 , x� 3 , x� 5] & [x1 , x3 , x� 4 , x� 5]

=[x1 , x� 5];

hence t~ 4=x1 x� 5 . In a similar way, we have t~ 1=x1 , t~ 2=x1x2x� 3x� 5 , t~ 3=x1x3x� 4x� 5 .

196 SAKAI, TAKIMOTO, AND MARUOKA

Our algorithm computes {w(T) repeatedly for each minimal vector w belonging to
layer L1 up to L4 . Suppose we have computed {w$(T) for each w$ in Min(L1). Based
on such {w$(T) the algorithm computes {w(T) for w in Min(L2)=[(1, 0, 0, 1)]. To
do so the algorithm takes all the possible pairs (s, r) of terms s in [{w$(T) | w$ # Min(L1)]
and terms r consisting of at most k literals. Suppose that, as such a combination,
term s={(1, 0, 0, 0)(T)=x1 and term r=x� 2 x4 are chosen. Since g((1, 0, 0, 1))=0,
negative vectors v's that satisfy both {(1, 0, 0, 0)(T)(v)=1 (or, equivalently, v(1)=1)
and x� 2x4(v)=1 (or, equivalently, v(2)=0 and v(4)=1) are collected to form a
collection V of such vectors v's. It is easy to see that {(1, 0, 0, 0)(T)(v)=1 is equivalent
to T(v)�(1, 0, 0, 0), while {(1, 0, 0, 0)(T)(v)=1, v(2)=0, v(4)=1 and g(T(v))=0
(or, equivalently, vector v is negative) implies that T(v)=(1, 0, 0, 1). Since
T(v)=(1, 0, 0, 1) is equivalent to x1(v)=1, x1 x2x� 3 (v)=0, x3 x� 4 (v)=0, and
x� 5(v)=1, the term {(1, 0, 0, 1)(T)=x1 x� 5 is obtained by taking bit-wise AND of all
the vectors in the sufficiently large collection V. By repeating what is described
above, we obtain {w(T) for all w in Mg . In fact, the collection of such terms that
are described as {w(T) for some w in Ll is denoted by Ul in Fig. 2. Notice that we

FIG. 2. Algorithm LEARN.

197LEARNING PROPERLY FUNCTIONS OF k TERMS

only obtain a term described as {w(T) for some w in Mg without knowing the
corresponding vector w. So in order to obtain t~ i described as in Lemma 6 in terms
of {w$(T)'s for w$ in Mg , we take, exhaustively, the intersection of possible collec-
tions of literals in an appropriate number of such terms. The collection, denoted U� ,
of terms obtained in this way includes all of the desired terms t~ i 's for 1�i�k. Once
U� is computed, the algorithm computes g~ (T�) by trying exhaustively all g~ 's of k
variables and all k-tuples of terms in U� until a sufficiently accurate hypothesis g~ (T�)
is obtained.

The next lemma says that g b T� behaves the same as g b T does on the domain
[v # 7k | T(v) # W].

Lemma 5. Let g be the function from 7k to 7 given by the formula

�
1�i�d

� [{w | w # Min(Li)].

Then for any v in 7n such that T(v) # W,

g(T(v))= g(T� (v)).

Proof. For an arbitrary vector v in 7n such that T(v) # W, let w=T(v). For
simplicity of notation in the following argument, put g0=TRUE and gd+1=
FALSE. Let 0� j�d be the subscript such that T(v) # gj& gj+1 , that is, gj (T(v))
=1 and gj+1(T(v))=0. Since g takes the same value for w's that belong to the
same layer, it suffices to show that T� (v) # gj& gj+1 .

Since W is downward closed, there exists the minimal vector wm in gj such that
wm�w. Then since {wm

(T)={wm
(T�) by (ii) in Lemma 4, we have {wm

(T�)(v)=
{wm

(T)(v)=1, which implies T� (v)�wm . Thus by the monotonicity of gj and the fact
that gj (wm)=1, we have gj (T� (v))=1.

On the other hand, by (i) in Lemma 4, T� (v)�T(v) holds. Thus, by the
monotonicity of gj+1 and the fact that gj+1(T(v))=0, we have g j+1(T� (v))=0. K

It is easy to see from Lemma 5 that the next lemma holds.

Lemma 6. g b T� =�2-approximates g b T.

As mentioned in the example above, our algorithm computes a collection of
terms, denoted Ul , such that [{w(T) | w # Min(Ll)]�Ul from l=0 up to d,
repeatedly. More precisely, given {w$(T) for w$ in Min[w" # W | g l&1(w")=1] we
seek for {w(T) for w in Min[w" # W | gl (w")=1] such that w$<w. The relation
between such vectors is described in terms of the notation defined as

ANCES(w$)=Min[w # W | w$<w and g(w$){ g(w)].

To compute such a term {w(T) for {w$(T) with w # ANCES(w$) without knowing
the value T(v) for vectors v's, we guess a term r that kills all the unnecessary terms
among t1 , ..., tk , that is, terms t i 's such that w(i)=0, where T=(t1 , ..., tk). More
precisely, the term r is taken so that, for all the unnecessary terms ti 's, r contains

198 SAKAI, TAKIMOTO, AND MARUOKA

the negation y� i of some literal yi in lit(ti). The collection of such terms, denoted Rw ,
is defined as

Rw={ �
i # false(w)

y� i } y i # lit(ti) for i # false(w)= .

The algorithm computes {w(T) based on the next lemma.

Lemma 7. For any vector w$ in Mg , any vector w in ANCES(w$), and any term
r in Rw ,

{w(T) 7 r={w$(T) 7 r 7 (g b T) g(w),

where (g b T) g(w) denotes g b T if g(w)=1 and g b T otherwise.

Proof. Let w$, w, and r be as in the lemma. Then the statement of the lemma
is restated as

{w(T) & r={w$(T) & r & [v$ # 7k | g(T(v$))= g(w)],

where {w(T) denotes [v$ # 7k | {w(T(v$))=1], and similarly for {w$(T) and r. It is
easy to see by the definition of Rw and the fact that r # Rw that

v # {w(T) & r � T(v)=w, r(v)=1.

On the other hand, we have

v # {w$(T) & r � w$�T(v)�w, r(v)=1.

Since g(T(v)) for w$�T(v)�w takes a different value from g(w$) only when
T(v)=w, it is easy to see that

v # {w$(T) & r & [v$ # 7k | g(T(v$))= g(w)]

� v # {w$(T) & r, g(T(v))= g(w)

� T(v)=w, r(v)=1.

This completes the proof. K

4. CORRECTNESS

The next lemma is immediate from the definition of the smoothness.

Lemma 8. Let distribution D be p-smooth. Then for any terms t and t$ such that
t7 t${FALSE,

D(t | t$)�(p�2) |lit(t)|.

199LEARNING PROPERLY FUNCTIONS OF k TERMS

As will be shown in the proof of Lemma 9, our algorithm exploits the properties
of a smooth distribution in terms of the condition in Lemma 8.

Lemma 9. Let distribution D be p-smooth. For any w in Mg and r in Rw such that
{w(T) 7 r{FALSE,

D({w(T) 7 r)�;

holds, where ;==pk�22k+1. Furthermore for any literal y that is irrelevant with
{w(T) 7 r,

p�2�D(y | {w(T) 7 r)�1& p�2

holds.

Proof. By the definition of W there exists w$ in W such that w�w$ and
D([v | T(v)=w$])�=�2k+1, which implies that D({w(T))=D([v | T(v)�w])�
D([v | T(v)=w$])�=�2k+1. By Lemma 8, we have D(r | {w(T))�(p�2) |lit(r)|�(p�2)k.
Thus, we have

D({w(T) 7 r)=D({w(T)) 7 D(r | {w(T))

�
=

2k+1 } \p
2+

k

=;.

It is easy to see that the second statement holds, because by Lemma 8 we have
D(y | {w(T) 7 r)�p�2 for any literal y that is irrelevant with {w(T) 7 r. K

The next lemma asserts that Algorithm LEARN yields with high probability an
hypothesis that belongs to H. In what follows H is regarded as a random variable
that is determined by the algorithm in terms of a positive sample S+ and a negative
sample S&, drawn according to a p-smooth distribution D.

Lemma 10. With probability at least 1&$�2, the H that Algorithm LEARN
computes includes an =�2-approximation.

Proof. Let T� be taken as in Lemma 4. Let g have the XOR-expansion written
as �1�i�d g i . As Fig. 2 shows, H consists of the hypothesis of the form g$(T $),
where g$ and T $ are taken by the exhaustive search from Gk and U� k, respectively.

It is easy to see that if [{w(T) | w # Min(Li)]�Ui holds for 1�i�d, then U� k

contains T� as given in Lemma 4. So since g(T�) is an =�2-approximation of g(T)
by Lemma 6, it suffices to show that, with probability at least 1&$�2, the Ui that
Algorithm LEARN computes satisfies

[{w(T) | w # Min(Li)]�Ui

for any 1�i�d. Let m, S+, and S & be taken as in Algorithm LEARN. Putting
S=(S+, S&), let Ul (S) denote the set Ul that LEARN computes for a pair of
samples S. For 1�i�d, let Ci (S) be the event that [{w(T) | w # Min(L j)]�Uj (S)
holds for any 0� j�i. Note that C0(S) holds for any sample S. Then, what we will

200 SAKAI, TAKIMOTO, AND MARUOKA

show is written as Pr[Cd (S)]�1&$�2, or equivalently, Pr[cCd (S)]�$�2. Since
V and Y in the algorithm are determined by the sample S, w$ in Min(Li&1) and r
in Tn, �k , these are written as random variables as

Vw$, r(S)=[v # S parity(i) | ({w(T) 7 r)(v)=1]

and

Yw$, r(S)=[y # Xn _ cXn | \v # Vw$, r(S), y(v)=1],

where parity(i) denotes + when the integer i is odd, and & otherwise. Since W is
downward closed, for any w in Min(Li) there exist w$ and r in Rw that satisfy the
equality of Lemma 7. These w$ and r are denoted by ww and rw , respectively, so we
have

{w(T) 7 rw={ww
(T) 7 rw 7 (g b T) g(w).

Note that, when i=1, ww becomes 0k, and hence, the right-hand side of the above
equality turns out to be rw 7 (g b T) g(w).

It is easy to see that we have

Pr[Ci&1(S) and cCi (S)]

�Pr __w # Min(Li), |Vww , rw
(S)|< 3

4 ;m or � (Yww , rw
(S)){{w(T) 7 rw&

� :
w # Min(Li)

\Pr[|Vww , rw
(S)|< 3

4 ;m]

+Pr _� (Yww , rw
(S)){{w(T) 7 rw } |Vww , rw

(S)|� 3
4 ;m&+ .

Since |Min(Li)|�2k and d�k+1, it suffices to verify

Pr _ |Vww , rw
(S)|<

3
4

;m&�
$

2k+2(k+1)
(1)

and

Pr _� (Yww , rw
(S)){{w(T) 7 rw } |Vww , rw

(S)|�
3
4

;m&�
$

2k+2(k+1)
. (2)

Since D({ww
(T) 7 rw 7 (g b T) g(w))=D({w(T) 7 rw)�=pk�2k+1=; holds by

Lemma 7 and Lemma 9, we have in view of Lemma 1,

Pr _ |Vww , rw
(S)|<

3
4

;m&
=Pr _ |Vww , rw

(S)|<\1&
1
4+ ;m&�e&(1�4) 2 m;�2�

$
2k+2(k+1)

,

verifying inequality (1).

201LEARNING PROPERLY FUNCTIONS OF k TERMS

In view of Lemma 1 it is easy to verify that for any y in (Xn _ cXn)"
lit({w(T) 7 rw),

Pr[\v # Vww , rw
(S), y(v)=1 | |Vww , rw

(S)|�m$]�(1& p�2)m$�e&pm$�2.

So, putting m$=(3�4) ;m�(3�4) ;(8�3;p) ln(2k+3(k+1)n�$), we have

Pr _� (Yww , rw
(S)){{w(T) 7 rw } |Vww , rw

(S)|<
3
4

;m&
=Pr[_y # (Xn _ cXn)"lit({w(T) 7 rw), \v # Vwww, rw

(S), y(v)

=1 | |Vww , rw
(S)|�m$]

�2n Pr[\v # Vww , rw
(S), y(v)=1 | |Vww , rw

(S)|�m$]

�2n }
$

2k+3(k+1)n
=

$
2k+2(k+1)

.

This completes the proof of inequality (2) and, hence, the lemma. K

Lemma 11. Algorithm LEARN outputs, with probability at least 1&$, an
hypothesis in Fk-term that =-approximates the target function.

Proof. Let H denote the collection of hypotheses that LEARN computes. An
hypothesis h is called to pass the check if both |[v # S+ | h(v)=0] |< 3

4=m and
|[v # S& | h(v)=1]|< 3

4=m hold. Then, in view of Lemma 10 we have

Pr[LEARN does not output an =-approximation]

�Pr[H contains no =�2-approximation]

+Pr[``H contains =�2-approximation h�=�2 '' and

``the hypothesis h�=�2 does not pass the check or

there exists a hypothesis in H with error

more than or equal to = that passes the check'']

�$�2+Pr[An =�2-approximation does not pass the check]

+(|H|&1) } Pr[A hypothesis with error more than

or equal to = passes the check].

Since |Ui |�|Ui&1 | } |[\�lit(r) | r # Tn, �k]|�(2n)k |Ui&1 | for 1�i�k+1, we have
|U|=�1�i�k+1 |Ul |�2(2n)k(k+1). We therefore have |H|= |Gk | } |U� k|�22k

}
(|U|2k&1

)k�(2n)2k+2k3
. Hence, we have

m�
24
=

ln
(2n)2k+4k 3

$
�

24
=

ln
|H|

$
.

202 SAKAI, TAKIMOTO, AND MARUOKA

So, since 3=m�4=(1+1�2) } m } (=�2) and m�(24�=) ln(|H|�$), it is easy to see,
using Lemma 1, that

Pr[An =�2-approximation does not pass the check]

�GE \ =
2

, m,
1
2+

�e&(1�2) 2 } (=m�2) } (1�3)=e&=m�24

�
$

2 |H|
.

On the other hand, since 3=m�4=(1&1�4) =m, we have, in view of Lemma 1, that

Pr[A hypothesis with error more than or equal to = passes the check]

�LE \=, m,
1
4+

�e&(1�4) 2 } =m } (1�2)=e&=m�32

�
$

2 |H|
.

Thus, we have

Pr[LEARN does not output as =-approximation]

�$�2+
$

2 |H|
+(|H|&1)

$
2 |H|

=$,

completing the proof. K

Lemma 12. For fixed k and 1�p polynomial in n, algorithm LEARN halts in time
polynomial in n, 1�=, and 1�$.

Sketch of proof. It can be verified that the algorithm halts in time
O((n2k k3+1�=pk+1) ln(n�$)). K

ACKNOWLEDGMENTS

We thank the anonymous referees for many helpful comments on the presentation of the paper.

Received November 20, 1995; final manuscript received November 30, 1998

REFERENCES

Blum, A., and Singh, M. (1990), Learning functions of k terms, in ``Proceedings, 3rd Workshop on
Computational Learning Theory,'' pp. 144�153, Morgan Kaufmann, San Mateo, CA.

Bshouty, N. H. (1993), Exact learning via the monotone theory, in ``Proceedings, 35th Symposium on
Foundation of Computer Science,'' pp. 302�311.

203LEARNING PROPERLY FUNCTIONS OF k TERMS

Flammini, M., Marchetti-Spaccamela, A., and Kuc� era, L. (1992), Learning DNF formulae under classes
of probability distributions, in ``Proceedings, 5th Workshop on Computational Learning Theory,''
pp. 85�92, Morgan Kaufmann, San Mateo, CA.

Kearns, M., Li, M., Pitt, L., and Valiant, L. G. (1987), On the learnability of Boolean formulae, in
``Proceedings, 19th ACM Symposium on Theory of Computing,'' pp. 285�295.

Kucera, L., Marchetti-Spaccamela, A., and Protasi, M. (1994), On learning monotone DNF formulae
under uniform distributions, Inform. and Comput. 110, 84�95.

Pitt, L., and Valiant, L. G. (1988), Computational limitation on learning from examples, J. Assoc.
Comput. Mach. 35(4), 965�984.

Valiant, L. G. (1984), A theory of the learnable, Comm. ACM 27(11), 1134�1142.

204 SAKAI, TAKIMOTO, AND MARUOKA

	1. INTRODUCTION
	FIG. 1

	2. PRELIMINARIES
	3. LEARNING ALGORITHM
	FIG. 2

	4. CORRECTNESS
	ACKNOWLEDGMENTS
	REFERENCES

